Supplementary information

Supplementary figure 1: CryoEM analysis of quinol-dependent Nitric Oxide Reductase (qNOR) from *Alcaligenes xylosoxidans*. (A) Cryo-EM image processing workflow performed in RELION. Example micrograph, 2D classes, 3D classes and refined reconstructions are highlighted. (B) FSC curve for the final map. Final resolution was calculated using the gold-standard FSC cut-off of 0.143. (C) Euler angle distribution of refined particles.

Supplementary figure 2. Comparison of the cytoplasmic part of product release channels at the dimeric interface in structurally characterized qNORs. (a) Product release path of qNOR from *Alcaligenes xylosoxidans* (*Ax*qNOR) from the cytoplasmic side to the binuclear centre. *Ax*qNOR coloured in green with residues lining the proposed path in *Ax*qNOR shown as sticks. Fe atoms and water molecules are shown as orange and red spheres, respectively. Hydrogen bonds and metal co-ordination bonds shown as black and red dashed lines, respectively. This scheme is used throughout the figure. (b) Product release channel in qNOR from *Geobacillus stearothermophilus* (*Gs*qNOR) (PDB ID: 3AYG) coloured in purple, with residues lining its proposed proton channel highlighted as sticks. Zn shown as grey sphere. (c) Product release channel in qNOR from *Neisseria meningitidis* (*Nm*qNOR) coloured in blue, with residues lining its proposed proton channel highlighted as sticks (PDB ID: 6L3H).

Supplementary figure 3. Comparison of overall structures of AxqNOR, PacNOR and Ps **cbb**₃ **Cco.** (a) Overall structure of AxqNOR viewed parallel to the membrane shown as ribbon in various colors; heme b and heme b_3 are shown as red sticks. Fe_B and calcium ions are represented as orange and green spheres, respectively. (b) Overall structure of cNOR from P. aeruginosa viewed parallel to the membrane (PDB code 3WFB). The NorB and NorC subunits are shown as ribbon in various colors and red, respectively. Heme groups are shown as red sticks. Fe_B and calcium ions are represented as orange and greens spheres, respectively. Average rmsd between 390 C α atoms of AxgNOR and NorB subunit is 4.3 Å; (c) Overall structure of Ps *cbb*₃ cox (PDB code 5DJQ) viewed parallel to the membrane shown as ribbon in various colors for subunit N, in yellow for subunit O; and in red for subunit P. Hemes b and b₃ are shown as green sticks. (d) Arrangement of membrane-spanning helices of AxqNOR viewed from the periplasmic side. Transmembrane helices are indicated with Roman numerals in all panels. (e) Arrangement of membrane-spanning helices of PacNOR viewed from the periplasmic side. (f) Cytochrome cbb_3 oxidase from (PDB code 5DJQ). Subunit N with helices I ~ XII is shown in multi color. Average rmsd between 278 C α atoms of AxqNOR and CoxN subunit is 8 Å Helixes of subunit O and helixes of subunit 3 are shown in yellow and orange-red, respectively.

Supplementary figure 4. Di-iron sites with bridging hydroxide ion. (a) Fe bi-nuclear site of *Ax*qNOR. Non heme Fe is ligated by His486, His 537 and His 538 and OH ion with slightly distorted tetrahedral geometry. The hydroxide (OH) is bound in μ -oxo configuration between two metals at 2.1 Å distance to Fe_B and 1.9 Å to heme Fe, the distance between two Fe is 3.9 Å. Angle between two metal bonds is 162°. (b) Fe bi-nuclear site of Pig tartrate-resistant acid phosphatase type 5 (PDB: 5UQ6 [https://doi.org/10.2210/pdb5UQ6/pdb]); the distance between two Fe is 3.4 Å. (c) Fe bi-nuclear site of human Hemerythrin (PDB: 2HMQ [https://doi.org/10.2210/pdb2HMQ/pdb]), the distance between two Fe is 3.2 Å. Residues are shown as sticks, Fe ions as orange spheres, water molecules and OH ion as red spheres.

Supplementary figure 5: The cryo-EM map for key residues surrounding key elements and residues (a) *Ax*qNOR calcium site. Cryo-EM map shown with threshold set to 0.023. (b) Key residues around the *Ax*qNOR electron donor binding site. Ubiquinone electron donor shown as pink sticks. Cryo-EM map shown with threshold set to 0.1. (c) *Ax*qNOR NO entry site and surrounding residues. Cryo-EM map shown with threshold set to 0.020. AxqNOR residues shown as green sticks. Cryo-EM map shown as a translucent grey surface. Waters, iron ions and calcium ions shown as red, orange and green spheres, respectively.

