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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Characterization of vaccine targeting MICA/B 
vaccine α3 domain. a, HPLC gel filtration analysis of affinity-purified ferritin 
(immunogen for Ctrl-vax) and MICB-ferritin (immunogen for MICB-vax) 
proteins. The proteins formed nanoparticles of ~957 kDa (MICB-ferritin) and 
~468 kDa (ferritin); molecular weight standards are indicated. b, SDS-PAGE 
analysis of purified ferritin and MICB-ferritin proteins under reducing 
conditions. c, Electron microscopy image showing MICB-ferritin protein 
assembled into nanoparticles (98,000x magnification). d, Identification of 
MICB transgenic (Tg) mice by PCR amplification using genomic DNA extracted 
from tail biopsies (lanes 2,6, MICB Tg; lane 7, positive control amplification 
from plasmid with the transgene cassette; lane 8, negative control reaction).  
e, Quantitative RT-PCR analysis of luciferase and MICB mRNA in the prostate of 
WT (grey) and MICB-tg (orange) mice (n = 2 WT, n = 3 MICB-Tg mice) normalized 
to mouse Hprt mRNA. f, Quantification of day 14 MICB-specific serum Ab titers 
(fluorescence-based immunoassay, DELFIA) in WT and MICB-tg mice 
immunized with Ctrl-vax (n = 4 mice/group) (grey) (120μg ferritin protein, 
100µg CpG, 1µg GM-CSF) or MICB-vax (n = 5 mice/group) (200μg MICB-ferritin, 
100µg CpG, 1µg GM-CSF) without MSR (left) or with MSR (right) scaffold.  
g, Quantification of MICB-specific serum Ab titers (fluorescence-based 
immunoassay, DELFIA) in mice immunized with Ctrl-vax (grey) or MICB-vax 
using differing protein doses, 50μg (yellow), 100μg (blue) or 200μg (red) (n = 2 
mice/group). h, Representative flow cytometry plots showing binding of 

polyclonal serum Abs from mice immunized with Ctrl-vax (blue) or MICB-vax 
(red) to cell surface MICB on B16F10 (MICB) tumor cells; serum dilutions are 
indicated for each condition. i, Titers of MICB Ab isotypes assessed by ELISA 
(n = 5 mice/group) in MICB transgenic mice immunized with Ctrl-vax (blue) or 
MICB-vax (red). j, Analysis of MICB-specific CD8 T-cell responses in the spleen 
of mice immunized with Ctrl-vax (blue) or MICB-vax (red). Intracellular 
cytokine staining (IFNγ) and CFSE dilution is shown in representative flow 
cytometry plots (left); data are quantified for T-cells from both vaccine groups 
(3 mice/group, right). k, Analysis of human NKG2D dimer (left) and mouse 
NKG2D dimer (right) binding to cell surface MICB on B16F10 (MICB-ZsGreen) 
tumor cells pre-incubated with sera (5μl) from Ctrl-vax or MICB-vax mice.  
l, Representative flow cytometry plots showing binding of anti-human MICA/B 
antibody (6D4, specific for MICA/B α1-α2 domains) to cell surface MICB on 
B16F10 (MICB) tumor cells pre-incubated with sera from mice immunized with 
Ctrl-vax (blue) or MICB-vax (red). Representative data from >3 independent 
experiments (a, b). Data from a single experiment with technical replicates (c). 
Representative data from three experiments (d, e, g, h, i). Representative data 
from two experiments ( j, k, l). Two-tailed unpaired Student’s t-test (e); Two-way 
ANOVA with Tukey’s multiple comparison test (f, g); Two-way ANOVA with 
Sidak’s multiple comparison test (i, j). Data depict mean +/− SD (e,g) or mean 
+/− SEM (f, i, j).
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Article
Extended Data Fig. 2 | Characterization of vaccine-induced immune 
responses. a, b, Inhibition of MICA/B shedding and surface stabilization by 
vaccine-induced Abs. Flow cytometric analysis of cell surface MICA/B levels  
(a) and shed MICA/B in supernatants (b) for human A375 melanoma, A549 lung 
carcinoma, HCT116 colon carcinoma and K562 myelogenous leukemia cell lines 
24 h following incubation with 10 µl of sera from Ctrl-vax (blue) or MICB-vax 
(red) immunized mice; isotype control Ab staining shown in grey (a).  
c, d, Inhibition of MICB shedding and surface stabilization by vaccine-induced 
Abs on mouse tumor cell lines. Flow cytometric analysis of cell surface MICB 
levels (c) and shed MICB in supernatants (d) for mouse B16F10 (MICB) 
melanoma, EL4 (MICB) lymphoma and 4T1 (MICB) triple negative breast cancer 
cell lines 24 h following incubation with 10 µl of sera from Ctrl-vax (blue) or 
MICB-vax (red) immunized mice. Isotype control Ab staining shown in grey (c). 
e–g. Vaccine efficacy at different MICB expression levels induced in tumor cells 
using a doxycycline (dox) inducible promoter. Representative flow cytometry 
histograms showing MICB surface expression levels on B16F10 (MICB-dox) 
tumors in vivo in mice treated with PBS (blue histogram) or different 
concentrations of doxycycline (dox): low dox (2.5mg/kg, orange), medium dox 
(5mg/kg, red) or high dox (10mg/kg, green) or control B16F10 (Ctrl-dox) 
tumors treated with high dox (10mg/kg, grey) (e). Analysis of B16F10 (MICB-
dox) tumor growth kinetics at different MICB expression levels by tumor cells. 
Mice received Ctrl-vax (grey, blue, black) or MICB-vax (orange, red, green) on 
day 0 and a boost on day 14. B16F10 (MICB-dox) tumor cells were implanted on 
day 21, and MICB expression was induced on tumor cells on day 25 when tumors 
were palpable by treating mice with different concentrations of doxycycline as 

