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Transition matrix factoring 2 

The concept 3 

Multiplication by sparse matrices is far more efficient than with dense matrices. Matrix vector 4 

multiplication with a dense matrix is 𝑂(𝑆2) where 𝑆 is the size of the vector; for this application vectors 5 

with thousands of entries are not uncommon, and even larger vectors are possible, although this 6 

depends on the protease and labeling scheme used. For a sparse matrix, matrix vector multiplication can 7 

be made to be 𝑂(𝑉), where 𝑉 is the number of non-zero entries in the matrix. For highly sparse 8 

matrices this can be a significant improvement. 9 

Since peptides cannot gain amino acids or functioning fluorophores during sequencing, a basic transition 10 

matrix for fluorosequencing has zeros except for entries for transitions in which the numbers of 11 

fluorophores of each color is decreasing or staying the same. While this does reduce the number of 12 

necessary operations, it only does this by a constant factor, with no effect on the asymptotic behavior in 13 

the limit. Additionally, the number of amino acids either stays the same, decreases by one (from a 14 

successful Edman degradation), or decreases to zero (from a peptide detachment event). This did 15 

improve the asymptotic behavior in the number of non-zero entries of the transition matrix, reducing 16 

this from 𝑂(𝛼2∏ Λ𝑐
2𝐶

𝑐=1 ) to 𝑂(𝛼∏ Λ𝑐
2𝐶

𝑐=1 ). 17 

However, we did better by factoring this matrix (Fig 4). We used the independence of our different 18 

forms of error, with one matrix in the factored product for each type of error. To demonstrate this 19 

factorization, we reformulated our problem in tensor notation. The vector for the state space of a 20 

peptide with 𝐶 colors not undergoing Edman degradation or peptide detachment can be viewed as a 21 

tensor of order 𝐶. Each index of the tensor maps to the fluorophore counts of a different color, and the 22 

value of an index 𝑖𝑐 indicates the number of functioning fluorophores of color 𝑐, and satisfies 0 ≤ 𝑖𝑐 ≤23 

Λ𝑐. We also have indices 𝑗𝑐 which are similarly defined. Since the transition matrix is a linear mapping 24 
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from and to this tensor of order 𝐶, it is necessarily of order 2𝐶. We use the Einstein summation 25 

convention, and three multi-indices 𝒊 = 𝑖1𝑖2… 𝑖𝐶  and 𝒋 = 𝑗1𝑗2…𝑗𝐶  and 𝒌 = 𝑘1𝑘2…𝑘𝐶  for convenience. 26 

The matrix-vector multiplication operation for one step of the HMM forward algorithm is then given by: 27 

𝓯𝒌
(𝑡+1)

= 𝓞𝒌𝒋
(𝑡+1)

𝓣𝒋𝒊𝓯𝒊
(𝑡) (12) 28 

Where (𝑡) and (𝑡 + 1) indicate the timestamp of the values in the order 𝐶 tensor 𝓯(𝑡), which is indexed 29 

by the numbers of working fluorophores for each color and is the tensor form of 𝒇 from (1), 𝓣 is the 30 

transition matrix 𝑻 converted into tensor form, 𝓞 is the emission matrix 𝑶 converted into tensor form.  31 

Considering fluorophore loss only 32 

Assuming no interactions between different fluorophores and ignoring Edman degradation and peptide 33 

detachment, 𝓣 satisfies the following equation: 34 

𝓣𝒋𝒊 = {
∏(

𝑖𝑐
𝑗𝑐
)𝑝𝑐

𝑖𝑐−𝑗𝑐(1 − 𝑝𝑐)
𝑗𝑐

𝐶

𝑐=1

, if 𝒋 ≤ 𝒊

0, otherwise

(13) 35 

Where 𝑝𝑐 is the per cycle dye loss rate of the fluorophores for color 𝑐. This is simply the product of the 36 

binomial distributions for each indexed color of fluorophore. To improve the sparsity of this 37 

representation, we can factor 𝓣 into second order tensors 𝓑(1)𝓑(2)…𝓑(𝐶) such that: 38 