AxqNOR	MGPYRRLWFTLIAVLAVTFALLGFYGGEVYRQAPPIPEEVASA	43
GsqNOR	MEVNRTVSPNIQTGRKTTNSFLKSILIFTILISSTVLLVGGYWIFKEMAPRPKEVRSE	58
NmqNOR	MGQYKKLWYLLFAVLAVCFTILGYMGSEVYKKAPPYPEQVVSA	43
	. : : *: .: : ::* * :::: * *::* *	
ANOD		1.07
CagNOR		110
NmaNOR	SCKNI WYKDDII YCOSYMOLLCCWENCSNI CHOY AUGLOIIYFFYRY I FEGMODIYFYFY SCRAIWYFFIIIGGAAAFAYLGYLCCWENCSNI CHOY AUGLOIIYFFYRY A FFYRY	103
MIIQNOR	SGNUMARDDILAGGAWQILGGMEVGSVLGA BAN QAFDMIADWLARELSAWLDDILAGQI	103
AxaNOR	HGRDYGOLDAPAOAALREOLKAEYRANRADAAGGKLTLSPRRAOAVAOTEAYYDOLFSDA	163
GsqNOR	YNKPFADLTDDEKSIIREQVIKEMRKNRYNPVTDVLVLTDAQVYGLEKVRDYYRDVFTNG	178
NmqNOR	YGKKFDEVSPEEQAVLKTRLADEYRNQSRIKEDGSVVISDTRVKAIESILPYYHGVYGDD	163
	···· · · · · · · · · · · · · · · · · ·	
AxaNOR	PALHRSRENYAMKENTLPDANRRROMTHFFFWTAWAAGTEREGTSVTYTNNW	215
GsqNOR	DGWGLKKGLIKESDMPKANRAWVADSDQIQQIADFFFWTAWLSSTLRIGDEITYTNNW	236
NmqNOR	PALQTTREHFAMKNNTLPSQEAREKLFDFFFWTSWSASTNRPDETFTYTNNW	215
-	· ·: :*:· ··· ··· ··· ·****:* :.* * · ·******	
AxaNOR	PHEPLIGNHPSSENVMWSTISVVVLLAGIGLLIWAWAFLRGKEEDEPPAPARDPLTT	272
GsqNOR	PYYEDAGNTMSFSAVWWSGASVTILILFIGIILYVFYRYOLSMOEAYAEGKFPV-IDLRR	295
NmqNOR	PHEPLINNVPTTENYMWSFTSVVLLLMGIGLLMWGYSFLTKHEEVEVPTEDPISK	270
1 .	*: .* : . ** **.:*: **:::: . * *. :	
AugNOD		224
CagNOR		350
NmaNOR	VOLTPSOKALCKVVELTVALEVVOVLCCLTARVTVECOCEVCIDEALCEEMSDWEPVAL	330
miquon	***** *** *** .*: *** .* : *:*:	000
AVGNOR	VIDTUN TAGAT FUITATOFT AACT FT ADT TNOODDERVARAOVATUTT FUAT VI VIVIOSFACNY	386
GsqNOR	AKGYHLOLAIFWIATAWLCMGIFIAPLV-GGOEPKKOGLLVDLLFWALVUVGGSMIGOW	409
NmaNOR	TRTWHIOSATFWIATGFLTAGLFLAPIVNGGKDPKFORAGVNFLYIALFIVVGGSYAGNF	390
	.: :*:* *:*****.:* *:*:**:: **::** * *::*: **::** * *::*:	
AxqNOR	LAIAQIMPPDLNFWLGHQGY <mark>E</mark> YVDLGRLWQIGKFAGICFWLVLMLRGIVPALRTPGGDKN	446
GsqNOR	LGVNGYLGNE-WFLLGHQGW <mark>E</mark> YIELGRIWQIILVVGMLLWLFIVFRGVKRGLKRESDKGG	468
NmqNOR	FALTHILPPEFNFWFGHQGY <mark>E</mark> YLDLGRFWQLLLMVGLLLWLFLMLRCTVSAFKEKGVDKN	450
	···· · · * ·****·**··**· · · * ·** ·**	
AxqNOR	LLALLTASVGAIGLFYGAGFFYGERTHLTVMEYW <mark>R</mark> WWIVHLWV <mark>E</mark> GFFEVFATTALAFIFS	506
GsqNOR	LIHLLFYSAIAVPFFYIFAFFIQPDTNFTMADFW <mark>R</mark> WWIIHLWV <mark>E</mark> GIFEVFAVVVIGFLLV	528
NmqNOR	LLAIFVASMVGVGVFYAPGLFYGEKSPIAVMEYW <mark>R</mark> WWVVHLWV <mark>E</mark> GFFEVFATAAFAFVFY	510
	*: :: * .: .** .:* : ::: ::****::*****::*****::.*::	
AxqNOR	TLGLVSRRMATTASLASASLFMLGGIPGTFHHLYFAGTTTPVMAVGASFSALEVVPLIVL	566
GsqNOR	QLRLVTKKSTVRALYFQFTILLGSGVIGIGHHYYYNGSPEVWIALGAVFSALEVIPLTLL	588
NmqNOR	NMGFVRRSTATASTLAAAAIFMLGGVPGTLHHLYFSGSTSASMAIGACFSALEVVPLVLL : :* : . : : :::: .*: ** ** *: : ::::::*:** ******:**	570
AxaNOR	GHEAWENWRLKTRAPWMENLKWPLMCFVAVAFWNMLGAGVFGFMINPPVSLYYINGLNTT	626
GsqNOR	ILEAYEOYKMMRDGGANFPYKATFWFLISTAIWNLVGAGVFGFLINLPAVSYFEHGOFLT	648
NmqNOR	GREAYEHWSYQHLSEWAKRLRWPLMCFVAVAFWNMIGAGVFGFLINPPISLFYIQGLNTS	630
-	**:*:: . : : :::.*:**::****************	
AxgNOR	PVHAHAALFGVYGFLALGFTLLVLRYIRPOYALSPGLMKLAFWGLNLGLALMT FTSLLPT	686
GsqNOR	PAHGHAAMMGVYGMFAIAVLLYSLRNIVKPEAWNDKWLKFSCWMLNIGLAGMVVITLLPV	708
NmqNOR	AV <mark>HAH</mark> AALFGVYGFLALGFVLLVARYLKPNVOFDDKLMTWGFWLLNGGLVGMIAISLLPV	690
1 .	. <mark>*</mark> .***::****::*: * * : [*] . : * ** **. *: :***:	
AxaNOR	GLIOFHASVSEGMWYARSEAFMOODILKTLRWGRTFGDVVFLLGALAMVVOVTLGLLSGK	746
GsqNOR	GILOMKEAFIHGYWASRSPSFLOODVVONLLLVRAVPDTIFLIGVVALLVFAIKALFHLR	768
NmqNOR	GVIQAYASITHGLWYARSEEFLQMEILDTLR <mark>WVR</mark> TAADLIFIGGAICVAIQATKIVFGRD	750
-	*::* :* * :** *:* :::* *: * :*: *:	
AxqNOR	746	
GsqNOR	KPTHGEGEELPVANHWMKDRLKNSLE 794	
NmqNOR	К751	