indicated (f) (n=7 mice/group). Quantification of serum levels of shed MICB in 
mice immunized with Ctrl-vax (grey, blue, black) or MICB-vax (orange, red, 
green) 96 h post dox-mediated induction of MICB on B16F10 (MICB-dox) tumor 
cells. Serum levels of shed MICB were analyzed in 5 randomly selected mice in 
each group (g). h–i, Representative flow cytometry histogram showing surface 
MICB levels on B16F10 (MICB) clone G12 (red) or indicated pooled clones 
(gradient of turquoise). Grey histogram represents isotype antibody staining 
of B16F10 (MICB) clone G12 (h). Assessment of therapeutic efficacy of MICB-
vax (red, green) or Ctrl-vax (blue, grey) in mice with tumors established with 
B16F10 (MICB) clone G12 or pooled clones (B3, A3, C6, B1, G1) (n=8 mice/group) 
(i). j–n, Assessment of vaccine efficacy targeting MICA or MICB α3 domains. 
The MSR scaffold was formulated with antigens, GM-CSF and CpG. Mice 
received one or two doses of Ctrl-vax, MICB-vax ( j–m) or MICA-vax (n) and were 
then challenged with B16F10 tumor cells expressing MICB (allele 005) ( j, k) or 
MICA (allele 009) (m, n) or EL4 tumor cells expressing MICB (allele 005) (l). 
Vaccination and tumor challenge schedule is illustrated above each 
experiment; n = 7 mice/group ( j–l), n = 6 mice in Ctrl-vax, n = 8 mice in MICB-vax 
(m) and n = 6 mice/group (n). For experiments shown in ( j), tumor-free mice 
were rechallenged on day 120 using the same dose of B16F10 (MICB) tumor cells 
as in the initial inoculation. Representative data from two experiments  
(a–d, j–n). Data from single experiment (e–g, h–i). Two-tailed unpaired 
Student’s t-test (b, d); one-way ANOVA with Tukey’s multiple comparison test 
(g); two-way ANOVA with Bonferroni’s post hoc test (f, i (left), j (left), k. l, m, n); 
log-rank (Mantel-Cox) test (i (right), j (right). Data depict mean +/− SD (b, d) or 
mean +/− SEM (f, g, i–n).



Representative lung images of  vaccine efficacy in B16-BL6 spontaneous metastasis model  

Representative lung images of  vaccine efficacy in 4T1 spontaneous metastasis model  

Representative H&E section of whole lung - 4T1 metastasis
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Extended Data Fig. 3 | Protection from metastatic disease by vaccination 
following surgical removal of primary tumors. a, c, Images of lung 
metastases from five representative mice per group immunized with Ctrl-vax 
(top two rows) or MICB-vax (bottom two rows). Mice were immunized following 
surgical removal of primary B16-BL6 (MICB) (n = 10 mice/group) (a) and 4T1 
(MICB) (c) tumors (n = 13 mice/group), as described in Fig. 1f, g. b, d, 
Representative bright field images of H&E stained histological sections of lung 
metastases from mice with B16-BL6 (MICB) (b) or 4T1 (MICB) (d) tumors.  

