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HMM state space reduction 1 

The basics 2 

For fluorophores that are distinguishable and dependent on each other, where 𝑠 is the number of states 3 

of one fluorophore, and Λ is the number of fluorophores, the number of states modeled in the system is 4 

given as in [1] by: 5 

𝑠Λ (7) 6 

In contrast, if the fluorophores are indistinguishable and independent of each other, the number of 7 

states modeled in the system is instead given by the combinatoric equation from [1]: 8 

(
Λ + 𝑠 − 1

𝑠 − 1
) (8) 9 

Imaging is typically performed with high concentrations of the antioxidant Trolox [2] and for relatively 10 

short time intervals (100 msec); reversibly photobleached fluorophores do not occur frequently in our 11 

data and we ignore them as a first approximation. Therefore, we take 𝑠 to be 2, with one state for a 12 

functioning fluorophore, and another for a missing, photobleached, or chemically destroyed 13 

fluorophore. This reduces (8) to Λ + 1 states given Λ indistinguishable and independent fluorophores. 14 

More colors 15 

Obviously, a red fluorophore is distinguishable from a blue one. But we would still like to benefit from 16 

the indistinguishability of red fluorophores from red fluorophores, and of blue fluorophores from blue 17 

fluorophores. This is modeled by first considering the states for each color of fluorophore 18 

independently, and then taking the cartesian product of these state spaces. For 𝐶 colors of fluorophore, 19 

where Λ𝑐 is the number of fluorophores of color 𝑐, this results in the number of states given by: 20 
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∏(Λ𝑐 + 1)

𝐶

𝑐=1

(9) 21 

Each state then represents the number of remaining active fluorophores for each of our 𝐶 colors of 22 

fluorophore. 23 

Edman degradation 24 

Our second challenge is the inclusion of Edman degradation in the HMM. Sequential removal of the N-25 

terminal amino acid from each peptide breaks the assumption of indistinguishable fluorophores, which 26 

is the basis for the state reduction performed in [12]. However, through inductive reasoning we show 27 

that our model meets a weaker criterion, which can be used to merge physical states together as 28 

desired: 29 

 Any two physical states with the same numbers of fluorophores of each color and the 

same number of amino acids are equally likely. 

 

(10) 

 

If we ignore Edman degradation, this follows directly from the assumed indistinguishability property of 30 

fluorophores of the same color; if two fluorophores behave identically, they are equally likely to be 31 

missing, photobleached, or chemically destroyed, thus it follows by symmetry that any two physical 32 

states with the same numbers of indistinguishable fluorophores of each color are equally likely. If we 33 

consider Edman degradation, then (10) is true for all states where no amino acids have yet been 34 

successfully removed. Let 𝜌 indicate the number of amino acids removed from the original peptide. We 35 

have then shown that (10) is true when 𝜌 = 0. 36 

If physical states with identical fluorophore counts are equally probable for all states with 𝜌 amino acids 37 

removed, it can be shown that all physical states with equal fluorophore counts are equally probable for 38 

all states with 𝜌 + 1 amino acids removed. For removal of an amino acid that can’t accept fluorophores 39 
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under the experimental setup this is trivial, so consider a peptide with 𝜌 removed amino acids, an N-40 

terminal amino acid which accepts fluorophores of color 𝑐̅, and 𝜆𝜌,𝑐̅ amino acids total which can accept a 41 

label of color 𝑐̅. Then let 𝜙𝑐̅ represent the number of remaining functional fluorophores for the peptide, 42 

satisfying 0 ≤ 𝜙𝑐̅ ≤ 𝜆𝜌,𝑐̅. 43 

There are several conditions of the peptide with  𝜙𝑐̅ functioning fluorophores scattered among the 𝜆𝜌,𝑐̅ 44 

amino acids that can accept a label. When we remove the N-terminal amino acid, we may or may not 45 

remove with it a functioning fluorophore. The physical states which do have a functioning fluorophore in 46 

the N-terminal position (only possible when 𝜙𝑐̅ > 0) will have their other 𝜙𝑐̅ − 1 fluorophores 47 

distributed between the 𝜆𝜌,𝑐̅ − 1 remaining amino acids which can be labeled. Furthermore, these 48 

physical states are equally likely, as they are a subset of the equally likely physical states with 𝜙𝑐̅ 49 

fluorophores. Since trivially 𝜆𝜌,𝑐̅ − 1 = 𝜆𝜌−1,𝑐̅, these physical states map one-to-one with the physical 50 

states for the peptide with one less amino acid remaining, when it has 𝜙𝑐̅ − 1 dyes. 51 

