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ARTICLE

A joint transcriptome-wide association study
across multiple tissues identifies candidate
breast cancer susceptibility genes

Guimin Gao,1,4 Peter N. Fiorica,1,4 Julian McClellan,1,4 Alvaro N. Barbeira,2,4 James L. Li,1

Olufunmilayo I. Olopade,3 Hae Kyung Im,2,* and Dezheng Huo1,2,*
Summary
Genome-wide association studies (GWASs) have identifiedmore than 200 genomic loci for breast cancer risk, but specific causal genes in

most of these loci have not been identified. In fact, transcriptome-wide association studies (TWASs) of breast cancer performed using

gene expression prediction models trained in breast tissue have yet to clearly identify most target genes. To identify candidate genes,

we performed a GWAS analysis in a breast cancer dataset from UK Biobank (UKB) and combined the results with the GWAS results of

the Breast Cancer Association Consortium (BCAC) by a meta-analysis. Using the summary statistics from the meta-analysis, we per-

formed a joint TWAS analysis that combined TWAS signals from multiple tissues. We used expression prediction models trained in

11 tissues that are potentially relevant to breast cancer from theGenotype-Tissue Expression (GTEx) data. In the GWAS analysis, we iden-

tified eight loci distinct from those reported previously. In the TWAS analysis, we identified 309 genes at 108 genomic loci to be signif-

icantly associated with breast cancer at the Bonferroni threshold. Of these, 17 genes were located in eight regions that were at least 1 Mb

away from published GWAS hits. The remaining TWAS-significant genes were located in 100 known genomic loci from previous GWASs

of breast cancer. We found that 21 genes located in known GWAS loci remained statistically significant after conditioning on previous

GWAS index variants. Our study provides insights into breast cancer genetics throughmapping candidate target genes in a large propor-

tion of known GWAS loci and discovering multiple new loci.
Introduction

Breast cancer is the most common malignancy among

women in most countries around the world, accounting

for one-quarter of all cancer cases in women.1 In the past

15 years, genome-wide association studies (GWASs) have

identified over 200 loci significantly associated with breast

cancer.2–4 Although some of these findings have yielded

functional insights into breast cancer,4 these genetic vari-

ants account for a relatively small proportion of heritabili-

ty, suggesting that more genetic variants have yet to be

identified. Because the vast majority of risk variants identi-

fied in GWASs are located in intergenic regions and are not

nonsynonymous coding variants, the putative genes on

which these risk variants act to cause breast cancer remain

unclear for most GWAS-identified loci.

To further elucidate the role of genetic variants in

complex traits, transcriptome-wide association studies

(TWASs) have been conducted to quantify the relationship

between a predicted level of genetically regulated gene

expression and the phenotype of interest.5,6 TWASs of

breast cancer have identified dozens of genes whose

expression is significantly associated with breast cancer

and its subtypes.4,7–9 However, these genes account for

only a small proportion of known GWAS loci of breast can-

cer. These TWASs were performed primarily by associating
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a cis-regulated level of gene expression with breast cancer

in single tissues (breast tissue or whole blood). Our recent

study demonstrated that integrating information from

multiple tissues in a TWAS could improve association

detection.10 In addition, existing TWASs used gene expres-

sion prediction models trained on data from older versions

of the Genotype-Tissue Expression (GTEx) project, such as

v.6 or v.7. The recent v.8 of GTEx has much larger sample

sizes compared to the older versions, so the expression

models trained in GTEx v.8 will be more accurate than

those trained in older versions in prediction of expression

levels.11,12 By using GTEx v.8, one can explore heritability

for expression more efficiently, and more genes can pass

the filtering threshold and be used for TWAS analysis.12

Therefore, the prediction models trained in GTEx v.8

have the potential to increase the power of TWAS in detect-

ing susceptibility genes.

In this study, we aimed to identify candidate genes

for breast cancer by performing joint TWAS analyses

of breast cancer by combining TWAS information from

multiple tissues. We applied our TWAS method to the

summary statistics from a meta-analysis of data from

122,977 breast cancer cases and 105,974 controls in the

Breast Cancer Association Consortium (BCAC)3 and

10,534 breast cancer cases and 185,116 controls in UK

Biobank (UKB).13
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Subjects and methods

GWAS summary statistics on women of European

ancestry from the BCAC
In our meta-analysis, we used the summary statistics data from the

GWAS of breast cancer in 122,977 cases and 105,974 controls of

European ancestry from the BCAC. The details of the BCAC

have been described previously.3,14 Briefly, the BCAC included:

(1) 61,282 female cases with breast cancer and 45,494 female con-

trols of European ancestry that were genotyped using the

OncoArray, including 570,000 SNPs; (2) 46,785 breast cancer cases

and 42,892 controls of European ancestry from Collaborative

Oncological Gene-environment Study (iCOGS) that were geno-

typed using a custom Illumina iSelect genotyping array containing

�211,155 variants; and (3) 11 other breast cancer GWASs (14,910

cases and 17,588 controls). Genotype data from iCOGS,

OncoArray, and GWASs were imputed using the October 2014

release of the 1000 Genomes Project data as a reference. Genetic

association results for breast cancer risk were combined using in-

verse-variance fixed-effect meta-analyses.3

GWAS analysis using data from UK Biobank
The UK Biobank project recruited approximately 500,000 partici-

pants, ages 40–69, between 2007 and 2010, across 22 study centers

in the United Kingdom. The project collected detailed demo-

graphic, lifestyle, and disease histories at baseline, as well as dis-

ease occurrences through prospective follow-up and database link-

ages.13 Whole-genome genotyping was conducted using UK

Biobank Axiom Arrays for 488,377 participants, and imputation

was performed using the Haplotype Reference Consortium and

1000 Genomes phase 3 as reference panels to obtain >90 million

genetic markers.13 In this study, we selected female individuals

with both phenotypic and genotypic data available. Unrelated in-

dividuals with European ancestry were selected using principal-

component analysis (PCA). We further filtered out samples with

genotyping call rates <95%. After these exclusions, the analysis

included 10,534 breast cancer cases (including 6,055 prevalent

cases before enrollment and 4,479 incident cases during a median

of 7 years follow-up) and 185,116 controls (Table S1). We per-

formed GWAS analysis using logistic regression, comparing breast

cancer cases with controls, adjusting for age at enrollment and top

ten eigenvectors from PCA of genotypes with software package

PLINK 2.0.15 As a sensitivity analysis, we performed a case-case

GWAS analysis, comparing incident cases with prevalent cases.