NO entry channel; heme, Fe₀ ligation; Ubiquinol binding; Ca binding ligands

Supplementary figure S6A. Sequence alignment of AxqNOR, NmqNOR and GsqNOR. Homology between AxqNOR (PDB:8BGW [https://doi.org/10.2210/pdb8BGW/pdb]) and NmqNOR(PDB:6L3H [https://doi.org/10.2210/pdb6L3H/pdb]) is 58.7%; Homology of AxqNOR and GsqNOR is 33.3%. Residues or NO entry channel are highlighted in grey; heme Fe b and F_B ligands in cyan; Ubiquinol binding site in magenta and Ca binding ligands in Green; fully conserved residues are marked with *. Alignment is performed by CLUSTRALW EBI server.

Redox sites

AxqNOR	478	Ε	Y	W	R	W	W	I	v	H	L	W	-	-	v	Е	G	F	535	т	F	H	H	L	Y	_	626	т	Р	v	H	A	H	
NmqNOR	482	Е	¥	W	R	W	W	v	v	H	L	W	-	-	v	Е	G	F	539	т	L	н	H	L	¥	-	630	s	A	v	H	A	H	
GsqNOR	500	D	F	W	R	W	W	I	I	H	L	W	-	-	v	Е	G	I	557	I	G	H	H	Y	¥		648	т	P	A	H	G	H	
PacNOR subunit B	199	ĸ	F	Y	W	W	W	v	v	H	L	W	-	-	v	E	G	v	256	т	G	н	H	Y	F	:	344	т	A	A	н	G	н	
Cytochrome bo3 subunit 1	277	L	I	W	A	W	G	H	Ρ	Е	v	Y	I	L	I	L	I	L	331	W	L	н	н	F	F	4	416	L	I	A	н	F	н	

Ubiquinol sites

AxqNOR	302	F	т	Α	Η	Y	т	 718	W	G	R	т	F	G	D	v	v
NmqNOR	300	L	т	A	H	Y	т	722	W	v	R	т	A	А	D	L	I
GsqNOR	325	L	\mathbf{L}	A	H	¥	Y	740	L	v	R	A	v	Ρ	D	т	I
PacNOR	36	т	м	G	т.	0	v	438	w	т.	R	Е	G	А	G	v	v
subunit B	50	-	п	0	"	ž	1	450		-	~	-	0	п	0	•	
Cytochrome bo3 subunit 1	60	М	Y	I	I	v	A	496	М	I	A	A	s	G	A	v	L

	KEY
W	IDENTICAL MATCH
W	POSITIVE MATCH
W	NEGATIVE MATCH

Ca binding

AxqNOR	73	W	G	Η	G	А	Y	0	326	L	v	R	т	W	405	G	Y	Ε	Y	V	557	Α	L	Ε	V	V
NmqNOR	73	L	G	H	G	A	¥	Q	330	L	т	R	т	W	409	G	¥	Е	¥	L	561	A	L	Е	v	v
GsqNOR	88	L	G	H	G	s	¥	М	350	I	A	K	G	Y	427	G	W	Е	¥	I	579	A	L	Е	v	I
PacNOR subunit B		-	-	I.	-	-	-	-	55	v	A	R	м	v	136	G	I	v	I	v	278	A	L	Е	Ρ	L
																							-			
PacNOR subunit C	68	L	G	Е	G	A	¥	F		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-
PacNOR subunit C Cytochrome bo3 subunit 1	68 38	L F	G G	E K	G W	а -	¥ -	F -	101	- Q	- I	- F	- т	- A	220	-	- м	- т	- м	- F	349	- G	- I	- т	- т	- м

NO chạnnel

AxqNOR	71	S	I	W	G	Н	204	R	Ε	G	т	S	V	т	Y	т	Ν	540	Y	F	А	G	т	т	_6	19	Y	I	0	G	L
NmqNOR	71	S	v	L	G	H	204	R	Р	D	Е	т	F	т	¥	т	N	544	Y	F	S	G	S	т	6	23	¥	I	Q	G	L
GsqNOR	86	т	V	L	G	н	225	R	I	G	D	Е	I	т	¥	т	N	542	Y	Y	Ν	G	S	Ρ	6	41	F	Е	H	G	Q
PacNOR	0	-	-	-	-	-	0	-	-	_	-	_	-	-	-	-	-	261	F	w	I	G	v	Р	3	37	¥	т	н	G	т
subunit B																															
PacNOR	66	т	L	L	G	Е	136	-	-	-	-	-	-	-	D	т	N		-	-	-	-	-	-			-	-	-	-	-

Supplementary figure 6B. Sequence fragments conservation for AxqNOR, NmqNOR, GsqNOR, PacNOR subunits B and C and subunit 2 of COX. Identical residues are colored in dark yellow, positive matches by light yellow. The upper sequences were aligned by pairwise alignment against AxqNOR sequence using BLAST and scored according to the BLOSUM62 score matrix. The bottom sequences were not similar enough to AxqNOR for pairwise alignment, so were aligned by multiple sequence alignment with the upper sequences using Clustal Omega. These aligned sequences were not scored by a matrix and so were only marked for identical residues.

