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Supplementary Text 

Model training and validation 

To train the PrecursorSelector encoding model, 44,736/2,254/2,934 synthesis reactions were used 

as the training/validation/test set as discussed in Section “Data preparation”. Each reaction consists 

of a target material and precursor materials as extracted from the literature. For the purpose of 

training and validation, a random subset of precursor materials is selected to be replaced with a 

placeholder “[MASK]” (21) in each reaction, referred to as the masked reaction. Because a 

combinatorial number of masked reactions can be generated from the same reaction, the sampling 

space of masked reactions is much larger than that of original reactions. To sample as many 

different masked reactions during the training phase, we employ a dynamic masking strategy (74) 

that randomly samples a batch of reactions and re-generates the masking pattern in every training 

step. Different from the training samples, the validation samples are generated using static masking 

during data preprocessing because keeping the validation set unchanged is necessary for model 

selection afterwards. In this work, we trained with a batch size of 8 masked reactions for 500,000 

steps, or 50 epochs with 10,000 steps per epoch. The optimizer used was Adam (75) with learning 

rate of 5 × 10−4 , 𝛽1 = 0.9, and 𝛽2 = 0.999. Starting from the 2,254 original reactions in the 

validation set, we applied the masking procedure and randomly sampled 3,320 masked reactions 

for validation. The optimal model selected was the one with minimal loss on the validation samples 

to minimize overfitting (76).  

Two tasks are implemented in the representation learning model: (1) the masked precursor 

completion (MPC) task that predicts the complete precursor set based on the target material and 

the synthesis context provided by the unmasked precursors, and (2) the composition recovery task 

that predicts the chemical composition of the target material from the encoded target vector. The 

loss function in the MPC task, denoted as 𝐿1, is the circle loss (71) to maximize the within-class 

similarity and minimize the between-class similarity in multi-label classification. Here, the within-

class similarity corresponds to the similarity of precursor materials present in the same reaction, 

while the between-class similarity corresponds to the similarity between used and unused precursor 

materials. The loss function in the composition recovery task, denoted as 𝐿2, is the mean squared 

error (MSE) loss to compare the difference between predicted composition and the real 

composition of the target material. The total loss, denoted as 𝐿𝑚𝑢𝑙𝑡𝑖, is an adaptive multi-task loss 

(73) to automatically weigh 𝐿1 and 𝐿2 with  
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1
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where 𝜎1 and 𝜎2 are the model’s observation noise parameters which are learned alongside other 

model parameters. The training and validation losses for each task and the total are shown in Fig. 

S1. The training loss is averaged every 500 training steps to estimate performance on a substantial 

number of training samples, which in this study is 4,000. The validation loss is evaluated before 

training and at the end of each training epoch. As the training loss continues to decrease, the 

validation loss initially decreases and then increases. The minimal total validation loss is achieved 

at the end of 15th epoch, leading to the optimal model. The final performance of the optimal model 

is tested by predicting precursors for 2,654 unseen target materials in the test set. Our similarity-

based recommendation strategy successfully reproduces a known precursor set 82% of the time in 

five attempts or less. 

 

Computation time for similarity evaluation 



 

 

 

 

In this work, all 24,034 materials in the knowledge base are converted to 32-dimensional vectors 

in advance, forming a 24,034 × 32 matrix. For the 2,654 test materials, we monitored the time 

required to vectorize them one by one and calculate their cosine similarity to the target vectors in 

the pre-stored matrix. The similarity evaluation took merely 26 seconds for all the test materials 

(i.e. 0.01 seconds/material) because of the fast matrix multiplication. 

  



 

 

 

 

 

 

Fig. S1. Evolution of training and validation loss while training the PrecursorSelector 

encoding model. Top: total multi-task loss, 𝑳𝒎𝒖𝒍𝒕𝒊. Middle: loss for the MPC task, 𝑳𝟏. Bottom: 

loss for the composition recovery task, 𝑳𝟐.  
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