In the logistic regression models adjusting for age and top ten ei-

genvectors, we found that no variants were genome-wide signifi-

cant (alpha ¼ 5 3 10�8), suggesting that it is reasonable to

combine incident and prevalent cases in the primary analysis.

Gene expression prediction models
Gene expression prediction models were built with the genotype

and RNA-seq data in 49 tissues of European ancestry from the

GTEx project (v.8).12 Specifically, building prediction models for

a gene includes the following steps. (1) Across all tissues, cis-

expression quantitative trait loci (cis-eQTLs) were discovered

with a false discovery rate of 5% per tissue. Only genes with cis-

eQTLs were selected. (2) Fine mapping was performed in each

tissue in the corresponding cis-gene region by the DAP-G

method16,17 to select variants with minor allele frequency >0.01

and posterior inclusion probabilities (PIPs) >0.01 and to select

genes with at least one credible set of PIP >0.1 (where the cred-
The Ame
ible-set PIP is the sum of PIPs of variants in the set). Then, in

each credible set, only the variant with the highest PIP was kept.

For the 49 tissues, a union of selected variants across 49 tissues

was obtained, and linkage disequilibrium (LD) pruning was

applied to the union of variants to remove redundant variants.

(3) The multivariate adaptive shrinkage (MASH) method was

applied to the marginal eQTL effects across the 49 tissues at the

union of variants to jointly estimate effects of eQTLs, allowing

sparse effects (that is, with many zero effects) and accounting for

correlation among non-zero effects in different tissues.18 (4) The

predicted expression of the gene in each tissue was calculated as

the linear combination of genotypes multiplying by their esti-

mated effect sizes. In this study, we used the prediction models

for 11 tissues, including female tissues (breast, ovary, uterus, and

vagina), tissues that resemble connective and fat tissues in the

breast (subcutaneous adipose, visceral adipose, and cultured fibro-

blasts), tissues related to immune cells (spleen, EBV-transformed

lymphocytes, and whole blood), and liver. These tissues are

potentially relevant to breast cancer development or carcinogen

metabolism.
Summary statistic-based imputation
For variants included in the GTEx predictionmodels but not in the

GWAS summary statistics, we imputed Z scores with the method

ImpG-Summary.19 The ImpG-Summarymethod assumes that, un-

der null hypothesis, the vector Z of Z scores at all SNPs in a locus is

approximately distributed as a Gaussian distribution, Z � Nð0;SÞ,
with S being the correlation matrix among all pairs of SNPs

induced by LD. We estimated posterior mean of Z scores at unob-

served SNPs. We used the GWAS summary statistics and correla-

tionmatrix estimated from the genotype data in the GTEx samples

as the input for the ImpG-Summary method.
Joint TWAS across multiple tissues
The joint TWAS analysis includes two steps: (1) performing a tradi-

tional TWAS analysis in each of the 11 tissues with the software

S-PrediXcan20 to obtain the p values pk ðk¼ 1;.;11Þ and (2) con-

structing test statistics using the aggregated Cauchy association

test (ACAT) method21 that combined p values for each gene

from the single-tissue TWAS analyses across the 11 tissues. Specif-

ically, the ACAT test statistic is TACAT ¼ P11
k¼1wk tan ðð0:5 � pkÞpÞ,

wherewk is a nonnegative weight.We usedwk ¼ 1=11. The p value

of the ACAT test statistic is approximated by 1
2� ðarctan TÞ/p. We

noticed that, for some genes, expression prediction models were

only available for K of the 11 tissues (K < 11), then the ACAT

test statistic was calculated using the S-PrediXcan p value pk
from the K tissues, with a weight wk ¼ 1=K.
Conditional joint TWAS
To test if the signals at the 309 genes detected by the TWAS are

independent of a set of published GWAS index SNPs and newly

identified index SNPs in our GWAS analysis, we performed a

TWAS conditional on these index SNPs that were genome-wide

significant (p < 5 3 10�8). At each gene, we considered two sets

of SNPs: the target set of SNPs used for predicting gene expression

and the conditioning set of significant index SNPs from GWASs

within 52 Mb of the transcription start or stop sites of the gene.

For the target set of SNPs, we calculated adjusted effects (beta)

on breast cancer risk and their variances, after conditioning

on the index SNPs using the conditional and joint multiple-

SNP (COJO) analysis method of Yang et al.22 We then ran
rican Journal of Human Genetics 110, 950–962, June 1, 2023 951



S-PrediXcan20 on these conditional summary statistics in single

tissues and performed the joint TWAS analysis that combines

p values from the single-tissue analyses using the ACATmethod.21

Colocalization analysis
For genes identified in the TWAS, we calculated regional colocali-

zation probabilities (RCPs) using the method ENLOC.17 ENLOC

divides the genome into roughly independent LD blocks using

the approach described in Berisa and Pickrell.23 For a gene located

in a specific LD block, ENLOC calculates the colocalization proba-

bility of causal GWAS hits and causal eQTLs in the LD block.

Variant-level fine-mapping analysis was done to reveal possible

causal eQTLs and GWAS hits. To calculate RCP for a gene in an

LD block, we used the GTEx (v.8) eQTLs for the gene and the

meta-analysis GWAS summary statistics in the LD block. Because

ENLOC can calculate RCP only for single tissues, we calculated

RCP in each of the 11 tissues and then calculated maximum

RCP (Max RCP) among the 11 tissues. An RCP at a gene greater

than a threshold (such as 0.5) provides supportive information

that the gene identified by the TWAS has a high probability of co-

localizing with a nearby GWAS variants, which strengthens the as-

sociation signal.