e–f, Quantification of the number of metastases per H&E stained section (left) 
and percentage of area of lung section occupied by metastases (right) for mice 
immunized with Ctrl-vax (blue) or MICB-vax (red) following surgical removal of 
primary B16-BL6 (MICB) tumors (e) or 4T1 (MICB) tumors (f). Representative 
data from two experiments (a-f). Representative images of 5 histological lung 
sections per mouse (b, d), Two-tailed Mann Whitney test (e, f). Data depict 
mean+/− SEM.



Article
a b c

10^2 10^3 10^4
0

50000

100000

150000

10^2 10^3 10^4
0

50000

100000

150000

10^2 10^3 10^4
0

25000

50000

75000

100000

d

10^2 10^3 10^4
0

50000

100000

150000

10^2 10^3 10^4
0

25000

50000

75000

100000

10^2 10^3 10^4
0

25000

50000

75000

100000

e
serum dilution serum dilution

serum dilution serum dilution serum dilution serum dilution

R
FU R
FU

R
FUR
FU

R
FU

R
FU

(+) (-)

****

****
****
****

P= 0.0051
P= 0.0125

****

****

****
****

****P<0.0001 ****

*

****
****

****

****P<0.0001

P=0.0230

* P=0.0322

****

****

****

P=0.0008

MICA specific Rh pAb titers - RBQ12 MICB specific Rh pAb titers - RBQ12

MICA specific Rh pAb titers - RVf10 MICB specific Rh pAb titers - RVf10 MICA specific Rh pAb titers - RQq15 MICB specific Rh pAb titers - RQq15

**** P<0.0001

****

****
****

****

****

**** P<0.0001

****

****
****

****

P=0.0133

****

****
****

****
****

****

P=
0.

00
78

****P<0.0001

****

****

****

P=0.0088
P=0.0005

pre-immunization
immunization
boost 1
boost 2
boost 3

14 kDa

19 kDa

28 kDa

39 kDa
51 kDa
64 kDa
97 kDa

191 kDa

0 103 104 105
0

20

40

60

80

100

N
or

m
al

iz
ed

 T
o 

M
od

e

anti-rhesus IgG (PE)

0 103 104 105
0

20

40

60

80

100
N

or
m

al
iz

ed
 T

o 
M

od
e

0.1 0.25 0.5 1 2.5
0

10000

20000

30000

M
FI

0.1 0.25 0.5 1 2.5
0

500

1000

1500

2000

2500

M
FI

gf

rhesus IgG (µg) 

Surface MICA binding- 9312 Surface MICB binding - 9312

anti-rhesus IgG (PE) rhesus IgG (µg) 

h

0.1 0.25 0.5 1 2.5
0

200

400

600

800

M
FI

0.1 0.25 0.5 1 2.5
0

2000

4000

6000

8000

10000

M
FI

l

0.1 0.25 0.5 1 2.5
0

200

400

600

800

M
FI

m

0.1 0.25 0.5 1 2.5
0

400

800

1200

1600

M
FI

Surface MICA binding - RVf10 Surface MICB binding - RVf10

Surface MICA binding - RQq15 Surface MICB binding - RQq15

k

rhesus IgG (µg) rhesus IgG (µg) 

rhesus IgG (µg) rhesus IgG (µg) 

0.1 0.25 0.5 1 2.5
0

500

1000

1500

2000

M
FI

rhesus IgG (µg) 
0.1 0.25 0.5 1 2.5

0

2000

4000

6000

8000

M
FI

rhesus IgG (µg) 