1 2 3 4 5 6 7 8 9 10 11 12 13 14	Alcaligenes Polaromonas Ralstonia Hydrogenophaga Bordetella Comamonas Pseudomonas Thauera Chitiniphilus Cupriavidus Oceanimonas Hahella Neisseria Geobacillus consensus/100% consensus/80% consensus/70%	cov 100.0% 99.9% 99.5% 99.7% 99.9% 99.9% 99.9% 99.9% 99.9% 99.3% 99.3%	pid 1 100.0% 81.2% 80.3% 76.8% 81.1% 76.2% 78.3% 81.4% 75.4% 76.2% 58.7% 34.3%	I MGYYRLWF	. 100
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Alcaligenes Polaromonas Ralstonia Hydrogenophaga Bordetella Comamonas Pseudomonas Thauera Chitiniphilus Cupriavidus Oceanimonas Hahella Neisseria Geobacillus consensus/100% consensus/90% consensus/70%	cov 99.9% 99.6% 99.5% 99.5% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.3% 99.3%	pp 1 101 100.0% 81.2% 80.3% 76.8% 81.1% 76.2% 76.9% 77.3% 81.4% 75.4% 75.4% 75.4% 75.4% 75.3%	DWLHRELTAWLDLAAQDAHGBDYGQLDAPAQAAL3QLXAEYRANRADAAGGKLTLSPRAQAVAQTEAYYDQLFSDAPALH3SRENYAMKENTLPDA- DWLHRELTAWLDLAAQOLHGYAYAALGPAQAAL3QLXAEYRGAWDQA-QVLKLSERRVQAXQTEAYYDQLFSDAPALH3SRENYAMKENTLPDA- DWLHRELTAWLDLAAQOLHGYAFALAGGAWLAHLGGYGAHTGA-GNVLTSBRAQAMEOTAAYYOQLFSDAPALWSSESFAMKENTLPSA- DWLHRELTAWLDLAAQAAHGSPYAALDGPAQAAL3AQLTAEYRGAGVGDA-QVLKLSERRVQAXGTAGYYOQLFSDAPALWSSESFAMKENTLPSA- DWLHRELTAWLDLAAQAAHGSPYAALDGPAQAAL3AQLTAEYRGAGVGDA-QVLKLSERRVQAXGTAGYYOQLFSDAPALWSSESFAMKENTLPSA- DWLHRELTAWLDLAAQAAHGSPYAALDGPAQAAL3AQLTAEYRGAGWGAD-GTLVVSERRAQAMEOTAAYYOQLFSDAPALWSSESFAMKENTLPSA- DWLHRELTAWLDLAAQAAHGSPYAALDGPAQAL3AQLTAEYRGAGWGAD-GYLVLSERRVQAXGTAAYYQQLFSDAPALWGSSESFAMKENTLPSA- DWLHRELTAWLDLAAQAAHGSPYAALDGPAQAL3AQLYDTAEYRGAGWGAD-GYLVLSERRVAAVGGTAAYYQQLFSDAPALWGSSESFAMKENTLPSA- DWLHRELTAWLDLAAQDAHGGYYALDAPGQAAL3AALQGYRGAGTDPATGTLVVSPURAAAHQQTAAYYQLFSDAPALUGSSBFFAMKENTLPSA- DWLHRELTAWLDLAAQDAHGGYYALDAPGQAAL3AALQGYRGAGTDPATGTLVVSPURAAAHQQTAAYYQLFSDTBSOQSGSSYAMKENTLPSA- DWLHRELTAWLDLAAQDAHGGYAALDAPGQAAL3AALQGYRGAGTDPATGTLVVSPURAAAHQQTAAYYQUFSDTBSOQSGSGSYAMKENTLPSA- DWLHRELTAWLDLAAQDAHGGYAALDAPGQAAL3AALQGYRGAGTDPATGTLVVSPURAAAHQQTAAYYQQLFSDTBSOQSGSGSYAMKENTLPSA- DWLHRELTAWLDLAAQDYHGGYAALDAPGQAAL3AALQGYRGAGTDPATGTLVVSPURAAAHQQTAAYYQQLFSDTBSOQSGSGSYAMKENTLPSA- DWLHRELTAWLDLAAQDYHGGYAALDAPGQAAL3ALQGYRGAGTDPATGTLVVSPURAAAHQQTAAYYQQLFSDTBSOQSGBSAMKENTLPSA- DWLHRELTAWDDLAAQDYHGGYAALDAPGQAAL3QLYGENGAGYGNATYDASSGTAGAANQTAAYYQQLFSDDPALHTTBBYAMKENTLPSA- DWLHRELTAQOYGGYFAQDABGGAAULADYWGAYGAYGAUTGSGTRAGAAYDTAKYYSQLFSDAPALHTTBBYAMKENTLPSA- DWLHRELSAWLDLTAQQYGGYFAQDALGFREGQAULHYGWGNGAGTRAGYGAUTGTAKYYSGLFSDAPALATHSGTAGAAG DWLHRELSAWLDLAQQYYGGYFAQDALGTRAGAAUGAAL3GULSSGWGNANTYGAUYGUGYGUFSDAPALGTRBSYAMKENTLPSA- DWLHRELSAWLDLAQQYGGYFAQDALGTRBSYIGYGNYGWGYGUYGUYGUYGYGYGYGYGYGYGYGAYAGAGGAGULYGGYGGYGAYYGUGYGAUGAGGGGGGGAGGGGA	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Alcaligenes Polaromonas Ralstonia Hydrogenophaga Bordetella Comamonas Pseudomonas Thauera Chitiniphilus Cupriavidus Oceanimonas Hahella Neisseria Geobacillus consensus/100% consensus/80% consensus/80%	COV 100.0% 99.5% 99.5% 99.7% 99.5% 100.0% 99.9% 99.9% 99.6% 99.3% 99.3%	pid 201 100.0% 81.2% 80.3% 76.8% 81.1% 76.2% 79.5% 78.3% 81.4% 75.4% 76.2% 58.7% 34.3%	MRRONTHFFFWTAWAAATEREG 3 RRNONTOFFFWTAWAAATEREG OVTYTNNWPH PLIGNEPSS NVWWSISISVVLLAGIGLLIWAWAFL-RGKEEDEPPAPADPL	300