Gene-based fine-mapping
We performed a gene-based statistical fine-mapping over the gene-

trait association signals from our TWAS using the software FOCUS

(fine-mapping of causal gene sets).24 For an LD block, we identified

a credible set of genes that contain the causal genes at a predefined

confidence level of 90%. We also computed the marginal PIP in

the target tissue (breast tissue) for each gene in the region to be

causal given the observed TWAS statistics. FOCUS accounts for

the correlation structure induced by LD and prediction weights

used in the TWAS and controls for certain pleiotropic effects. We

used 11 tissues and related expression prediction weights from

the GTEx v.8 and assigned the breast tissue as the target tissue.

When the expression prediction model for a gene in the breast tis-

sue was unavailable (18% of the genes), we randomly selected an

alternative tissue with a prediction model as a proxy for the gene.

Gene set enrichment and functional annotation
For the set of significant genes identified by our TWAS, we con-

ducted enrichment of protein-coding and long non-coding RNA

(lncRNA) genes against gene sets from multiple biological path-

ways, functional categories, and databases using the FUMA

package.25 Specifically, we used the GENE2FUNC module of

FUMA and specified 33,527 protein-coding and lncRNA genes as

the background genes for enrichment testing. Multiple testing

correction was performed per data source of tested gene

sets (e.g., canonical pathways, GWAS catalog categories) using

Benjamini-Hochberg false discovery rate adjustment. We reported

pathways/categories with adjusted p values%0.05 and at least two

genes that overlapped with the gene set of interest.
Results

GWAS in BCAC and UKB

We performed a GWAS analysis in a breast cancer dataset

from UKB (genomic control l ¼ 1.02) and then combined

the UKB GWAS results with the previously published

GWAS results of the BCAC data3 by a meta-analysis using
952 The American Journal of Human Genetics 110, 950–962, June 1,
the software METAL26 (Figure S1). We identified eight

GWAS loci that were not reported by previous studies

(Table 1; Figure S2). In six loci, the sentinel variants are

located at least 2 Mb away from any of the risk variants

identified by previous GWASs, and in two loci, the sentinel

variants are located at least 500 kb away (rs9833726 and

rs62483813), but none of these index variants are in LD

with previous GWAS signals. Each of the index variants

showed the same association direction in BCAC and UKB

GWASs. No significant heterogeneity was observed in the

meta-analysis at any sentinel variants. All the sentinel var-

iants are common and are located in the introns of nearby

genes.

Joint TWAS combining information across multiple

tissues

We used expression predictionmodels trained in 11 tissues

of European ancestry (with sample sizes ranging from 129

to 670 and a median of 227) from the GTEx v.8 data using

the MASHmethod.11,12,18 In total, 19,274 genes across the

11 tissues with prediction models, including 14,613 genes

expressed in breast tissue, were tested in our TWAS anal-

ysis. Using the meta-analysis summary statistics, we per-

formed a single-tissue TWAS analysis in each tissue with

S-PrediXcan20 and then a joint TWAS analysis using

ACAT21 to combine p values of single-tissue TWASs across

the 11 tissues for each gene.

The results of the joint TWAS analysis are summarized in

the Manhattan plots against the variant-based GWAS anal-

ysis results (Figure S1). Of the 19,274 genes tested in our

joint TWAS analysis, we identified 299 genes whose pre-

dicted expression was associated with breast cancer risk

at the Bonferroni-corrected threshold of p < 2.59 3 10�6

(Table S2). Only 141 genes were identified when TWAS

analysis used only breast tissue, i.e., a conventional sin-

gle-tissue TWAS approach20 (Table S3). Of these 141 genes,

131 genes were also identified in the joint, multi-tissue

TWAS. The remaining 10 genes identified only in the

breast-tissue TWAS analysis were also marginally signifi-

cant in the joint TWAS (p < 1.62 3 10�5), so we described

the 309 genes from either TWAS in further analysis.

Table S4 shows the detailed single-tissue TWAS results for

the 309 genes in the analysis of two databases (BCAC

and UKB) pooled and separately. We found that Z scores

across tissues were moderately concordant on average,

with an intraclass correlation coefficient of 0.561, but

the agreement between tissues as well as the strongest

association signals varied across genes. These findings

suggest that the multi-tissue joint TWAS could provide

additional information compared to a traditional single-

target-tissue TWAS and address the possibility that the

target tissue(s) could vary for different genes. We also

found that TWAS results using the BCAC and UKB data-

bases were very consistent, with a Pearson r ¼ 0.871

(Figure S3).

Of the 309 genes identified in our TWAS, 108 genes have

been reported in previous TWASs (Tables S2 and S5), and
2023



Table 1. The lead breast cancer GWAS risk variants at eight previously unreported locia

rsid Position (hg38) Locus Nearest geneb Allelesc EAF Data source OR (95% CI) p value

rs707475 7857016 1p36.23 UTS2 A/G 0.393 UKB 0.97 (0.94–1.00) 2.05E�02

BCAC 0.97 (0.95–0.98) 1.29E�07

Meta 0.97 (0.95–0.98) 7.17E�09

rs60504827 168127440 1q24.2 GPR161 T/C 0.126 UKB 0.96 (0.92–1.00) 4.03E�02

BCAC 0.95 (0.93–0.97) 1.76E�07

Meta 0.95 (0.93–0.97) 1.90E�08

rs9833726 86154659 3p12.1 LOC102723364 T/G 0.135 UKB 0.93 (0.89–0.97) 8.21E�04

CADM2 BCAC 0.96 (0.94–0.98) 5.98E�06

Meta 0.95 (0.94–0.97) 4.02E�08

rs35016840 150318622 4q31.3 LRBA T/C 0.650 UKB 1.03 (1.00–1.06) 3.55E�02

BCAC 1.03 (1.02–1.05) 3.73E�07

Meta 1.03 (1.02–1.05) 4.25E�08

rs62483813 102478605 7q22.1 POLR2J T/C 0.369 UKB 1.04 (1.01–1.07) 7.79E�03

BCAC 1.04 (1.02–1.05) 1.89E�07

Meta 1.04 (1.02–1.05) 5.34E�09

rs77457752 13942941 9p23 LINC00583 A/G 0.127 UKB 0.91 (0.87–0.96) 1.41E�04

BCAC 0.95 (0.94–0.97) 7.95E�07

Meta 0.95 (0.93–0.97) 1.70E�09

rs3235 13907609 10p13 FRMD4A A/G 0.656 UKB 1.04 (1.01–1.07) 8.68E�03

BCAC 1.03 (1.02–1.05) 9.34E�07

Meta 1.03 (1.02–1.05) 3.37E�08

rs71063528 113863643 11q23.2 USP28 (A)17/delA 0.275 UKB 0.96 (0.93–0.99) 1.29E�02