When 𝜙𝑐̅ < 𝜆𝜌,𝑐̅, there are physical states with no fluorophore in the N-terminal position, even though 52 

the N-terminal amino acid can accept one. Then the 𝜙𝑐̅ fluorophores will be distributed with equal 53 

probabilities among the  𝜆𝜌,𝑐̅ − 1 = 𝜆𝜌−1,𝑐̅ remaining amino acids which can be labeled. Similarly to the 54 

other case, these physical states map one-to-one with the physical states for the peptide less one amino 55 

acid when it has 𝜙𝑐̅ dyes. 56 

The equally distributed probabilities and one-to-one correspondence between physical states across this 57 

amino acid removal ensures that these transformations do not break our guarantees of equal 58 

probabilities for 𝜌 + 1 amino acids removed. Iteratively applying this reasoning, starting with 𝜌 = 0, 59 

until we prove that physical states where 𝜌 = 𝛼 are equally likely if they have the same fluorophore 60 

counts, demonstrates that (5) is true under the assumptions we have taken. 61 
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This proves (10), which allowed us to safely reduce physical states that share both the same 62 

fluorophore counts by color and the same numbers of amino acids into a single modeled state. 63 

Transition probabilities 64 

We also need to know the transition probabilities for our new reduced state space. To deal with peptide 65 

detachment is trivial. Dye-loss, either for dyes missing before sequencing begins, or from chemical 66 

destruction during sequencing, can be modeled with a binomial distribution. This follows from the 67 

assumption that the fluorophores behave independently of each other. 68 

For Edman degradation, there is of course a probability of success or failure of the degradation step, 69 

which we model as a Bernoulli random variable. In the case of success, we employ an additional 70 

Bernoulli random variable to model the probability of losing or not losing a functioning fluorophore. 71 

Because the physical states within a modeled state are equally likely, we can use combinatorics to count 72 

the number of states which will lose a dye, and the number that won’t. Together these values can be 73 

used to find the probability of losing a fluorophore given a successful Edman degradation, as shown in 74 

the following formula, which conveniently reduces to a simple fraction: 75 

(
𝜆𝜌,�̅�−1

𝜙�̅�−1
)

(
𝜆𝜌,�̅�

𝜙�̅�
)

=
𝜙𝑐̅

𝜆𝜌,𝑐̅
(11) 76 

State reduction conclusions 77 

This state reduction provides a considerable algorithmic complexity improvement to the HMM forward 78 

algorithm. The complexity of the forward algorithm is 𝑂(𝑆2𝑇), where 𝑆 is the number of states, and 𝑇 is 79 

the number of timesteps. Then, if implemented with the physical state space of a labeled peptide, the 80 

number of states 𝑆 is 𝑂(𝛼2Λ), and we get a complexity of 𝑂(𝛼24Λ𝑇) for the HMM forward algorithm, 81 

where 𝛼 is the number of amino acids and Λ is the total number of fluorophores (of any color). 82 
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However, if we reduce to our modeled state space, then 𝑆 is 𝑂(𝛼 ∏ Λ𝑐
𝐶
𝑐=1 ), giving an algorithmic 83 

complexity of 𝑂(𝛼2(∏ Λ𝑐
2𝐶

𝑐=1 )𝑇) for the forward algorithm, where 𝐶 is the number of fluorophore 84 

colors being used and Λ𝑐 is the number of fluorophores of color 𝑐. The scaling in either case is 85 

dominated by values of Λ or Λ𝑐, which ranges from 1 to about 25 for human tryptic peptides, though in 86 

rare cases Λ𝑐 can exceed 100. 87 
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