Surface MICA binding - RBQ12 Surface MICB binding - RBQ12
i j

A280nm - protein trace
A350nm - bis arylhydrazone bond

pre-immunization IgG
post-immunization IgG

pre-immunization IgG
post-immunization IgG

Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Immunogenicity of MICA/B α3 domain vaccine in 
non-human primates. a, Characterization of the MICA/B α3 immunogen used 
in the primate study. The α3 domains of rhesus macaque MICA and MICB were 
expressed as a fusion protein with ferritin to generate nanoparticles that 
displayed both α3 domains on the surface. Nanoparticles formed by this fusion 
protein were conjugated using click chemistry to CpG ODN 2935 as the 
adjuvant and characterized by HPLC gel filtration chromatography. Shown are 
HPLC traces of the protein following conjugation to the CpG oligonucleotide 
(red: 280 nm trace for detection of protein; blue: 350 nm trace for detection of 
bis-aryl hydrazone bond). b, SDS-PAGE analysis of purified macaque MICA/B α3 
– ferritin protein under reducing (+) and non-reducing (−) conditions following 
CpG conjugation and final purification using a HPLC gel filtration column.  
c–e, Characterization of serum antibody responses to rhesus macaque MICA 
(left) and MICB (right) proteins (full-length extracellular domains without 
ferritin fusion partner) at different steps in the immunization process. 

Antibody responses were investigated in three animals (RBQ12, RVf10 and 
RQq15) at multiple timepoints (pre-immunization; three weeks following initial 
immunization and boosts 1-3, as illustrated in Fig. 1h) using a fluorescence-
based ELISA (RFU, relative fluorescence units) at multiple serum dilutions 
(1:102 to 1:104). f–m, Binding of purified polyclonal serum IgG to cell surface 
MICA (left) and MICB (right) using HEK293T transfectants that displayed 
rhesus macaque MICA (Mamu-A*01) or MICB (Mamu-B*01) proteins. Pre-
immune sera were used as a control (grey) for sera obtained following 
immunization (red). Representative histograms (left in f, g) and graphical 
summaries of flow cytometry data (right in f, g, h–m) are shown for the four 
immunized macaques (9312, RBQ12, RVf10 and RQq15). Representative data 
from two experiments (a–b). Data from a single macaque immunization 
experiment with technical replicates for each macaque analyzed (c–m).  
Two-way ANOVA with Tukey’s multiple comparison test (c-e). Data depict 
mean+/− SD.
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Extended Data Fig. 5 | Impact of vaccine on functional programs of tumor-
infiltrating CD4 and CD8 T-cells. a, Effect of doxycycline on tumor growth in 
vaccinated mice. Mice received Ctrl-vax (blue, grey) or MICB-vax (green, 
magenta, red) on day 0 and a boost on day 14. B16F10 cells transduced with Ctrl-
dox or MICB-dox lentiviral vectors as indicated were implanted on day 21, and 
mice were treated with doxycycline (or PBS as control) starting on day 25 to 
induce MICB expression on tumor cells (n=5 mice/group). b–k, Analysis of 
tumor-infiltrating T-cell populations. Tumor-infiltrating T-cells were analyzed 
7 days following induction of MICB expression by tumor cells (n = 7 mice/
group). b–c, Analysis of CD62L and CD44 expression by tumor-infiltrating CD4 

(b) and CD8 (c) T-cells. d–e, Representative flow plots (left) and quantification 
(right) of NKG2D receptor expression by CD4 (d) and CD8 (e) T-cells. f–g, 
Representative flow plots and quantification of CXCR6 receptor expression by 
CD4 (f) and CD8 (g) T-cells. h–i, Quantification of proliferating Ki67+ CD4  
(h) and CD8 (i) T-cells. j–k, Quantification of TNFα positive CD4 ( j) and CD8  
(k) T-cells. Two-way ANOVA with Bonferroni’s post hoc test (a); two-way ANOVA 
with Tukey’s multiple comparison test (b–c); two-tailed Mann Whitney test  
(d–k). Representative data from two independent experiments (b–i); 
representative data from three independent experiments ( j–k). Data depict 
mean+/− SEM.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Flow cytometric and scRNA-seq analysis of changes 
in tumor-infiltrating immune cells induced by the vaccine.  
a–b, Representative histograms (a) and quantification (b) of PD-1, CTLA-4, Tim-
3, Tigit and Lag3 expression by tumor-infiltrating CD8 T-cells from Ctrl-vax 
(blue) or MICB-vax (red) mice (n = 9 mice/group). c–d, Comparison of T-cell and 
NK cell populations in B16F10 (MICB) tumors following treatment with a 
MICA/B mAb or the MICB vaccine. In the vaccine arm, mice received Ctrl-vax 
(C-vax) (n = 9 mice) or MICB-vax (M-vax) (n = 10 mice) on days 0 and 14, while 
mice in the mAb treatment group (n = 8 mice/ group) received two buffer 
injections. Mice were implanted with B16F10 (MICB-dox) tumor cells on day 21. 
MICB expression was induced on tumor cells by doxycycline treatment starting 
on day 28, and mice in the mAb treatment group received either mouse IgG2a 
isotype control mAb (iso) or MICA/B mAb (mAb) treatment every 48 h starting 
on day 28. Tumor-infiltrating immune cells were analyzed in all groups on day 
35. Total numbers of tumor-infiltrating CD4+ T-cells, CD8+ T-cells and NK cells 
were quantified by flow cytometry (c), and intracellular staining was 
performed for IFNγ (d) in all four treatment groups. e–g, scRNA-seq analysis  
of changes in tumor-infiltrating immune cells induced by the vaccine.  