BCAC 0.96 (0.95–0.98) 7.91E�07

Meta 0.96 (0.95–0.98) 3.15E�08

EAF, effect allele frequency; OR, odds ratio; CI, confidence interval; GWAS, genome-wide association study; UKB, UK Biobank; BCAC, Breast Cancer Association
Consortium; meta, meta-analysis.
aThe heterogeneity tests comparing effects in BCAC and UKB were not significant in any of the loci
bVariants are located in the introns of nearby genes
cEffect allele/reference allele
multiple genes have been implicated in previous GWASs,

such as FGFR2, TOX3, and ESR1. The 309 genes identified

in our TWAS are distributed among 108 genomic loci

(Figure 1). Based on NHGRI-EBI GWAS Catalog27 and liter-

ature review, we curated 226 GWAS loci of breast cancer

susceptibility (Table S6). Including the eight GWAS loci

discovered in the current study (Table 1), there are a total

of 234 GWAS breast cancer susceptibility loci (Figure 1).

Our TWAS identified 292 significant genes that are located

in 100 known GWAS loci. The remaining 17 genes are

located in eight TWAS loci that are at least 1.4 Mb away

from any risk variant identified in previous GWASs and

are not in LD with risk variants (Table 2). Of the 17 genes

found in the eight TWAS loci, 10 genes in six loci were sig-

nificant in the breast-tissue-based TWAS at the Bonferroni

threshold. For example, we found MAP2K4 in the 17p12

locus was significant in both the multi-tissue joint TWAS
The Ame
and the breast-tissue-based TWAS, although there was no

reported GWAS signal in this locus (Figure 2). Notably,

the 1q24.2 locus was identified both in our GWAS and in

our TWAS, and the GWAS index variant rs60504827 is

located in an intron of GPR161 (Figure 2).

Conditional joint TWAS on known GWAS index variants

To determine whether the associations for the genes iden-

tified by the joint TWAS were independent of GWAS

association signals, we performed conditional analyses ad-

justing for nearby GWAS index risk variants. We found 21

genes located in 15 known GWAS loci that were condition-

ally significant (Table 3). This suggests that additional ge-

netic variants, which are neither genome-wide significant

nor in LD with GWAS-significant variants, may account

for the association between expression of these genes

and breast cancer risk at these loci.
rican Journal of Human Genetics 110, 950–962, June 1, 2023 953



Figure 1. Ideogram of the 309 TWAS-identified genes in the context of known breast cancer GWAS loci
Colocalization analysis and gene-based fine-mapping

In colocalization analysis using ENLOC,17 we found 45 of

309 genes with RCP values greater than 0.5 using breast tis-

sue and 75 genes with maximum RCP values greater than

0.5 (Table S2). The colocalization RCP value for breast tis-

sue was inversely correlated with the p value from breast-

tissue TWAS (Spearman r ¼ �0.287), suggesting that genes
954 The American Journal of Human Genetics 110, 950–962, June 1,
with stronger TWAS significance are more likely to colocal-

ize with GWAS causal variants.

As the LD among variants can induce significant gene-

trait associations for non-causal genes, we conducted

gene-level fine-mapping analysis using the package

FOCUS.24 We found that 141 genes are in credible sets

that contain causal genes at the confidence level of 90%;
2023



Table 2. The 17 genes identified by TWAS located at 8 genomic loci at least 1 Mb away from previous GWAS hits

Locusa Gene symbol Position (hg38)
Joint ACAT
p value

Breast
p value PIPb

In credible
set Max RCPc

RCP in
breast

1q21.1, L1 H3-2 chr1: 143,894,544–143,905,977 1.13E�10 9.13E�01 – – 0.000 0.000

FAM72C chr1: 143,955,287–143,971,986 2.77 E�12 – 0.419 Yes 0.000 0.000

1q24.2 GPR161 chr1: 168,079,542–168,137,667 1.04 E�06 2.30E�01 0.000 No 0.513 0.000

6q24.1 TXLNB chr6: 139,240,061–139,291,998 8.21 E�06 2.24E�06 0.761 Yes 0.681 0.681

7q22.1, L1 SPDYE3 chr7: 100,307,702–100,322,196 1.91 E�07 – 0.253 Yes 0.127 0.040

PILRB chr7: 100,352,176–100,367,831 2.04 E�07 1.71E�07 0.412 Yes 0.505 0.505

PILRA chr7: 100,367,530–100,400,096 2.69 E�07 3.47E�07 0.016 No 0.386 0.386

ZCWPW1 chr7: 100,400,826–100,428,992 6.72 E�07 8.53E�06 0.005 No 0.261 0.202

MEPCE chr7: 100,428,322–100,434,126 1.74 E�07 – 0.219 Yes 0.259 0.057

C7orf61 chr7: 100,456,620–100,464,260 7.19 E�07 2.92E�07 0.079 Yes 0.155 0.088

TSC22D4 chr7: 100,463,359–100,479,232 1.08 E�06 1.38E�06 0.001 No 0.228 0.228

NYAP1 chr7: 100,483,927–100,494,802 1.15 E�06 5.41E�02 0.000 No 0.086 0.000

10p12.1 YME1L1 chr10: 27,110,111–27,155,266 4.99 E�06 4.99E�07 0.920 Yes 0.249 0.084