𝓑𝑗𝑖
(𝑐) = {

(
𝑖

𝑗
)𝑝𝑐

𝑖−𝑗(1 − 𝑝𝑐)
𝑗, if 𝑗 ≤ 𝑖

0, otherwise

(14) 39 

This produces a factorization of 𝓣: 40 

𝓣𝒋𝒊 = 𝓑𝑗1𝑖1
(1) 𝓑𝑗2𝑖2

(2) …𝓑𝑗𝐶𝑖𝐶
(𝐶) (15) 41 

We can plug this into (12) and find: 42 
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𝓯𝒋
(𝑡+1)

= 𝓑𝑗1𝑖1
(1)
𝓑𝑗2𝑖2
(2)

…𝓑𝑗𝐶𝑖𝐶
(𝐶)

𝓯𝒊
(𝑡) (16) 43 

This reduces the algorithmic complexity in this simple case from 𝑂(∏ Λ𝑐
2𝐶

𝑐=1 ) to 44 

𝑂 ((∏ Λ𝑐
𝐶
𝑐=1 )(∑ Λ𝑐

𝐶
𝑐=1 )). 45 

Fluorophore loss and Edman degradation 46 

We can expand on this to consider the Edman degradation: In that case we need more indices for the 47 

number of remaining amino acids. We modify (12) with additional indices 𝑢 and 𝑣 which satisfy 0 ≤48 

𝑢 ≤ 𝛼 and 0 ≤ 𝑣 ≤ 𝛼, indicating the number of successful amino acid removals, or alternatively the 49 

position of an amino acid in the peptide (i. e., the amino acid at the N-terminus of the peptide when 𝑢 50 

amino acids have been removed). This gives: 51 

𝓯𝑣𝒌
(𝑡+1) = 𝓞𝒌𝒋

(𝑡+1)𝓣𝒗𝒋𝑢𝒊𝓯𝑢𝒊
(𝑡) (17) 52 

Note that the emission tensor 𝓞 is unaffected by the amino acid count, and depends only on the 53 

fluorophore counts, so it does not need to be modified. 54 

We modify 𝓣 from (13) to model Edman degradation, and the exact form of 𝓣 will depend on the 55 

peptide under consideration. Let 𝑐�̅� be a number indicating the color of the fluorophore at position 𝑢 in 56 

the peptide, with a value of 0 indicating no fluorophore, and let 𝜆𝑢,𝑐�̅� indicate the number of 57 

fluorophores of color 𝑐�̅� remaining when 𝑢 − 1 amino acids have been removed from the peptide. Then 58 

𝓣 is defined by: 59 

𝓣𝑣𝒋𝑢𝒊 =

{
 
 

 
 
𝑒𝛽(𝒊, 𝒋), if 𝒋 ≤ 𝒊 and 𝑣 = 𝑢
(1 − 𝑒)𝛽(𝒊, 𝒋), if 𝒋 ≤ 𝒊 and 𝑣 = 𝑢 + 1 and 𝑐�̅� = 0

(1 − 𝑒)((1 −
𝑖𝑐�̅�
𝜆𝑢,𝑐�̅�

)𝛽(𝒊, 𝒋) + (
𝑖𝑐�̅�
𝜆𝑢,𝑐�̅�

) �̅�(𝒊, 𝒋, 𝑢)) , if 𝒋 ≤ 𝒊 and  𝑣 = 𝑢 + 1 and 𝑐�̅� > 0   

0, otherwise

(18) 60 

Where: 61 
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𝛽(𝒊, 𝒋) =∏(
𝑖𝑐
𝑗𝑐
) 𝑝𝑐

