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HMM pruning 2 

Because the emission matrix is diagonal, it is equivalent to the diagonal part of its Singular Value 3 

Decomposition (SVD), but with a reordering of its indices. This makes sparsification of this matrix 4 

equivalent to the Eckart-Young-Mirsky theorem; we can keep the largest 𝑟 values for some chosen value 5 

of 𝑟, and replace the rest of the matrix entries with zeros, having the minimum possible impact on the 6 

spectral and Frobenius norms for the chosen value of 𝑟. 7 

Furthermore, we can propagate this sparsification to the transition matrix. Consider the forward 8 

algorithm, with 𝑻 representing the transition matrix, and 𝑶(𝑡) representing the diagonal emission matrix 9 

for time 𝑡. Then if 𝒇(𝑡) represents the vector of intermediate probabilities at time 𝑡, we have: 10 

𝒇(𝑡+1) = 𝑶(𝑡+1)𝑻𝒇(𝑡) (28) 11 

Now we sparsify each 𝑶(𝑡) as discussed above, to get a series of �̂�(𝑡). This gives: 12 

𝒇(𝑡+1) = �̂�(𝑡+1)𝑻𝒇(𝑡) (29) 13 

Note that we have many copies of 𝑻, which are equal. For our next improvements we need these to be 14 

different for each timestep, so we can rewrite (29) with 𝑻(𝑡) for each timestep 𝑡, giving 15 

𝒇(𝑡+1) = �̂�(𝑡+1)𝑻(𝑡)𝒇(𝑡) (30) 16 

Here the values of many rows and columns of each 𝑻(𝑡) have been made unnecessary by the 17 

sparsification of its neighboring �̂�(𝑡+1) and �̂�(𝑡), as any vector product with �̂�(𝑡) will necessarily have 18 

zeros except for the 𝑟 entries retained, such that we need only keep the corresponding 𝑟 columns of 19 

𝑻(𝑡). Similarly, any entry in the vector product with 𝑻(𝑡) which is not multiplied by one of the 𝑟 entries  20 

retained in �̂�(𝑡+1) is multiplied by zeros, and is thus unnecessary, so we need only keep the 21 

corresponding 𝑟 rows of 𝑻(𝑡). Calling these approximations �̂�(𝑡), we get 22 
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𝒇(𝑡+1) = �̂�(𝑡+1)�̂�(𝑡)𝒇(𝑡) (31) 23 

This allows significant sparsity to be used (Fig 5). Previously this formula would have been 24 

𝑂(𝛼2𝑇∏ Λ𝑐
2𝐶

𝑐=1 ) to compute repeatedly across all timesteps, while this reduces the algorithmic 25 

complexity to 𝑂((𝑟2 + 𝛼(∏ Λ𝑐
𝐶
𝑐=1 ) log 𝑟)𝑇). Here 𝛼(∏ Λ𝑐

𝐶
𝑐=1 ) log 𝑟 represents the algorithmic cost of 26 

determining the 𝑟 largest elements on the diagonal of the emission matrix using a priority queue. This 27 

improvement is beyond what is possible in a more traditional usage of sparse matrix multiplication. For 28 

sparse matrix multiplication, we would need to first multiply �̂�(𝑡) by �̂�(𝑡) or multiply �̂�(𝑡+1) by �̂�(𝑡). This 29 

will only permit you to sparsify your operations on the rows or the columns of 𝑻 but not both, giving a 30 

complexity of 𝑂(𝑟𝛼𝑇∏ Λ𝑐
𝐶
𝑐=1 ) (here sorting considerations are dominated by the rest of the formula 31 

and can be omitted). While this is better than not using this inherent sparsity at all, preprocessing the 32 

transition matrix in consideration of the emission matrices on either side gives better results in 33 

algorithmic complexity. 34 

In practice, we use a more complicated pruning scheme, as detailed in S4 Appendix. 35 