17p12 MAP2K4 chr17: 12,020,829–12,143,830 9.59 E�07 7.28E�07 0.893 Yes 0.630 0.630

17q23.1 RPS6KB1 chr17: 59,893,046–59,950,574 3.97 E�06 1.80E�06 0.823 Yes 0.144 0.095

20q13.33 RGS19 chr20: 64,073,181–64,079,988 9.27 E�07 1.76E�06 0.166 Yes 0.922 0.862

– OPRL1 chr20: 64,080,082–64,100,643 4.37 E�07 2.81E�07 0.792 Yes 0.925 0.791

a‘‘L1’’ and ‘‘L2’’ denote the first and second locus defined by LD block in the same cytoband, respectively
bPosterior inclusion probability (PIP) calculated by FOCUS
cMaximum marginal posterior inclusion probability (RCP) in all tissues calculated in colocalization analysis
for these genes, themedian PIP was 0.792 (Table S2). As the

fine-mapping analysis in FOCUS mainly used breast tissue

as the target tissue (82%), genes identified in the breast-tis-

sue TWAS were more likely in the credible sets (94 genes).

As candidate causal genes, we selected 114 genes if they

are in the credible sets with gene PIPs greater than 0.15 and

located in regions in which the null model is not a possible

outcome (Table S7). These 114 genes are located in 83 loci.

For most loci (n ¼ 61), fine-mapping identified only one

causal gene candidate, eliminating many TWAS-identified

genes; for example, CHEK2 (PIP¼ 1.0) was identified as the

possible causal gene in locus 22q12.1–q12.2 (out of six

TWAS-identified genes). For fewer loci, multiple candidate

genes were identified after fine-mapping analysis; for

example, GSTM1, GSTM2, and GSTM4, three members

of the glutathione S-transferase multigene family, were

suggested to be possible causal genes in locus 1p13.3

(Table S7; Figure 2).

Gene set enrichment and functional annotation

Of the 309 TWAS-identified genes, 272 are protein-coding

genes, 34 are lncRNA genes, and 3 are pseudogenes. We

tested the enrichment of this set of protein-coding and

lncRNA genes against background gene sets from multiple

databases using the FUMA software package.25 We found

that these TWAS-identified genes were significantly en-

riched in several biological pathways, such as the Trail
The Ame
signaling pathway, Fas signaling pathway, apoptosis

pathway, biosynthesis, and cell cycle regulation; all of

these pathways are important in cancer development or

a hallmark of cancer, which further warrants efforts into

studying how the genes identified in our TWAS may

contribute to breast cancer etiology (Table S8). Interest-

ingly, we found significant enrichment in the genes under-

lying several breast cancer risk factors, including body fat

distribution, mammographic density, alcohol use, and

body height,28 suggesting that the TWAS-identified genes

may indirectly contribute to breast cancer susceptibility

through their impacts on known lifestyle/environmental

risk factors. We also found strong enrichment for other dis-

eases, such as inflammatory bowel disease, diabetes, and

other cancers (including melanoma, chronic myeloid leu-

kemia, and cancers of the esophagus, pancreas, bladder,

and prostate), suggesting that some of breast cancer genes

have pleiotropic effects. These results were consistent with

the notion that there are shared genetic components be-

tween various cancer sites29 and suggest that further

research into collating TWAS results across cancers may

be beneficial to understanding their shared genetic etiol-

ogies. Lastly, differential gene expression analysis in

GTEx showed that the TWAS-identified genes had strong

tissue specificity, although our joint TWAS weighted each

tissue similarly; the most up-expressed tissues of these

genes were uterus, ovary, vagina, and breast (Figure S4).
rican Journal of Human Genetics 110, 950–962, June 1, 2023 955



Figure 2. Manhattan plots of exemplar genes in three loci identified by the joint TWAS analysis
The genes highlighted in red are significant genes identified in the joint transcriptome-wide association study.
Enrichment of genetic variants in prediction models

Fachal et al.30 identified a set of 11,289 credible causal var-

iants (CCVs) for breast cancer risk in a fine-mapping study

of 150 breast cancer risk regions. We performed a hyper-

geometric test to examine whether genetic variants

included in the expression prediction models for the 292

significant genes identified by our TWAS in 100 known

GWAS loci were enriched in the set of CCVs. In 100 known

GWAS loci, there were 1,160,671 genetic variants with mi-
956 The American Journal of Human Genetics 110, 950–962, June 1,
nor allele frequency >0.01 in the GTEx v.8 data. Among

these variants, 7,537 were shared with the set of CCVs

identified by Fachal et al.30 The prediction models for the

292 genes used 1,702 unique genetic variants; of these var-

iants, 114 variants were CCVs (Table S9). Therefore, there

was an approximately 10-fold over-representation of

CCVs among our genetic variants of prediction models

(hypergeometric p value 3.173 10�75). Although this anal-

ysis cannot take into account LD among genetic variants,
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Table 3. The 21 genes identified by TWAS in the 15 known loci that were significant after adjusting for known GWAS index variants

Locus Gene symbol Position (hg38) Joint ACAT p value Conditional p valuea Closest index SNPb Dist (kb)c PIPd In Credible set Max RCPe

1p13.3 GSTM1 chr1: 109,687,814–109,709,039 2.91E�08 1.10E�06 rs5776993 7.5 0.491 Yes 0.996

2q35 DIRC3 chr2: 217,284,019–217,756,593 1.67E�16 2.31E�10 rs6436017 102.1 1.000 Yes 0.001

3p24.1, L1 NEK10 chr3: 27,106,484–27,369,460 <5.0E�17 1.77E�07 rs4973768 5.1 1.000 Yes 0.209

5p15.33, L1 AHRR chr5: 321,714–438,291 1.22E�07 4.78E�07 rs62641919 0 0.000 No 0.379

