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Combining transition matrix factoring with HMM pruning 2 

By making 𝑟 suitably small, HMM pruning can exhibit better algorithmic complexity than if we factor the 3 

transition matrix. However, we believe it is much better to combine these algorithmic enhancements 4 

(Fig 6). To do this, we need to switch into tensor notation, replacing our matrices and vectors with the 5 

tensor equivalents we constructed previously. This yields: 6 

𝓯𝑣𝒌
(𝑡+1)

= 𝓞̂𝒌𝒋
(𝑡+1)

𝓣̂𝑣𝒋𝑢𝒊
(𝑡)

𝓯𝑢𝒊
(𝑡) (32) 7 

We also want to use the factorization from (26), using timestamp specific sub-tensors of each of the 8 

factored pieces. The factorization of (26) becomes: 9 

𝓣̂𝑤𝒍𝑢𝒊
(𝑡) = 𝓓̂𝑤𝒍𝑣𝒌

(𝑡) 𝓔̂𝑣𝒌𝑢𝒋
(𝑡) 𝓑̂𝑗1𝑖1

(𝑡,1)𝓑̂𝑗2𝑖2
(𝑡,2)…𝓑̂𝑗𝐶𝑖𝐶

(𝑡,𝐶) (33) 10 

Substituting into (32) gives: 11 

𝓯 𝑤𝒎
(𝑡+1) = 𝓞̂𝒎𝒍

(𝑡+1)𝓓̂𝑤𝒍𝑣𝒌
(𝑡) 𝓔̂𝑣𝒌𝑢𝒋

(𝑡) 𝓑̂𝑗1𝑖1
(𝑡,1)𝓑̂𝑗2𝑖2

(𝑡,2)…𝓑̂𝑗𝐶𝑖𝐶
(𝑡,𝐶)𝓯𝑢𝒊

(𝑡) (34) 12 

Suppose we were to use standard sparse tensor multiplication techniques and carry this operation out 13 

from right to left. Each tensor 𝓑̂𝑗𝑐𝑖𝑐
(𝑡,𝑐) can introduce any entry of input (index 𝑖𝑐) into as many as Λ𝑐 14 

indices of output (index 𝑗𝑐). The resulting computational complexity of the forward algorithm, even with 15 

the given sparsity, is then 𝑂(𝑟𝛼𝑇∏ Λ𝑐
𝐶
𝑐=1 ). 16 

If we preprocess the computation, pruning each operation now from both directions, the algorithmic 17 

complexity does not improve the way it does in the matrix case, although likely this would behave faster 18 

in practice. The problem is that the pruning operation itself needs to determine which rows to 19 

propagate forwards, which requires accessing every non-zero entry reachable in the forward direction. 20 

Many of these values are later pruned in the backwards direction, so the computation itself has much 21 

better sparsity, but the time to prune then dominates the algorithmic complexity result. 22 
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To improve this further, we add structure to the pruning of 𝓞̂(𝑡). Instead of keeping the 𝑟 largest values 23 

in 𝓞̂(𝑡), we prune each index of 𝓞̂(𝑡) independently. For additional convenience, we limit each index to a 24 

contiguous range of values. Then we let each index for any fluorophore color 𝑐 have 𝑟𝑐 values and allow 25 

𝑟̅ values to index the number of amino acids. These simplifications may cause the pruning to be non-26 

optimal, but we accept this trade-off. 27 

We can then prune our tensors using their known structures (for example, the tensors 𝓑̂(𝑡,𝑐) correspond 28 

to an upper triangular matrix). This time when we propagate the pruning results in both directions, the 29 

time required is only 𝑂(𝐶2) (the number of minimum and maximum indices to be propagated through 30 

each tensor scales with 𝐶, as does the number of tensors to be pruned). For the runtime of the tensor 31 

operations, consider each tensor individually. 𝓓̂(𝑡) and 𝓔̂(𝑡) are both highly sparse, so they contribute a 32 

constant modification to the number of rows or columns when propagating in either direction.  𝓓̂(𝑡) 33 

requires special handling. We track the detached state separately from the ordinary range, to avoid 34 

unnecessarily including a large range of states which don’t need to be. 35 

Then each 𝓑̂(𝑡,𝑐) operates on an independent index, and therefore can be considered on its own. This 36 

tensor after pruning will have dimensions that are 𝑂(𝑟𝑐
2), and should have a constant effect on the 37 

number of elements input vs output. Therefore, each of these tensors will require an algorithmic 38 

complexity of 𝑂(𝑟𝑐𝑟̅ ∏ 𝑟𝑐̃
𝐶
𝑐̃=1 ). Bringing this all together we get an algorithmic complexity of 39 

𝑂 (𝐶2 + 𝑟̅(∑ 𝑟𝑐
𝐶
𝑐=1 )(∏ 𝑟𝑐

𝐶
𝑐=1 )) for processing one timestep. The full forward algorithm then has a 40 

complexity of 𝑂 (𝑇 (𝐶2 + 𝑟̅(∑ 𝑟𝑐
𝐶
𝑐=1 )(∏ 𝑟𝑐

𝐶
𝑐=1 ))). 41 

One remaining clarification is the manner of choosing 𝑟𝑐 and 𝑟̅. In fact, these values should not be kept 42 

constant; let us refer to the values for time 𝑡 as 𝑟𝑐
(𝑡) and 𝑟̅(𝑡). 𝑟̅(0) = 1 and 𝑟̅(𝑡+1) = 𝑟̅(𝑡) + 1, due to the 43 

possibility of amino acid removal. These on average are proportional to 𝛼. To get 𝑟𝑐
(𝑡), we keep all index 44 
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values where a fluorophore count of that value has the observed fluorescence intensity for color 𝑐 at 45 

time 𝑡 within a specified confidence interval – perhaps within 3𝜎 of the mean, where 𝜎 is the standard 46 

deviation of the distribution. These will necessarily be contiguous. The number of indices kept is then 47 

𝑟𝑐
(𝑡)

. 48 

The standard deviation of a normal distribution scales with the square root of the intensity, and the 49 

number of possible index values is limited by the total possible number of fluorophores of color 𝑐. It 50 

follows that any removal of index values proportional to the standard deviation will satisfy 𝑟𝑐
(𝑡)

< 𝛾√Λ𝑐 51 

for some constant 𝛾 dependent on the cutoff. Then the algorithmic complexity is given by 52 

𝑂 (𝑇 (𝐶2 + 𝛼(∑ √Λ𝑐
𝐶
𝑐=1 )(∏ √Λ𝑐

𝐶
𝑐=1 ))). 53 

We chose a specific pruning cut-off by sweeping this parameter and balancing the experimental runtime 54 

effects and the precision-recall curves which result from simulated data. 55 