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Alcaligenes Polaromonas Ralstonia Hydrogenophaga Bordetella Comamonas Pseudomonas Thauera Chitiniphilus Cupriavidus Oceanimonas Hahella Neisseria Geobacillus consensus/100% consensus/80% consensus/80%	COV 100.0% 99.9% 99.5% 99.7% 99.5% 100.0% 99.9% 99.9% 99.9% 99.3% 99.3%	pid 301 100.0% 81.2% 80.3% 76.8% 81.1% 76.2% 78.5% 78.3% 81.4% 75.4% 75.4% 75.2% 58.7% 34.3%	TTFALTPSQRALGYLFLUVALFGFQVLLGGFTAHYTV_GQQFYGID	400
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Alcaligenes Polaromonas Ralstonia Hydrogenophaga Bordetella Comamonas Thauera Chitiniphilus Cupriavidus Oceanimonas Hahella Neisseria Geobacillus consensus/100% consensus/10%	cov 100.0% 99.6% 99.5% 99.7% 99.5% 99.5% 100.0% 99.9% 99.9% 99.3% 99.3%	pid 401 100.0% 81.2% 80.3% 76.8% 81.1% 76.9% 79.5% 78.3% 81.4% 75.4% 76.2% 53.7% 34.3%	5 AGY DILFWALVLVVVGSFAGNYLAIAQIMPPELNFWLGHOGY EYVDLGLWQIG FAGICFWLVLMLGCIVPALT-PGGDKNLLALLTASVGAIGLFYG AGY OVLFWALVVVVGSFTGNYLAIAQIMPPEWNFWLGHOGY EYVDLGLWQIS, FTGILLWLVLMLGCIVPALLG-KGGDKNLLALLTASVGAIGLFYG LGV DILFWALVVVVGSFTGNYLAIAQKMPAEWNFWLGHOGY EYVDLGLWQIS, TAGIYFWLVLMLGCIAPAL, SKGDKNLLALLTASVGAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKMPAEWNFWLGHOGY EYVDLGLWQIG, WAGILWLVLMLGCIAPAL, SKGDKNLLALLTASVGAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKMPAEWNFWLGHOGY EYVDLGLWQIG, FAGIYFWLVLMLGCIAPAL, SKGDKNLLALLTASVGAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKMPAEWNFWLGHOGY EYVDLGLWQIG, FAGIYFWLVLMLGCIPPALLAPSGDNKLLALLTASVGAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKMPAEWNFWLGHOGY EYVDLGLWQIG, FAGIYFWLVLMLGCIPPALAPSGDNKLLALLTASVGAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKMPAEWNFWLGHOGY EYVDLGLWQIG, FAGIYFWLVLMLGCIPPALDAPSGDONLLALLTASVGAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKMPAEWNFWLGHOGY EYVDLGCLWQIG, FAGIYFWLVLMLGCIPPAEQ-PGDNLLALLTASVGAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKAPAEWNFWLGHOGY EYVDLGCLWQIG, FAGIYFWLVLMLGCIPPAEQ-PGDNLLALLTASVGAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKAPAEWNFWLGHOGY EYVDLGCLWQIG, FTGIVWLVLMLGCUPALG-PGDNLLALLTASVVAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKAPAEWNFWLGHOGY EYVDLGCLWQIG, FTGIVWLVLMLGVVPALG-PGDNLLALLTASVVAIGLFYG LGV DIFWALVVVVGSFTGNYLAIAQKAPAEWNFWLGHOGY EYVDLGCLWQIG, FTGIVWLVLMLGVVPALG-P-GDNLLALLTASVAIGLFYG LGV DIFWALVVVGSFTGNYLAIAQKAPAEWNFWLGHOGY EYVDLGCLWQIG, FTGIVWLVLMLGVVPALG-P-GDNLLALLTASVAIGLFYG LGV DIFWALVVVGSFTGNYLAIAQKFALTHIPPE FNFWLGHOGY EYVDLGCLWQIG, FTGIVWLVLMLGVVMGLGB-P-GDNLLALLTASVAIGLFYG LGV DIFWALVVVGSFTGNYLAIAQKFALTHIPPE FNFWLGHOGY EYVDLGCLWQIG, FTGIVWLVMLLGVGLGB-P-GDNLLALLTASVAIGLFYG LGV DIFWALVVVGSFTGNYLAIAQKFALTAQIPPE FNFWLGHOGY EYVDLGCLWQIG, FLGANFWLLMLGCVNGLGGZ-P-GDNLLALLTASVAIGLFYG LGV DIFWALVVVGSFTGNYLAIQKFALTAQIPPE FNFWLGHOGY EYVDLGCLWQIG, FLGANFWLLMLGCNARCH, SGSGGLWLTHYLANVYGGFYA LLVGLLFWALVVVGSFTGNYLANGFALFHLFWLGHOGY EYVDLGCLWQIG, FLGANFWLLMLGCNARCH, SGSGGLWLTHYSAIAUFYFYI NSYALA.LNUSKSFGNALASSANFFALTHIPPE FNFWLGHOGY EYVDLGCLWQIG, FLGANFWLLMLGCNARCH, SGSGGLWCHTAF LVGULLFWALVVVVSSFTGNYLANANFFALGHOGY EYVDLGCLWQIG, SGUNULML	500