EXOC3 chr5: 443,175–471,937 2.14E�06 1.87E�06 rs62641919 98.2 0.317 Yes 0.065

6q22.33 RSPO3 chr6: 127,118,671–127,199,481 2.21E�06 2.57E�06 rs2180341 80 0.055 No 0.324

8q21.13 HNF4G chr8: 75,407,914–75,566,834 1.14E�12 2.18E�07 rs72658071 14.4 1.000 Yes 0.069

11p15.5, L2 LSP1 chr11: 1,850,904–1,892,267 <5.0E�17 7.24E�07 rs576603 0.6 0.000 No 0.478

11q13.1 OVOL1 chr11: 65,787,063–65,797,214 2.08E�12 2.23E�06 rs3903072 18.4 0.982 Yes 0.165

11q13.3 RP11-554A11.8 chr11: 69,147,228–69,171,564 1.58E�08 6.02E�09 rs72932540 0 0.004 No 0.000

12p11.22, L1 CCDC91 chr12: 28,133,249–28,581,511 2.22E�16 2.90E�11 rs7297051 111.4 0.005 No 0.000

12p11.22, L2 OVCH1 chr12: 29,412,474–29,497,686 1.43E�06 1.63E�06 rs1027113 425.1 0.000 No 0.000

16q12.1–q12.2 TOX3 chr16: 52,436,417–52,547,802 <5.0E�17 <5.0E�17 rs3803662 4.6 1.000 Yes 0.333

19q13.32 GIPR chr19: 45,668,221–45,683,722 2.31E�08 8.44E�07 rs61373376 0 0.001 No 0.353

20q11.23 PHF20 chr20: 35,771,974–35,950,370 8.79E�07 2.33E�06 rs112208395 0 0.330 Yes 0.322

CNBD2 chr20: 35,954,564–36,030,700 2.38E�06 3.66E�06 rs112208395 21.5 0.251 Yes 0.038

22q12.1–q12.2 TTC28 chr22: 27,978,014–28,679,840 1.14E�08 9.40E�12 rs62235681 4.9 0.000 No 0.000

CHEK2 chr22: 28,687,743–28,742,422 9.02E�13 4.39E�15 rs62235681 3.0 1.000 Yes 0.001

HSCB chr22: 28,742,039–28,757,515 1.36E�12 6.49E�15 rs17879961 16.9 0.000 No 0.000

CCDC117 chr22: 28,772,674–28,789,301 1.46E�07 1.62E�09 rs17879961 47.6 0.000 No 0.000

XBP1 chr22: 28,794,555–28,800,597 6.35E�09 1.26E�10 rs17879961 69.5 0.003 No 0.000

aConditional ACAT p value after adjusting for adjacent index SNPs
bSNPs that were identified to be significant in previous genome-wide association studies
cDistance from the gene to closest index SNP (kb)
dPosterior inclusion probability (PIP) calculated by the FOCUS method
eMaximum marginal posterior inclusion probability (RCP) in all tissues calculated in colocalization analysis
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the strong enrichment is unlikely to be due to

confounders.

Fachal et al.30 also classified GWAS signals as strong and

moderate signals. We examined whether CCVs in regions

with strong GWAS signals are more likely to be genetic var-

iants of our prediction models, compared with CCVs in re-

gions with moderate GWAS signals. Of the 5,117 CCVs in

regions with strong GWAS signals, 83 (1.6%) were genetic

variants in our gene expression prediction models. In

contrast, 30 of 5,973 (0.5%) CCVs in regions with moder-

ate GWAS signals were genetic variants in our gene expres-

sion prediction models, so there was a >3-fold enrichment

(p ¼ 4.81 3 10�9). In short, genetic variants used in gene

expression models are more likely to be variants identified

from fine-mapping of breast cancer GWAS, and there is a

stronger enrichment for regions with strong GWAS signals.
Discussion

In this study, we performed a breast cancer TWAS analysis

that leveraged the genetically predicted gene expression

levels across multiple tissues. We identified 309 significant

genes at the Bonferroni threshold, including 17 genes

located in eight loci not reported in previous studies and

292 genes located in 100 known GWAS loci. In about

43% of known breast cancer GWAS loci, our study was

able to identify possible susceptibility gene(s). We also

found 21 genes in known GWAS loci that were indepen-

dent of previously reported GWAS risk variants, suggesting

potentially additional breast cancer susceptibility signals.

Generally, our study findings are consistent with pre-

vious TWASs; of the 368 genes reported in previous

TWASs,4,7–9,31–36 108 genes were replicated in our study.

The number of TWAS-significant genes identified in our

study is similar to the number identified in all previous

studies combined, possibly because of several notable dif-

ferences in methodologies. First, we used GWAS data

from a large number of breast cancer cases (n ¼ 133,511)

and controls (n¼ 291,090) from BCAC andUKB. This large

sample size provided high statistical power in the associa-

tion analysis and helped to identify eight GWAS loci that

were not reported previously. Second, we aggregated

TWAS signals across 11 tissues. This multi-tissue approach

resulted in more genes being identified compared to the

TWAS using breast tissue alone. This suggests that while

breast tissue is an important tissue to be utilized when con-

ducting breast cancer TWASs, other tissues can contribute

additional information for gene discovery. For example,

our multi-tissue approach identified FGFR2, a gene with

strong evidence in breast cancer etiology, but this gene

has not been identified in previous TWASs and would

have been missed if we had utilized only the TWAS exclu-

sive to breast tissue. Expression of FGFR2 in fibroblasts,

ovary, vagina, and liver were associated with breast cancer

risk (Table S4). Third, we used expression prediction

models trained in GTEx v.8 with the MASH method based
958 The American Journal of Human Genetics 110, 950–962, June 1,
on fine-mapping that selected possible causal eQTLs as pre-

dictors for each gene. The expression models trained in

GTEx v.8 can be more accurate than those trained in older

versions of GTEx for three reasons: (1) The sample sizes for

tissues in GTEx v.8 are larger than those in older versions of

GTEx (for example, we used 329 samples from GTEx v.8 to

build prediction models of breast tissue in European

ancestry individuals, while Wu et al.8 used 67 samples

from v.6); (2) selecting possibly causal eQTL through

fine-mapping can reduce the probability that non-causal

eQTLs were used in the prediction models12; and (3)

