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ARTICLE

Impact of cross-ancestry genetic architecture
on GWASs in admixed populations

Rachel Mester,1,* Kangcheng Hou,2 Yi Ding,2 Gillian Meeks,3 Kathryn S. Burch,2 Arjun Bhattacharya,4

Brenna M. Henn,5 and Bogdan Pasaniuc1,2,4,6,7,*
Summary
Genome-wide association studies (GWASs) have identified thousands of variants for disease risk. These studies have predominantly been

conducted in individuals of European ancestries, which raises questions about their transferability to individuals of other ancestries. Of

particular interest are admixed populations, usually defined as populations with recent ancestry from two or more continental sources.

Admixed genomes contain segments of distinct ancestries that vary in composition across individuals in the population, allowing for

the same allele to induce risk for disease on different ancestral backgrounds. This mosaicism raises unique challenges for GWASs in ad-

mixed populations, such as the need to correctly adjust for population stratification. In this work we quantify the impact of differences

in estimated allelic effect sizes for risk variants between ancestry backgrounds on association statistics. Specifically, while the possibility

of estimated allelic effect-size heterogeneity by ancestry (HetLanc) can be modeled when performing a GWAS in admixed populations,

the extent of HetLanc needed to overcome the penalty from an additional degree of freedom in the association statistic has not been

thoroughly quantified. Using extensive simulations of admixed genotypes and phenotypes, we find that controlling for and condition-

ing effect sizes on local ancestry can reduce statistical power by up to 72%. This finding is especially pronounced in the presence of allele

frequency differentiation. We replicate simulation results using 4,327 African-European admixed genomes from the UK Biobank for 12

traits to find that for most significant SNPs, HetLanc is not large enough for GWASs to benefit frommodeling heterogeneity in this way.
Introduction

The success of genomics in disease studies depends on our

ability to incorporate diverse populations into large-scale

genome-wide association studies (GWASs).1–4 Cohort and

biobank studies are growing to reflect this diversity,5–7

and a variety of techniques exist which incorporate popu-

lations of different continental ancestries into GWASs.8

However, while admixture has been an important factor

in other steps in the disease mapping process, such as

fine-mapping9 and estimating heritability,10,11 individuals

of mixed ancestries (admixed individuals) have largely

been left out of traditional association studies. GWASs per-

formed in admixed populations have greater power for dis-

covery compared to similar sized GWASs in homogeneous

populations.12,13 Thus, excluding admixed individuals

from association studies will not only increase health dis-

parities, but will also disadvantage other populations. To

prevent this exclusion, approaches to association studies

have been developed specifically for admixed popula-

tions.14–17 However, the impact of HetLanc (differences

in estimated allelic effect sizes for risk variants between

ancestry backgrounds) on GWAS methods remains un-

der-explored. Of particular interest are recently admixed

populations, defined as fewer than 20 generations of
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mixture between two ancestrally distinct populations. In

such populations, the admixture process creates mosaic

genomes comprised of chromosomal segments originating

from each of the ancestral populations (i.e., local ancestry

segments). Local ancestry segments are much larger than

linkage disequilibrium (LD) blocks18; thus, LD patterns

within each local ancestry block of an admixed genome

reflect LD patterns of the ancestral population. Similarly,

allele frequency estimates from segments of a particular

local ancestry are expected to reflect allele frequencies of

the ancestral population. Variation in local ancestry across

the genome leads to variability in global ancestry (the

average of all local ancestries within a given individual).

Such variability in local and global ancestries could pose

a problem to GWASs in admixed populations as genetic an-

cestries are often correlated with socio-economic factors

that also impact disease risk, thus yielding false positives

in studies that do not properly correct for genetic

ancestries. Because local and global ancestry are only

weakly correlated,19 complete control of confounding

due to admixture requires conditioning on both local

and global ancestry.20 However, the success of admixture

mapping indicates that the possibility of losing power

due to over-correction for local ancestry differences is

serious.21,22
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GWASs in admixed populations are typically performed

either using a statistical test that ignores local ancestry alto-

gether (referred to in this work as ‘‘standard GWASs’’ and

defined in Table 1) or using a test that explicitly allows for

HetLanc (e.g., Tractor). The former provides superior power

in theabsenceofHetLancwith the latterhavinggreatpoten-

tial for discovery in its presence. However, these methods’