CD45+ immune cells in B16F10 (MICB-dox) tumors were investigated by scRNA-
seq under four experimental conditions: the MICB-vax (+dox) experimental 
group and the three control groups, Ctrl-vax (-dox), Ctrl-vax (+dox) and MICB-
vax (-dox). Doxycycline was administered to mice for seven days prior to 
scRNA-seq analysis to induce MICB expression on tumor cells in two of these 
groups (+dox). For each of the four groups, CD45+ immune cells were pooled 
from five mice to reduce variation from individual tumors. e, UMAP projection 
of CD45+ immune cells combined from all experimental groups. Major immune 
cell populations are annotated based on differentially expressed genes.  
f, Comparison of immune subpopulations across all clusters for the 
experimental MICB-vax (+dox) group (red) versus the three combined control 
groups (blue). g, Distribution of CD45+ cells across individual clusters (color-
coded as in e) for the experimental MICB-vax (+dox) group (MICB) and the  
three combined control groups (Ctrl). Representative data of two experimental 
repeats (a–b). Data from a single experiment (c–d). ScRNA-seq data from a 
single experiment with sorted CD45+ cells pooled from 5 mice/group (e–g). 
Two-tailed Mann Whitney test (b); one-way ANOVA with Tukey’s multiple 
comparison test (c–d). Data depict mean+/− SEM.
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Extended Data Fig. 7 | Gene expression programs of tumor-infiltrating 
T-cell and NK cell populations. a–d, scRNA-seq analysis of T-cell clusters 
among CD45+ tumor-infiltrating cells in B16F10 (MICB-dox) tumors. UMAP 
representation of T-cell subclusters (a) and visualization of T-cell populations 
for the experimental MICB-vax (+dox) group (MICB) and the three control 
groups (b). c, Contribution of each T-cell subcluster to the total CD45+ immune 
population for each of the four treatment groups. d, Quantification of 
expanded TCR clonotypes for CD4, Treg, CD8 effector, CD8 exhausted and CD8 
proliferating clusters shown for all four treatment groups. e, f, Ranking of 
differentially expressed genes in scRNA-seq data from the indicated T-cell 

subpopulations (e) and NK cells (f) comparing cells from the experimental 
MICB-vax (+dox) group to cells from the three combined control groups, Ctrl-
vax (-dox), Ctrl-vax (+dox) and MICB-vax (-dox). g–j, Violin plots showing 
expression levels of activation-related genes (g) and Th1-related genes (h) in 
CD4 T-cells as well as activation-related genes (i) and chemokine receptor 
genes ( j) in CD8 T-cells from the experimental MICB-vax (+dox) group 
compared to cells from the three combined control groups (Ctrl). ScRNA-seq 
data from a single experiment with sorted CD45+ cells pooled from 5 mice/
group (a–j). Pairwise Wilcoxon rank sum test (g–j).
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Extended Data Fig. 8 | T cell and NK cell responses in MHC-I expressing and 
MHC-I deficient tumors. a, Contribution of CD8 T cells to vaccine efficacy. 
Mice were first immunized with MICB-vax or Ctrl-vax (d0, d14), treated with 
either isotype control mAb, depleting mAb targeting CD8 T-cells starting on 
day 21, followed by implantation of B16F10 (MICB) tumor cells (n = 7 mice/
group). b, Impact of IFNγ versus TNFα neutralization on the efficacy of the 
MICB α3 domain vaccine. MICB-transgenic mice received IFNγ or TNFα 
neutralizing mAbs or an isotype control mAb every 48 h, starting two days 
prior to subcutaneous injection of B16F10 (MICB) tumor cells on day 21 
following immunization (n = 7 mice/group). Tumor growth (left) and survival 
analysis (right) are shown. c, Comparison of vaccine efficacy against B16F10 
(MICB) wild-type tumors and tumors with resistance mutation in H2-Aa gene. 
Mice received MICB-vax (n=8 mice/ group) or Ctrl-vax (n = 7 mice/ group) and 
were then challenged with tumors of the indicated genotypes.  