𝑖𝑐−𝑗𝑐(1 − 𝑝𝑐)
𝑗𝑐

𝐶

𝑐=1

(19) 62 

And: 63 

�̅�(𝒊, 𝒋, 𝑢) = (
𝑖𝑐�̅� − 1

𝑗𝑐�̅�
)𝑝𝑐�̅�

𝑖�̅�𝑢−1−𝑗�̅�𝑢(1 − 𝑝𝑐�̅�)
𝑗�̅�𝑢  ∏ (

𝑖𝑐
𝑗𝑐
) 𝑝𝑐

𝑖𝑐−𝑗𝑐(1 − 𝑝𝑐)
𝑗𝑐

1≤𝑐≤𝐶
𝑐≠𝑐�̅�

(20)
 64 

The probability of an Edman degradation failure is essentially the same as in (13), but multiplied by 𝑒 to 65 

account for the probability of failure. The probability for a transition involving a successful Edman 66 

degradation event which removes an unlabelable amino acid is similarly just like in (13) but multiplied 67 

by (1 − 𝑒), the probability of success. If the amino acid in question is labelable by a color 𝑐�̅�, then we 68 

may or may not remove a fluorophore of that color in the transition, so we need to take the sum of both 69 

possibilities. 𝛽 in (19) gives the standard product of binomials formula from (13), but needs to be 70 

multiplied by the probability of no dye loss, which in (18) is (1 −
𝑖�̅�𝑢
𝜆𝑢,�̅�𝑢

). This is then summed with �̅� 71 

from (20) which gives the product of binomial probabilities starting with one less fluorophore of the 72 

color 𝑐�̅�, which in (18) is multiplied with the probability of losing a fluorophore with the Edman 73 

degradation, 
𝑖�̅�𝑢
𝜆𝑢,�̅�𝑢

. The sum of these two possibilities is then multiplied by the probability of an Edman 74 

degradation success, given by (1 − 𝑒). 75 

To make this more efficient, we introduce a new tensor 𝓔 which represents a transformation for Edman 76 

degradation. We define tensor 𝓔 as: 77 

𝓔𝑣𝒌𝑢𝒋 =

{
 
 
 

 
 
 
𝑒, if 𝑣 = 𝑢 and 𝒌 = 𝒋
1 − 𝑒, if 𝑣 = 𝑢 + 1 and 𝒌 = 𝒋 and 𝑐�̅� = 0

(1 − 𝑒)(1 −
𝑗𝑐�̅�
𝜆𝑢,𝑐�̅�

) , if 𝑣 = 𝑢 + 1 and 𝒌 = 𝒋 and  𝑐�̅� > 0

(1 − 𝑒)(
𝑗𝑐�̅�
𝜆𝑢,𝑐�̅�

) , if 𝑣 = 𝑢 + 1 and 𝑘𝑐�̅� = 𝑗𝑐�̅� − 1 and  𝑘𝑐 = 𝑗𝑐∀𝑐 ≠ 𝑐�̅� and  𝑐�̅� > 0

0, otherwise

(21) 78 
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This provides the following factorization of 𝓣: 79 

𝓣𝑣𝒌𝑢𝒊 = 𝓔𝑣𝒌𝑢𝒋𝓑𝑗1𝑖1
(1)
𝓑𝑗2𝑖2
(2)

…𝓑𝑗𝐶𝑖𝐶
(𝐶) (22) 80 

By substituting into (17) and adding an additional multi-index 𝒍 = 𝑙1𝑙2… 𝑙𝐶  we get: 81 

𝓯𝑣𝒍
(𝑡+1)

= 𝓞𝒍𝒌
(𝑡+1)

𝓔𝑣𝒌𝑢𝒋𝓑𝑗1𝑖1
(1)
𝓑𝑗2𝑖2
(2)

…𝓑𝑗𝐶𝑖𝐶
(𝐶)

𝓯𝑢𝒊
(𝑡) (23) 82 

Despite its high dimensionality, 𝓔 is highly sparse, with no more than three non-zero entries per column 83 