relative statistical power for discovery depends on the

cross-ancestry genetic architecture of the trait, i.e., which

variants are causal andwhat are thosevariants’ ancestry-spe-

cific frequencies, causal effects, and linkage disequilibrium

patterns. For example, existing studieshave found that stan-

dardGWASs canyield a25%increase inpoweroverTractor13

in the absence of HetLanc while Tractor has higher power

when causal effects are different bymore than 60%.15 How-

ever, the full impactof cross-ancestrygenetic architectureon

GWAS power in admixed populations remains under-

explored.

In this work, we use simulations to perform a comprehen-

sive evaluation quantifying the impact of these factors on

the power of GWAS approaches in admixed populations.

We provide guidelines for when to use each test as a func-

tion of cross-ancestry genetic architecture. Elements of

cross-ancestry genetic architecture such as allele fre-

quencies, global ancestry ratios, and LD are known or can

be calculated in advance of a GWAS to determine which

of our simulation results apply in each case. Using extensive

simulations, we find that standard GWASs should be

preferred when HetLanc is small or non-existent. We quan-

tify the extent of HetLanc and the ancestry-specific allele

frequency differences required for Tractor to overcome the

extra degree of freedom penalty. We further validate our re-

sults using the African-European admixed population in the

UK Biobank (UKBB). By examining the HetLanc of signifi-

cant SNPs in the UKBB, we can understand how often it

rises to a level that impacts the power of traditional GWASs.
Subjects and methods

Simulated genotypes
We simulate genotypes using the following procedure, which pro-

duces a set of genotypes made up of independent SNPs from ad-

mixed genotypes with two ancestries.

(1) Draw the individual global ancestry proportion of ancestry

2, a � Nðq; s2Þ for 10,000 individuals where q is the ex-

pected global ancestry proportion of ancestry 2, and s2 is

the variance of global ancestry in the population (we use

s2 ¼ 0:125 to reflect the variance of global ancestry found

in the UK Biobank admixed population). a is coerced be-

tween [0,1].

(2) For each individual, draw a local ancestry count l �
Binomialða;2Þ, where l represents the local ancestry count

of ancestry 2.

(3) For each local ancestry, draw a genotype gi � Binomialðl;fiÞ,
where fi represents the allele frequency at local ancestry i.

Allele frequencies fi were specified for each simulation

scenario according to the figure legends.
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Simulated quantitative phenotypes with a single causal

SNP
We simulate quantitative phenotypes with a single causal SNP

(used in Figures 2C, 2D, 3A, and S1–S8) using the following

procedure.

(1) Standardize genotypes so that they have a mean 0 and vari-

ance 1.

(2) Given some effect sizes b1; b2, calculate Varg ¼
Varðb1g1 þb2g2Þ, where the variance is taken over all indi-

viduals, and Varg represents the genetic variance compo-

nent of the phenotypes.

(3) Given some heritability h2, calculate Vare ¼ Varg
1�h2

h2
,

where Vare is the environmental variance component

of the phenotypes. This comes from the equation h2 ¼
Varg

VargþVare
.

(4) For each individual, draw e � Nð0;VareÞ where e is the

random noise to add to the phenotype to represent envi-

ronmental variables.

(5) Repeat for 1,000 replicates.
Simulated quantitative phenotypes with multiple causal

SNPs
We simulate quantitative phenotypes with multiple causal SNPs

using real genotypes (used in Figures 4, S9, and S10) with the

following procedure.

(1) Use chromosome 1 of the UK Biobank admixed African-

European genotypes.

(2) Given some polygenicity p (p ¼ 100 used in Figures 4 and

S9, p ¼ 1, 10, 100 used in Figure S10), randomly choose p

SNPs to be causal.

(3) Given some genetic correlation, draw effect sizes b1;b2 for

causal SNPs chosen in step 2. Genetic correlations equal to

1.0, 0.5, and �1.0 used in Figures 4 and S9, genetic correla-

tion equal to 1.0 for Figure S10. For more on genetic corre-

lation, see Hou et al.23

(4) Calculate Varg ¼ Varðb1g1 þb2g2Þ, where the variance is

taken over all individuals, and Varg represents the genetic

variance component of the phenotypes.