1 2 3 4 5 6 7 8 9 10 11 12 13 14	Alcaligenes Polaromonas Ralstonia Hydrogenophaga Bordetella Comamonas Pseudomonas Thauera Chitiniphilus Cupriavidus Oceanimonas Hahella Neisseria Geobacillus consensus/100% consensus/80% consensus/70%	cov 100.0% 99.9% 99.5% 99.5% 99.5% 99.5% 100.0% 99.9% 99.9% 99.9% 99.3% 99.3%	pid 100.0% 81.2% 80.3% 76.8% 81.1% 76.2% 76.9% 79.5% 81.4% 75.4% 76.2% 58.7% 34.3%	501	GEFYGETHLIVM YWRWIVHLWVEGFF VFATTALAFIFSTLGLVSTMATTASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGASFSAL VVPL AGLFYGETSLIVM YWRWVHLWVEGFF VFATTALAFIFSTLGLVSTMATASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGASFSAL VVPL AGLFYGETSLIVM YWRWVHLWVEGFF VFATTALAFIFSTLGLVSTMATASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGASFSAL VVPL AGLFYGETSLIVM YWRWVHLWVEGFF VFATTALAFIFSTLGLVSTMATASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGASFSAL VVPL AGLFYGETTHLSVM YWRWVVHLWVEGFF VFATTALAFIFSTLGLVSTMATASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGASFSAL VVPL AGFAYGETHLSVM YWRWVVHLWVEGFF VFATTALAFIFSTLGLVSTMATASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGASFSAL VVPL AGFAYGETHLSVM YWRWVVHLWVEGFF VFATTALAFIFSTLGLVSTMATASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGASFSAL VVPL AGFAYGETHLSVM YWRWVVHLWVEGFF VFATTALAFIFSTLGLVSTMATTASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGASFSAL VVPL AGFAYGETHLSVM YWRWVVHLWVEGFF VFATTALAFIFSTGLVSTMATTASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGASFSAL VVPL AGFAYGETHLSVM YWRWVVHLWVEGFF VFATTALAFIFSTGLVSTMATTASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGAFFSAL VVPL AGFAYGETHLSVM YWRWVVHLWVEGFF VFATTALAFIFSTGLVSTMATASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGAFFSAL VVPL AGFFYGETHLSVM YWRWVVHLWVEGFF VFATTALAFIFSTGLVSTMATASLASASLFHLGGIPGTFHHLYFAGTTTPVHAVGAFFSAL VVPL AGFFYGETSLTVM YWRWVVHLWVEGFF VFATTALAFIFSTGLVSTMATASLASASLFHLGGIPGTFHHLYFSTTTPVMAVGAFSAL VVPL AGFFYGETSLTVM YWRWVVHLWVEGFF VFATTALAFIFSTGLVSTMATASLASASLFHLGGIPGTFHHLYFSTTTPVMAVGAFSAL VVPL AGFFYGETSLTVM YWRWVVHLWVEGFF VFATTALAFIFSTGLVSTMATASLASASLFHLGGIPGTFHHLYFSTTTPVMAVGAFSAL VVPL AGFFYGETSLTVM YWRWVHLWVEGFF VFATTALAFIFSTGLVSTMATASLASASLFHLGGIPGTHHLYFSTTTPVMAVGAFSAL VVPL AGFFYGETSLTVM YWRWVHLWVEGFF VFATTALAFIFSTGLVSTMATASLASASLFNLGGIPGTHHLYFSTTTPVMAVGAFSAL VVPL AGFFYGETSLSTM YWRWVHLWEGFF VFATTALAFIFSTGLVSTMATASLASASLFNLGGIPGTHHLYFSGTTTPVMAVGAFSAL VVPL AGFFYGETSLSTM YWRWVHLWVEGFF VFATTALAFIFSTGLVSTMATASLASASLFNLGGIPGTHHLYFSGTSASMATASLASASLFNLGGIPGTHHLYFSGTSASMATASLASAS FAGFFYGETSLSTM YWRWVHLWVEGFF VFATTALAFIFSTGLVSTMATASLASASLFNLGGIPGTHHLYFGTTTPVMAVGAFSAL VVPL AAFFFYGETTHLSTM YWRWVHLWVEGFF VFATTALAFIFSSGLVSTMATASLASASSLFNLGGIPGTHHLYFGTTTPVMAVGAFSAL VVPL AGFFYGETTHLOVNYNN YN	600
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Alcaligenes Polaromonas Ralstonia Hydrogenophaga Bordetella Comamonas Pseudomonas Thauera Chitiniphilus Cupriavidus Oceanimonas Hahella Neisseria Geobacillus consensus/100% consensus/26% consensus/70%	COV 100.0% 99.9% 99.5% 99.7% 99.9% 99.9% 99.9% 99.9% 99.3% 97.9% 99.3%	pid 100.0% 81.2% 80.3% 76.2% 76.2% 78.3% 81.1% 79.5% 78.3% 81.4% 75.4% 76.2% 58.7% 34.3%	601	7 IVLGHEANENNGLUKT BAPMMENLENPLICEVAUAFWINLIGAGVFGFMINPPSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLLULFYLPPUYGFSPL IVLGHEANENNGLUKT BAAMMENLENPLICEVAUAFWINLIGAGVFGFMINPPSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLLULFYLPPUYGFSPL IVLGHEANENNGLUKT BAPMMENLENPLICEVAUAFWINLIGAGVFGFMINPPSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLLULFYLPPUYGFSPL IVLGHEANENNGLUKT BAPMMENLENPLICEVAUAFWINLIGAGVFGFMINPPSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLIVLFYLPPUYFSPL IVLGHEANENNGLUKT BAPMMENLENPLICEVAUAFWINLIGAGVFGFMINPPSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLIVLFYLPPUYFSPL IVLGHEANENNGLUKT BAPMMENLENPLICEVAUAFWINLIGAGVFGFMINPPSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLIVLFYLPPUYFSPL IVLGHEANENNGLUKT BAPMMENLENPLICEVAUAFWINLIGAGVFGFMINPPSLYYUGGLNTTPVHAHAALFGVYGFLALGFTLIVLFYLPPUYFSPL IVLGHEANENNGLUKS BAARMERUK MPLICEVAUAFWINLIGAGVFGFMINPPSLYYUGGLNTTPVHAHAALFGVYGFLALGFTLIVLFYLPPUYFSPL IVLGHEANENNGLUKS BAARMERUK MPLICEVAUAFWINLIGAGVFGFMINPPSLYYUGGLNTTPVHAHAALFGVYGFLALGFTLIVLFYLPPUFFSPL IVLGHEANENNGLUKS BAARMERUK MPLICEVAUAFWINLIGAGVFGFMINPPSLYYUGGLNTTPVHAHAALFGVYGFLALGFTLIVLFYLPPUFFSL IVLGYEANENNGLUKS BAARMERUK MPLICEVAUAFWINLIGAGVFGFMINPPSLYYUGGLNTTPVHAHAALFGVYGFLALGFTLLVL FYLPPUFFSL IVLGYEANENNGLUKS BAARMERUK MPLICEVAUAFWINMIGAGVFGFMINPPSLYYUGGLNTTPVHAHAALFGVYGFLALGFTLLVL FYLPPUFFSL IVLGYEANENNSLUKS BAARMERUK MPLICEVAUAFWINMIGAGVFGFLINPPSLYYUGGLNTTPVHAHAALFGVYGFLALGFTLLVL FYLPPUFFSL IVLGYEANENNSLUKS BAARMERUK MPLICEVAUAFWINMIGAGVFGFLINPFSLYYUGGLNTTPVHAHAALFGVYGFLALGFTLLVL FYLPPUFFSL IVLGYEANENNSLUKS BARMENNENKENTER VANFINNTIGAGVFGFLINPTSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLLVL FYLPPUFFSL IVLGYEANENNSLUKS BARMENNENKENTER FYLVAFWINNTIGAGVFGFLINPTSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLLVL FYLFYLVFSPHILVFSS IVLGGEANENNSLUKS BARMENNENKENTER STINTUN UGAGVFGFLINPTSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLLVL FYLFYLNVFFDONL IVLLGBAFENNSVENTER FYLATFFNNTIGAGVFGFLINPTSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLLVLSLNTYLLVSSL IVLGYEANENNSLUKS BARMENNENGLUKFFYLATFNNTIGAGVFGFLINPTSLYYIGGLNTTPVHAHAALFGVYGFLALGFTLLVLSL IVLGSTFFYLTTPFFYLTHPLLCEVAUAFWINNLGGGVFGFFINPFNLTYNGGLNTTPVHAHAALFGVYGFLALGFTLLVLSSL IVLGSTFFYLTTPFFYLT	700
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Alcaligenes Polaromonas Ralstonia Hydrogenophaga Bordetella Comamonas Thauera Chitiniphilus Cupriavidus Oceanimonas Hahella Neisseria Geobacillus consensus/100% consensus/10%	cov 100.0% 99.9% 99.5% 99.5% 100.0% 99.9% 99.9% 99.9% 99.3% 97.9% 99.3%	pid 100.0% 81.2% 80.3% 76.8% 81.1% 76.2% 79.5% 78.3% 81.4% 75.4% 75.4% 76.2% 58.7% 34.3%	701	8 MLAFWGLNGLALMIFTSLLPIGLIQFHASVSEGMWYARSEAFMQQILLTLWAGTFGVVFLLGALMVVQVILGLSGKPAAAEPUL-RAPRA MTAFWGLNAGLVLMIFTSLLPIGVIQFHASVSEGLWYARSEAFMQQPLLQTLWATFGVVFLVGALMALQVVLGLNNTAPKLPQPEP-CLAI MTAFWGLNGGLVLMIATSLLPIGVIQALASIRGCLWARSEAFVQQPLLQTLWATFGVVFLVGALTAALQVVLGLLSHGPAREVPEG-CLAI MTGFWGLNAGLVLMIATSLLPVGIQALASIRGCLWARSEAFVQQPLLQTLWATFGVVFLVGALTAALQVVLGLLSHGPAREVPEG-CLAI MTGFWGLNAGLVLMIATSLLPVGIQALASIRGCLWARSEAFVQQPLLQTLWATFGDVFIXGALVAMUVUGLLSHGPAREVPEG-CLAI MTGFWGLNAGLVLMIFTSLLPVGIQALASIRGCLWARSEAFVQQPLLQTLWATFGDVFIXGALVAMUVUGLLSHFRNNNSEAP-SLST MTAFWSLNIGLVLMIFTSLLPVGIQALASVSGLWARSEAFNQQPLLQTLWATFGDVFIXGALVAMUVUGLLDTHRNSNAGO-GLGTVQ MTAFWSLNIGLVLMIFTSLLPUGIQALSVSGLWARSEAFNQQPLLQTLWATFGDVFIXGALVAMUVVGLLDTHRRSNAGO-GLGTVQ	800