(here, meaning column in the original non-tensor form matrix). This reduces the algorithmic complexity 84 

from 𝑂(𝛼∏ Λ𝑐
2𝐶

𝑐=1 ) to 𝑂 (𝛼(∏ Λ𝑐
𝐶
𝑐=1 )(∑ Λ𝑐

𝐶
𝑐=1 )). We note that while the extraction of the Edman 85 

degradation tensor appears to have little direct effect on the algorithmic complexity reduction, which is 86 

because it has a sparsity effect on the original transition tensor, properly handling Edman degradation is 87 

critical to this decomposition. We feel this is the easiest way to do this while also factoring the 88 

fluorophore loss effects into separate tensors. 89 

Everything all together 90 

Handling peptide detachment is simpler. We modify 𝓣 to be: 91 

𝓣𝑣𝒋𝑢𝒊 =

{
  
 

  
 
(1 − 𝑑)𝑒𝛽(𝒊, 𝒋, 𝑝), if 𝒋 ≤ 𝒊 and 𝑣 = 𝑢

(1 − 𝑑)(1 − 𝑒)𝛽(𝒊, 𝒋), if 𝒋 ≤ 𝒊 and 𝑣 = 𝑢 + 1 and 𝑐�̅� = 0

(1 − 𝑑)(1 − 𝑒)((1 −
𝑖𝑐�̅�
𝜆𝑢
) 𝛽(𝒊, 𝒋) + (

𝑖𝑐�̅�
𝜆𝑢
) �̅�(𝒊, 𝒋, 𝑢)) , if 𝒋 ≤ 𝒊 and  𝑣 = 𝑢 + 1 and 𝑐�̅� > 0   

𝑑, if 𝑗𝑐 = 0∀𝑐 and 𝑣 = 𝛼
0, otherwise

(24) 92 

This creates a new “empty” state which can always be transitioned to with probability 𝑑 of detachment. 93 

The probability of avoiding this state is (1 − 𝑑). The functions 𝛽 and �̅� are the same as before in (19) 94 

and (20). The matrix vector multiplication step of the HMM forward algorithm has not changed from 95 

(17). We can then construct a new tensor 𝓓 for peptide detachment which satisfies: 96 
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𝓓𝑤𝒉𝑣𝒌 = {
1 − 𝑑, if 𝒉 = 𝒌 and 𝑤 = 𝑣 ≤ 𝛼
𝑑 if ℎ𝑐 = 0∀𝑐 and 𝑤 = 𝛼 + 1

(25) 97 

Then we find that: 98 

𝓣𝑤𝒍𝑢𝒊 = 𝓓𝑤𝒍𝑣𝒌𝓔𝑣𝒌𝑢𝒋𝓑𝑗1𝑖1
(1)
𝓑𝑗2𝑖2
(2)

…𝓑𝑗𝐶𝑖𝐶
(𝐶) (26) 99 

Substituting into (17) with another multi-index 𝒎 = 𝑚1𝑚2…𝑚𝐶 provides: 100 

𝓯𝑤𝒎
(𝑡+1) = 𝓞𝒎𝒍

(𝑡+1)𝓓𝑤𝒍𝑣𝒌𝓔𝑣𝒌𝑢𝒋𝓑𝑗1𝑖1
(1) 𝓑𝑗2𝑖2

(2) …𝓑𝑗𝐶𝑖𝐶
(𝐶) 𝓯𝑢𝒊

(𝑡) (27) 101 

𝓓 is clearly highly sparse, with two entries in each column of the original matrix in non-tensor form. 102 

Thus, 𝓓 has no impact on the algorithmic complexity of this operation. Although 𝓓 and 𝓔 could be 103 

combined to achieve this same algorithmic improvement, we found that this separation made our 104 

model easier to reason about and work with. 105 

Transition matrix factoring conclusions 106 

One of the benefits of this approach to algorithmic complexity reduction is that this factorization 107 

provides no loss to the theoretical accuracy of the forward algorithm. No theoretical approximations 108 

were necessary, aside from the unavoidable differences in floating-point round-off errors. This allows 109 

for highly accurate results with much more efficient runtime characteristics than a naïve 110 

implementation. 111 