(5) Given some heritability h2, calculate Vare ¼ Varg
1�h2

h2
,

where Vare is the environmental variance component of

the phenotypes. This comes from the equation h2 ¼
Varg

VargþVare
. h2 ¼ 0:5 used in Figures 4, S9, and S10.

(6) For each individual, draw e � Nð0;VareÞ where e is the

random noise to add to the phenotype to represent envi-

ronmental variables.

(7) Repeat for 100 replicates.
Simulated case-control phenotypes
We simulate case-control phenotypes (used in Figures 2A and 2B)

using the following procedure.

(1) Given some SNP, ancestry-specific odds ratios b1;b2, and a

case prevalence c, case-control phenotypes were simulated

under the logistic model as in Atkinson et al.15
2023
(a) Calculate the genetic component of the phenotype ðygÞ
for each individual j as yg;j ¼ b1g1;j þ b2g2;j.



(b) Find some intercept b such that expitðyg þ bÞ � c ¼
logitðcÞ, where the bar refers to the mean over all indi-

viduals j.

(c) For each individual j, draw case status from a

Bernoulliðexpitðyg;j þbÞÞ distribution.
(d) Randomly discard control phenotypes until the case:

control ratio is 1:1.

(2) Repeat for 100 iterates of 1,000 replicates.
Real genotypes and phenotypes
For our real data analysis, we used genotypes from the UK Biobank.

We limited our study to participants with admixed African-

European ancestry. Overall, we had 4,327 individuals with an

average of 58.9% African and 41.1% European ancestry. We used

the imputed genotypes for these individuals with a total of

16,584,433 SNPs. The genotypesweremapped to theGRCh38build

and imputed to the TOPMed reference panel.We calculated the top

10 PCs for these genotypes and added these PCs as covariates to all

analyses as our global ancestry component. The phenotypes we

used are also from theUK Biobank and include aspartate transferase

enzyme (AST), BMI, cholesterol, erythrocyte count, HDL, height,

LDL, leukocyte count, lymphocyte count,monocyte count, platelet

count, and triglycerides.We log transformed AST, BMI, HDL, leuko-

cyte count, lymphocyte count,monocyte count, platelet count, and

triglycerides to analyze all 12 traits as quantitative, continuous

traits. We standardized all genotypes and phenotypes to be mean

centered at 0.0 and have a variance of 1. This research complies

with all relevant ethical regulations. The ethics committee/IRB of

UKBB gave ethical approval for collection of UKBB data (https://

www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/

ethics). Participants signed awritten consent form tobe a part of the

UKBB (https://www.ukbiobank.ac.uk/media/05ldg1ez/consent-

form-uk-biobank.pdf). Approval to use UKBB individual-level

data in this work was obtained under application 33127 at

http://www.ukbiobank.ac.uk.

Association testing on simulated genotypes
We calculate the standard GWAS and Tractor association tests on

simulated data using scripts that can be found on https://github.

com/rachelmester/AdmixedAssociation.A standardGWAS(referred

to as ‘‘ATT’’ in this software package) is a one degree of freedomasso-

ciation test thatuses themodel y ¼ bg þ eaaþ b1þ e to test forb ¼
0 against a null hypothesis that includes global ancestry (a). Tractor

(referred to as ‘‘TRACTOR’’ in this software package) is a two

degree of freedom association test that uses the model

y ¼ b1g1 þ b2g2 þ ellþ eaaþ b1þ e to test for b1 ¼ 0 and b2 ¼ 0

against a null hypothesis that includes local ancestry (l) and global

ancestry (a). They can both be adapted to be used on case-control

phenotypes by substituting logistic regression and odds ratios for

linear regression and effect sizes. Additionally, they can both be

adjusted for additional covariates such as age and sex. For our simu-

lations,weusedglobal ancestryproportionsasourmeasureof global

ancestry (a) and did not need to adjust for any additional covariates

such as age and sex as we did notmodel those factors in our simula-

tions. For power calculations, we use a standard significance

threshold of p value < 53 10�8.