MASH accounts for eQTL correlation across tissues and

provides more accurate estimates of beta coefficients of

eQTLs used as final weights in the prediction models. By

using the prediction models trained in GTEx (v.8) data,

we were able to perform this joint TWAS analysis on

19,274 genes with prediction models of good performance

(i.e., with eQTL signals). In contrast, two previously pub-

lished large TWASs that relied on breast tissues in older ver-

sions of GTEx and traditional methods could evaluate a

smaller subset of genes.7,8 Wu et al.8 evaluated 8,597 genes

in their TWAS and commented that several highly impli-

cated breast cancer susceptibility genes, such as ESR1,

TERT, and MRPS30, could not be investigated because of

poor performance of prediction models. Our study was

able to identify these three genes as significant at the Bon-

ferroni threshold. Similarly, Feng et al.7 investigated 901

genes in their TWAS.

We identified 17 genes in eight loci that are at least 1 Mb

away from any risk variants and not in LD with risk vari-

ants reported in previous GWASs. This finding suggests

that transcriptome-based association studies are able to

discover cancer susceptibility signals, extending the capac-

ity of variant-based association studies. These genes and

loci are plausibly important in breast cancer susceptibility,

based on evidence from previous studies in other cancers

or known cancer pathways. For example, MAP2K4 in the

17p12 locus has not been implicated in breast cancer sus-

ceptibility. We found that the predicted expression of

MAP2K4 in multiple tissues, including breast tissue, was

positively associated with breast cancer risk. Both colocal-

ization analysis (RCP ¼ 0.63) and fine-mapping analysis

(PIP ¼ 0.893 in breast tissue) suggested that MAP2K4 is a

possible causal breast cancer gene, and the effect was

driven by multiple weak variants. MAP2K4 (also known

as MKK4) is a member of the MAPK family, which act as

integration points for multiple biochemical signals and

are involved in a wide variety of cellular processes such

as proliferation, differentiation, transcription regulation,

and development. MAP2K4 has been found to be a metas-

tasis suppressor gene in ovarian carcinoma.37 Furthermore,

MAP2K4 was identified as a driver gene mutated in both

early and metastatic breast cancer.38,39 Taken together, it

is possible that MAP2K4 was a breast cancer susceptibility

gene in the 17p12 locus.

Most of our TWAS-identified genes are located in known

GWAS susceptibility loci. Interestingly, we are able to
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identify possible susceptibility genes in a large proportion

of the known breast cancer GWAS loci. In these scenarios,

our TWAS revealed possible target genes that GWAS-identi-

fied risk variants act on to cause breast cancer. Interest-

ingly, genetic variants used in our expression prediction

models and TWAS analysis were highly enriched in the

set of CCVs identified in a previous fine-mapping study

of breast cancer,30 and the enrichment was even stronger

for loci with strong GWAS signals. Using eQTL analyses,

Guo et al.40 inferred 101 target genes in known breast can-

cer GWAS loci. We re-discovered 51 of these 101 genes in

our TWAS.

One interesting GWAS locus is 1p13.3, a region contain-

ing >20 genes within 400 kb (Figure 2). Although none of

the SNPs in this locus reached GWAS significance in BCAC,

this locus was recently reported to be associated with breast

cancer in a cross-ancestry study.41 Of the genes in this re-

gion, it is unclear which ones are breast cancer susceptibil-

ity genes simply based on GWAS signals. Our TWAS found

that the predicted expression of GSTM1, GSTM2, and

GSTM4 in multiple tissues, including breast tissue, was

inversely associated with breast cancer risk. After adjusting

for GWAS index SNPs in conditional analysis, the three

genes were no longer significant, suggesting that GWAS

risk SNPs may be responsible for the observed TWAS sig-

nals. Both colocalization analysis (RCP >0.99) and fine-

mapping analysis suggested that all three genes are

possible breast cancer candidate genes. GSTM1, GSTM2,

and GSTM4 encode members of the glutathione

S-transferase multigene family, which can detoxify xenobi-

otics, including carcinogenic compounds, and thus were

proposed as cancer susceptibility genes.42 The GSTM1

null genotype has been associated with risk of several can-

cers.43–49 Therefore, there exists evidence that all three

genes are possible cancer suppressors responsible for

GWAS signals in 1p13.3 through carcinogen metabolism.

Another interesting example is GPR161 at 1q24.2 (Fig-

ure 2). We discovered this locus in our meta-analysis

GWAS, and its expression in adipose and fibroblasts was

inversely associated with breast cancer risk in our TWAS.

This gene is overexpressed in triple-negative breast cancer,

promotes cell proliferation, stimulates migration and inva-

sion, and disrupts E-cadherin localization in vitro.50 Over-

expression of GPR161 in fibroblasts has also been experi-

mentally shown to increase cAMP signaling, ultimately

resulting in decreased signaling of the Sonic hedgehog

(Shh) pathway,51 which plays an essential role in embry-

onic development and tumorigenesis.52 Germline GPR161

mutations have been associated with pediatric medullo-

blastoma.53 Taken together, there is some evidence that

GPR161 may play a role in breast cancer etiology.

Determining causality of TWAS-identified genes remains

challenging because these genes may be associated with

disease phenotypes through their correlation with dis-

ease-causal gene(s) in the same LD region. Based on gene-

based fine-mapping, we proposed 114 genes in 83 loci to

have a high probability of being causal genes. Still, these
The Ame
genes need to be investigated in future functional experi-

ments. Guo et al.40 used luciferase reporter assays to study

functional target genes, and they found a significant differ-

ence between alternative and reference alleles in promoter

activity for five genes (DCLRE1B, SSBP4, MRPS30, ATG10,

and PAX9) but failed to show functional activity for

ARRDC3. These findings are consistent with ours: we

found that all five genes were TWAS significant, and three

(DCLRE1B, SSBP4, and PAX9) are in our proposed list of

causal genes (Table S7). Consistent with Guo et al.,40 we

did not find ARRDC3 to be TWAS significant.