d, Quantification of MICB-specific serum Ab titers in mice immunized with 
Ctrl-vax (blue) or MICB-vax followed by treatment with CD4 T-cell depletion 
(green) or control (red) mAbs for 3 weeks, starting on day 28 following 
immunization (n=5 mice/group). e, Impact of CD4 T-cell depletion on 
vaccine-induced NK cell infiltration into tumors. Flow cytometric 
quantification of the percentage of Ki67+ NK cells (top) and IFNγ+ NK cells 
(bottom) in WT (left) and B2m-KO (right) tumors for the following treatment 
groups: Ctrl-vax + isotype mAb (blue), Ctrl-vax + anti-CD4 (orange), MICB-vax + 
isotype mAb (red) and MICB-vax + anti-CD4 (green); (n = 7 mice/group). 
Representative data from two independent experiments (a-c, e). Data from a 
single experiment with technical triplicates (d). Log-rank (Mantel-Cox) test  
(a); two-way ANOVA with Bonferroni’s post hoc test (b left, c left) and Log-rank 
(Mantel-Cox) test (b right, c right); two-way ANOVA with Tukey’s multiple 
comparison test (d); one-way ANOVA with Tukey’s multiple comparison test (e).
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Extended Data Fig. 9 | Characterization of dendritic cells in the tumor 
draining lymph nodes of vaccinated mice. a, Experimental outline and gating 
strategy for identification of migratory DC (mDC) subsets within the tumor 
draining lymph node (tdLN) of immunized mice by flow cytometry. b, Impact of 
CD4 T-cell depletion on mDC and resident (rDC) populations in tdLN of 
vaccinated mice. DC populations were analyzed in tdLN on day 32, two days 
following induction of MICB expression on tumor cells with dox (n = 7 mice per 
group, except in control-αCD4 ab (n = 6 mice). c, Differentially expressed genes 
of mDCs (bulk RNA-seq) sorted from tdLN of MICB-vax and Ctrl-vax mice 
treated with CD4 depleting (αCD4) or isotype control (iso) mAb.  
d, Upregulated genes in mDCs from the MICB-vax (isotype control mAb, iso) 
group compared to either MICB-vax plus CD4 T-cell depletion (αCD4) or the 
Ctrl-vax (isotype mAb) groups. Venn diagram and heatmap of genes with 
higher expression in MICB-vax (iso) compared to both other groups.  
e–g, Characterization of myeloid cells within the tumors of vaccinated mice. 
Mice were immunized (d0 and 14), B16F10 (MICB-dox) tumor cells were 
implanted on day 21 and MICB expression was induced on tumor cells on day 28 