Association testing on real genotypes
We used admix-kit (https://kangchenghou.github.io/admix-kit/

index.html) to perform the standard GWAS (referred to as ‘‘ATT’’
The Ame
in this software package) and Tractor (referred to as ‘‘TRACTOR’’

in this software package) association tests on these data and ex-

tracted the p values. To determine significant SNPs, we filtered

for SNPs with a standard p value of< 53 10�8. For theManhattan

plots, we plot all SNPs with a p value < 10�2 in Figure 5B and a p

value < 10�4 in Figure S11 for computational plotting purposes.

For Tables S1 and S2 and Figure 5A, to determine whether SNPs

were part of the same locus, we grouped SNPs within a 500 kB

radius and kept the most significant SNP from each test (standard

GWAS and Tractor) in that locus.

Measures used to compare our results
In this work, we introduce several key measures that we use to

compare our results. The formal definitions of these are the

following.

Percent difference in power

2ðPowerStandard GWAS � PowerTractorÞ
PowerStandard GWAS þ PowerTractor

Adjusted chi square

We take the p value from a c2 statistic and convert it back to a c2
1

statistic, regardless of the original degrees of freedom. The adjusted

chi square score for a c2
1 is itself.
Results

Heterogeneity by local ancestry impacts association

statistics in admixed populations

HetLanc occurs when a SNP exhibits different estimated

allelic effect sizes depending on its local ancestry back-

ground. HetLanc can manifest itself at causal SNPs due to

genetic interactions between multiple causal variants or

differential environments, although recent work suggests

that the magnitude and frequency of these types of

epistatic effects between causal variants is limited.23 A

more common form of HetLanc is observed at non-causal

SNPs that tag the causal effect in a differential manner

across ancestries. Differential linkage disequilibrium by

local ancestry at these non-causal SNPs (tagged SNPs) can

cause HetLanc even when allele frequencies and causal

effect sizes are the same across ancestries. The extent to

which HetLanc exists and the magnitude of these differ-

ences in effect sizes are yet uncertain.22–38 However, the ex-

istence of HetLanc plays an important role in the power of

GWAS methods to detect associations. Consider the

example in Figure 1 in which the allelic effect size for a

tagged SNP is estimated for a phenotype in an admixed

population. In this population, both the tagged SNP and

the true causal SNP may exist in regions attributed to

both local ancestries present in the population

(Figure 1A). Since LD patterns differ by local ancestry, the

correlation between the tagged and causal SNPs will also

depend on local ancestry (Figure 1B). This differential cor-

relation between tagged and causal SNPs will cause the esti-

mated allelic effect size for the tagged SNP bbtag;i to depend

on local ancestry i (Figure 1C). Thus, even for cases in

which true causal effect sizes are the same across ancestries,
rican Journal of Human Genetics 110, 927–939, June 1, 2023 929
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Figure 1. Toy example of how differential LD by local ancestry
can induce HetLanc
(A) Admixed populations contain haplotypes with different local
ancestry at the causal or tagged SNP.
(B) The correlation between tagged and causal SNPs depends on
their local ancestry due to differential LD by local ancestry.
(C) In a GWAS, the estimated marginal SNP effect size is propor-
tional to the true causal effect size and the correlation between
the tagged and causal SNPs (bbtag;ifribcausal;i, where i refers to the
ith ancestry).
allelic effect sizes estimated for the tagged SNP may be het-

erogeneous. Since GWASs cannot determine true causal

effect sizes, we introduce Rhet, a measure of HetLanc which

allows for both true causal effect-size heterogeneity and

LD- and allele frequency-induced estimated allelic effect-

size heterogeneity.

Methods for association testing in admixed populations

We start with a formal definition for a full model relating

genotype, phenotype, and ancestry for a single causal SNP:

y ¼ b1g1 þ b2g2 þ ellþ eaaþ eTAAþ b1þ e (Equation 1)

where y is a phenotype, g1 and g2 are vectors that represent

the number of alternate alleles with local ancestry 1 and 2

(such that g1 þ g2 ¼ g, the full genotype regardless of

ancestry), b1 and b2 are ancestry-specific marginal effect
930 The American Journal of Human Genetics 110, 927–939, June 1,
sizes of the SNP, l is the vector of local ancestry counts at

the locus, el is the effect size of l;a is a vector of global

ancestry proportions, ea is the effect size of a, A is a matrix

of additional covariates (such as age and sex), eTA is a vector

of effect sizes for these covariates, b is the intercept term

multiplied by the column vector 1, and e is random envi-

ronmental noise.