Supplementary figure 6C. Sequence alignment of representative AxqNOR homologs. Alcaligenes xylosoxydans (uniprot A0A0D6H8R3); Polaromonas sp. (A0A1H0FNK7); Ralstonia sp.(A0A1H0U9C7); Hydrogenophaga intermedia (A0A1L1PKZ3); Bordetella genomosp (A0A261SF53); Comamonas terrigena (A0A2A7UR79); Thauera sp (A0A2W6XYG8); Pseudomonas putida (A0A3M8T612); Chitiniphilus eburneus (A0A4U0PXB0); Cupriavidus taiwanensis (B₃RCN9); Geobacillus stearothermophilus (B₃Y963); Oceanimonas sp.(H2G1F4); Hahella chejuensis (Q2SP13).Consensus between residues is highlighted by % and color; % of identity between sequences is shown in "pid" column. Alignment is performed by CLUSTRALW EBI server.

Supplementary figure 7. Putative product release pathway in AxqNOR. (a) Location of the putative product release path from binuclear active site to the cytoplasm is shown in purple and based on CAVER 3.0 analysis. Water channel is shown in cyan. (b) Hydrophobic residues surrounding the channel and heme molecules are shown as sticks. Iron and Ca ions are represented by orange and green spheres. Part of the channel directed to the cytoplasm is indicated by the red square. Majority of the residues lining the path are strictly conserved. Residues with black labels are strictly conserved; residues with blue labels are semiconserved.