The current study has several limitations. First, although

the joint TWAS identified more genes than single-tissue

TWAS, it may generate more false-positive hits because it

utilizes other tissues that may not be causal to breast can-

cer risk,54 and it uses a large number of prediction models

from multiple tissues. This may increase the chance of

poor/unreliable prediction models being used for down-

stream association analysis andmay result in identification

of non-causal genes. We tried to control the type I error us-

ing a stringent Bonferroni alpha level and conducted gene-

based fine-mapping analysis to suggest causal genes.

Furthermore, the target tissue for cancer development

might not be distinct, and gene expression across multiple

tissues could be partially correlated.10,11 We also observed

moderate consistency between the results of single-tissue

TWASs. For instance, breast tissue is presumably the target

tissue for breast cancer, but gene expression in liver might

better reflect carcinogen metabolism. Fortunately, the

ACAT method used in our joint TWAS analysis calculates

a weighted average of p values from multiple tissues and

is relatively conservative in identifying significant genes.

Strikingly, the top tissues in which the joint TWAS-identi-

fied genes were upregulated were all female tissues (breast,

uterus, ovary, and vagina), suggesting that our joint TWAS

method was able to automatically prioritize target tissues.

One focus of our future methods research is to develop

more efficient methods to combine TWAS signals across

tissues by effectively accounting for the correlation of the

signals across tissues or giving high weights to potential

target tissues.

Second, the current study analyzed only data from indi-

viduals with European ancestry and focused on overall

breast cancer risk. Breast cancer is a heterogeneous disease

consisting of several molecular subtypes. The genetic ar-

chitecture of estrogen receptor (ER)-negative breast cancer

may be different from the ER-positive subtype. In the

BCAC consortium, 76% of patients had ER-positive breast

cancer,3 so the current studymaymainly identify genes for

susceptibility of ER-positive breast cancer. Future TWASs

that focus on ER-negative breast cancer or in other racial/

ethnic populations are highly desirable.

Third, the current study examined only overall expres-

sion of genes but did not consider the effect of RNA

splicing on disease etiology. Li et al.55 reported that RNA

splicing is another primary link between genetic variation

and complex diseases. Therefore, TWASs evaluating
rican Journal of Human Genetics 110, 950–962, June 1, 2023 959



associations of genetically predicted splicing with breast

cancer have great promise for identifying novel putative

candidate disease genes. We are currently working on a

splicing-based TWAS of breast cancer. Last, our study

focused on cis-eQTL effects when constructing the expres-

sion prediction models. We did not consider trans-eQTL

due to limited sample sizes in the GTEx data, but this is

an interesting topic for future studies.

In conclusion, our joint TWAS identified more than 300

breast cancer genes for further functional investigation.

Our approach has discovered susceptibility loci not re-

ported previously andmapped out candidate genes inmul-

tiple known susceptibility loci. Future studies in diverse

populations and with a focus on homogeneous pheno-

types of breast cancer using innovative TWAS methodol-

ogy are warranted. There is potential to map out most

candidate genes in GWAS loci of breast cancer, the most

common malignancy affecting women across the world.
Data and code availability

In this study, we used only existing datasets that are publicly avail-

able (see web resources). The code pipeline and results for our joint

TWAS analysis are available at https://zenodo.org/record/

7814694#.ZDaspXbMK5d (DOI: 10.5281/zenodo.7814694). For

specific method code, we made minor modifications to

S-PrediXcan to combine results with ACAT (https://github.com/

shugamoe/MetaXcan/tree/catch_up).We alsomademinormodifi-

cations to FOCUS to accommodate PrediXcan GTEx v.8 MASHR

models (https://github.com/shugamoe/focus).
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Web resources

BCAC summary statistics, https://bcac.ccge.medschl.cam.ac.uk/

bcacdata/oncoarray/oncoarray-and-combined-summary-result

COJO (GCTA), https://yanglab.westlake.edu.cn/software/gcta/

Enloc, https://github.com/xqwen/integrative

FOCUS, https://github.com/bogdanlab/focus

FUMA, http://fuma.ctglab.nl

GTEx Portal, https://gtexportal.org/home/

Metal, http://csg.sph.umich.edu/abecasis/Metal/

PLINK 2.0, https://www.cog-genomics.org/plink/2.0/

PrediXcan GTEx v.8 MASHR models, https://predictdb.org/

S-PrediXcan, https://github.com/hakyimlab/MetaXcan and https://

github.com/hakyimlab/summary-gwas-imputation

UK Biobank, http://ukbiobank.ac.uk
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Supplementary Figure S1. Manhattan plots of joint transcriptome-wide association study 
(TWAS) and genome-wide association study (GWAS). The dots in the top panel show -log10 p 
values for genes calculated using the aggregated Cauchy association test. The dots in the bottom 
panel show -log10 p values for variants calculated using logistic regressions. -log10 p values were 
capped at 20 and 100 for the TWAS and GWAS, respectively. 

 

 

  



Supplementary Figure S2. LocusZoom plots of eight novel GWAS loci 

(a) 1p36.23 (rs707475) 

 

(b) 1q24.2 (rs60504827)  

 
(c) 3p12.1 (rs9833726) 

 

  



(d) 4q31.3 (rs35016840)  

 
(e) 7q22.1 (rs62483813) 

 
(f) 9p23 (rs77457752)  

 

 

  



(g) 10p13 (rs3235)  

 
(h) 11q23.2 (rs71063528) 

 

 

 

  



Supplementary Figure S3. Scatter plot of Z scores from tissue-specific TWAS in Breast Cancer 
Association Consortium (BCAC) and UK Biobank (UKB) datasets 
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Supplementary Figure S4. Differential analysis of expression of the joint TWAS-identified 
genes in GTEx v8 shows tissue specificity. Significantly enriched differentially expressed gene 
sets (Bonferoni adjusted p < 0.05) are highlighted in red. 
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