Variability across local and global ancestries has been

leveraged in various statistical approaches for disease map-

ping in admixed populations. One of the first methods

developed for association was admixture mapping

(ADM).30,36 ADM tests for association between local

ancestry and disease status in affected individuals and con-

trol subjects or in a case-only fashion. This association is

achieved by contrasting local ancestry deviation with ex-

pectations from per-individual global ancestry propor-

tions. Therefore, ADM is often under-powered especially

in situations in which allele frequency at the causal variant

is similar across ancestral populations.31 Genotype associ-

ation testing is traditionally performed using a linear or lo-

gistic regression with some standard covariates. This type

of association test, referred to in this work as a standard

GWAS, tests for association between genotypes and disease

status while correcting for global ancestry to account for

stratification.17,32 However, neither ADM nor standard

GWASs take advantage of the full disease association signal

in admixed individuals. SNP1, SUM, andMIX are examples

of association tests that combine local ancestry and geno-

type information. SNP1 regresses out local ancestry in

addition to global ancestry to control for fine-scale popula-

tion structure. This approach helps control for fine-scale

population stratification but may remove the signal con-

tained in local ancestry information.33 SUM34 combines

the SNP114 and ADM statistics into a two degree of

freedom test. MIX14 is a case-control test that incorporates

SNP and local ancestry information into a single degree of

freedom test. Most recently Tractor15 conditions the effect

size of each SNP on its local ancestry followed by a joint

test allowing for different effects on different ancestral

backgrounds. This step builds the possibility of HetLanc

explicitly into the model, which may be particularly

important when SNPs are negatively correlated across an-

cestries.35 Other varieties of tests have also been developed

using different types of frameworks, most notably BMIX35

which leverages a Bayesian approach to reduce multiple

testing burden. These statistics have been compared at

length.3,14,22 However, existing comparisons do not

consider HetLanc, nor do they thoroughly discuss allele

frequency differences across ancestries.

Standard GWASs have more power than Tractor in the

absence of heterogeneity by ancestry

First, we use simulations to compare type I error and power

for each association statistic in Table 1. Starting with

10,000 simulated admixed individuals based on a 50/50

admixture proportion, we simulate 1,000 case-control phe-

notypes with a single causal SNP (see subjects and
2023



Table 1. Summary of GWAS association statistics

Association statistic Statistical test ðH0Þ Assumptions on b Ancestry-related covariates Degrees of freedom

ADM el ¼ 0 – a 1

Standard GWAS b ¼ 0 b ¼ b1 ¼ b2 a 1

SNP1 b ¼ 0 b ¼ b1 ¼ b2 l;a 1

MIX el+b ¼ 0 b ¼ b1 ¼ b2 a 1

SUM b ¼ 0 and el ¼ 0 b ¼ b1 ¼ b2 a 2

Tractor b1 ¼ 0 and b2 ¼ 0 – l;a 2

All tests adjust for global ancestry and can be used on binary traits, and all tests except MIX can be implemented with adjustment for additional covariates and use
on quantitative traits. For more information on the comparison of standard GWAS, ADM, SUM, andMIX, see Pasaniuc et al.14 and Seldin et al.22 We note that while
additional methods exist,36–39 we do not focus on them in this work because they do not directly relate to Equation 1.
methods). We define type I error as the percent of non-

causal SNPs found to have significant associations

(p value < 0.05) for each score (see subjects and methods).

Type I error is well controlled by Tractor (5.01%), SNP1

(5.01%), MIX (5.00%), and standard GWASs (5.01%)

(Figure 2A). However, we find that type I error is not as

well controlled for ADM (9.15%) and SUM (7.84%). We

next calculate power to detect causal SNPs for an odds ratio

of OR1 ¼ OR2 ¼ 1.2 (see subjects and methods). We find

that SNP1 had the highest power at 42.14%. However,

SNP1 was not significantly more powerful than either

MIX (power 42.12%, p value 0.878) or a standard

GWAS (power 42.05%, p value 0.325, Figure 2B). The

power of all three of these tests was significantly higher

(p value % 1 3 10�16) than for SUM (power ¼ 33.4%),

ADM (power ¼ 0.039%), or Tractor (power¼ 31.9%). Since

Tractor is a statistical test specifically designed to find SNP-

trait associations with effects that are heterogeneous by

local ancestry,15 this loss of power is expected for Tractor

when effect sizes are the same across ancestries, which is

not the genetic architecture for which Tractor was de-

signed. We find that while these association statistics are

all well controlled, power does substantially differ between

them. In the absence of both HetLanc and allele frequency

difference, one degree of freedom SNP association tests

outperform two degree of freedom tests.