by doxycycline (dox) treatment. Tumor-infiltrating myeloid cells were analyzed 
7 days later. e, Gating strategy used for identification of tumor-infiltrating 
CD103+ cDC1, CD301b+ cDC2 and F4/80+ macrophages in vaccinated mice by 
flow cytometry. f, Quantification of macrophage population within tumors of 
Ctrl-Vax (blue) and MICB-vax (red) mice on day 7 following MICB induction on 
tumors with dox (n = 7 mice/group). g, Impact of αCSF1R treatment on 
immunity to B16F10 (MICB) tumors. Mice were immunized with Ctrl-vax or 
MICB-vax; treatment with αCSF1R or isotype control Ab was started two days 
prior to subcutaneous injection of B16F10 (MICB) tumor cells; mAb treatment 
was continued every third day; n=7 mice/group. Data representative of two 
independent experiments (a–b, e–g). Data from one experiment with three 
biological replicates per sample. DCs from 3 mice were pooled for each 
biological replicate (n = 9 mice/group). Significance was determined using 
thresholds of -log10 >2 (adjusted P value), and log2 >1 (fold change) (c–d). 
One-way ANOVA with Tukey’s multiple comparison test (b); Two-tailed Mann 
Whitney test (f); log-rank (Mantel-Cox) test (g). Data represent mean +/− SEM.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Cross-presentation of endogenous melanoma 
antigen by dendritic cells from MICB-vax mice. a, Impact of cDC1 depletion 
on MICB vaccine-induced T-cell and NK accumulation within tumors in Xcr1DTR 
mice. Mice were treated +/− diphtheria toxin (DT) starting on day 26 following 
immunization with Ctrl-vax (C) or MICB-vax (M) (days 0 and 14) and B16F10 
(MICB-dox) tumor implantation (day 21). Immune cells were analyzed in tumors 
7 days following MICB induction on tumors with dox (day 37) (n = 7 mice/
group). b, Contribution of activating Fc receptors to efficacy of MICB-vax. 
Survival curves of FceR1g-/- MICB-Tg versus MICB-Tg mice immunized with Ctrl-
vax (blue) and MICB-vax (red) (n = 7 mice/group). c, Analysis of endogenous 
gp100 specific CD8 T-cell responses. CD8 T-cells were isolated from tdLN of 
mice immunized with MICB-vax or Ctrl-vax, labeled with the CTV cell 
proliferation dye and then co-cultured for 72 h with DCs pulsed with control 
(Ova) or gp100 peptide (10µg/ml). Intracellular cytokine staining (IFNγ) and 
CTV dilution are shown in representative flow cytometry plots (left); data are 
quantified for T-cells from both vaccine groups (3 mice/group, right).  
d, Proliferation of transferred CD8 T-cells specific for the gp100 melanoma 
antigen (from Pmel-1 transgenic mice) in tumor-draining lymph nodes of mice 
immunized with MICB-vax compared to Ctrl-vax. Mice were vaccinated twice 
(days 0 and 14) and B16F10 (MICB-dox) tumor cells were implanted 
subcutaneously on day 21. Doxycycline treatment was initiated on day 28 to 
induce MICB expression on tumor cells, one day prior to transfer of Thy1.1+ 
Pmel-1 CD8 T-cells (2x106 cells/mouse). Proliferation of CTV-labeled Pmel-1 
T-cells was analyzed in tumor-draining LN (top) and spleen (bottom, control 
organ) four days following T-cell transfer. Cells were gated based on CD3, CD8 
and Thy1.1 markers; shown is Thy1.1 marker of transferred Pmel-1 T-cells (Y-axis) 
and CTV dye dilution in proliferating T-cells (X-axis). Proliferating T-cell 

populations are indicated in representative flow plots (left) and quantification 
is shown (right) across the entire cohort of Ctrl-vax (blue) versus MICB-vax 
(red) mice (n = 7 mice/group). e, Control experiment for (d) with CD8 T-cells of 
irrelevant specificity (OT-1 T-cells, n = 4 mice/group). f, Role of XCR1+ DCs in the 
activation of transferred gp100-specific pmel-1 CD8 T-cells. Xcr1DTR mice were 
immunized with MICB-vax (days 0 and 14), and B16F10 (MICB-dox) melanoma 
cells were implanted on day 21. XCR1+ DCs were depleted by injection of 
diphtheria toxin (+DT, green) or solvent as a control (-DT, red) one day prior to 
induction of MICB expression by tumor cells with doxycycline. Thy1.1+ Pmel-1 
CD8 T-cells were transferred and proliferation of these T-cells was analyzed in 
tdLN four days later by dilution of the CTV dye. Top flow cytometry plots show 
depletion of XCR1+ cells (Venus fluorescent reporter protein) in diphtheria 
toxin (+DT) treated mice (right) compared to control mice (-DT, left), six days 
following initiation of DT treatment. Bottom flow cytometry plots show 
proliferation of transferred pmel-1 CD8 T-cells based on dilution of the CTV dye 
(X-axis); data are quantified on the right (n=6 mice/group). g, Presentation of 
gp100 peptide by migratory DCs from MICB-vax mice. Naïve Pmel-1 CD8 T-cells 
were co-cultured for 72 h with migratory DCs (mDC, CD11c+, IA/E high) isolated 
from tdLN or non-tumor draining LN of Ctrl-vax or MICB-vax mice (pooled from 
10 mice/group) implanted with B16F10 (MICB) tumor cells. CD8 T-cell 
proliferation was assessed based on CTV dilution. Data are representative of 
two independent experiments (a-d, f-g). Data from a single experiment (e). 
One-way ANOVA with Tukey’s multiple comparison test (a); log rank (Mantel-
Cox) test (b); two-tailed Mann Whitney test (c-f); one-way ANOVA with 
Dunnett’s multiple comparison test (g). Data depict mean +/− SEM (a, c–f) or 
mean +/− SD (g).
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