•

Supplementary Table 1: Cryo-EM data collection, refinement and validation statistics

Data Accession	
PDB	8BGW
EMDB	16041
Data Collection	
Microscope	FEI Titan Krios
Voltage (kV)	300
Detector	Falcon 4
Energy filter slit width (eV)	10
Nominal magnification	130k
Pixel size (Å/pixel)	0.91
Defocus range (μm)	-0.92.7
Exposure time	6.11
Frames	44
Exposure rate (e ⁻ pixel ⁻¹ s ⁻¹)	4.61
Electron exposure (e ⁻ /Å ²)	34.90
Dose per frame (e ⁻ /Å ²)	0.8
Micrographs collected	5466
Reconstruction	
Software	RELION 3.1
Particles used in refinement	404,950
Symmetry	C2
Overall resolution when FSC=0.143	2.2
(masked) (Å)	
Map sharpening B-factor (Å ²)	-47.68
Model Refinement	
Software	REFMAC5
Non-hydrogen atoms	12845
Protein residues	11649
Ligands	746
Average B factors (Å ²)	61.128
Protein	63.29
Ligands and water	91.95
R.M.S. deviations	
Bond length (Å)	0.012
Bond angle (Å)	1.649
Ramachandran statistics (%)	
Outliers	0.27
Allowed	5.47
Favoured	94.26
MolProbity score	2.36
ClashScore	15.19
Poor rotamers (%)	2.41
Model vs. Map FSC	0.854

Supplementary Table 2: Comparison of Ca ligands and bond distances in *Ax*qNOR, its mutant and *Pa*cNOR.

Ca ligands in AxqNOR	2.2 Å <i>Ax</i> qNOR	3.9 Å AxqNOR	3.3 Å	2.7 Å
(<i>Pa</i> cNOR)			AxqNOR	<i>Pa</i> cNOR
	8BGW	6QQ5	Variant	
			6QQ6	300R
Water	2.3	-	-	2.1
OH Tyr78(73*)	2.5	2.6	2.7	2.6
O Gly76(71*)	2.3	2.4	2.8	2.3
O2A Heme b ₃	2.3	2.6	2.1	2.6
O1D Heme b	2.2	2.3	2.5	2.4
O2D Heme b	(3.7)	2.7	2.5	(3.8)
OE2 Glu407(135)	2.1	2.5	2.4	2.8
OE1 Glu407(135)	2.2	2.9	3.0	2.6
* residues numbers for F	PacNOR			