We next investigate how differences in causal allele fre-

quency (CAF) impact the power of a standard GWAS and

Tractor in the case where true causal effect sizes are the

same. We investigate the impact of varying CAF in each

ancestry independently. Using our 10,000 simulated ad-

mixed individuals from the previous experiment, we simu-

late 1,000 quantitative phenotypes with a single causal

SNP (see subjects and methods). We calculate the power

of both Tractor and a standard GWAS to find these causal

SNPs and then average that power over 100 simulated ge-

notypes with specific allele frequencies. First, we let

CAF1¼ 0.5 and CAF2 range from 0.0 to 1.0 with a 0.1 incre-

ment and plot power over CAF2 (Figure 2C). We find that a

standard GWAS and SNP1 have higher power than Tractor

at all levels of CAF difference. Since Tractor has an extra de-

gree of freedom compared to a standard GWAS and SNP1,

Tractor is disadvantaged when b1 ¼ b2. Additionally, we
The Ame
see that while SNP1 has (insignificantly) higher power

than a standard GWAS when CAF1 ¼ CAF2, the power of

SNP1 deteriorates as causal allele frequency difference in-

creases. This behavior is qualitatively the same as Tractor.

When CAF1 ¼ CAF2, a standard GWAS has 94.7% power,

with Tractor at 91.1% power. However, as CAF2 becomes

more different from CAF1, a standard GWAS maintains

its power at 93.0%. By contrast, Tractor loses much of its

power, with only 45.3% power when the causal allele is

fixed at 100% in population 2 and only 48.1% power

when the causal allele is absent in population 2. A standard

GWAS maintains higher power than Tractor even at vary-

ing levels of heritability (Figures S1–S3), global ancestry

(Figure S1), effect size b (Figure S2), and CAF1 (Figure S3).

However, the difference in power has a large range depend-

ing on the CAF difference between local ancestries.

Next we introduce percent difference in power, a one-

dimensional metric to compare between these association

statistics (see subjects and methods). We use this metric to

visualize how varying CAF1 and CAF2 independently im-

pacts the power of a standard GWAS and Tractor

(Figure 2D). The percent increase in power when using a

standard GWAS over Tractor when the causal SNP is ab-

sent in population 2 is 68%. The power difference be-

tween a standard GWAS and Tractor increases as CAF dif-

ference increases. Furthermore, the lower the CAF starts

out in population 1, the larger the power difference be-

tween these two statistics. Specifically, when CAF1 ¼ 0.5

and CAF2 ¼ 0.1, the difference in CAF is 0.4 and a stan-

dard GWAS has a 25% power increase over Tractor. How-

ever, when CAF1 ¼ 0.4 and CAF2 ¼ 0.0, the difference in

CAF is still 0.4 but a standard GWAS has a 43% increase in

power over Tractor. While these differences in power do

depend on both CAF differences and absolute CAF values

in both ancestries, it is worth noting that differences in

power along the diagonal axis are not significant. For

example, while the increase in power of a standard

GWAS over Tractor is 25% when CAF1 ¼ 0.5 and

CAF2 ¼ 0.1 and the increase in power of a standard

GWAS over Tractor is 26% when CAF1 ¼ 0.1 and

CAF2 ¼ 0.5, the difference that occurs when switching

causal allele frequencies between ancestries only has a

p value of 0.345 in this case.
rican Journal of Human Genetics 110, 927–939, June 1, 2023 931



A

C D

B

Figure 2. Association statistics in the absence of HetLanc
(A) Type I error for association statistics. Type I error calculated as the percent of null SNPs with a significant association detected. 95%
confidence interval too narrow for display.
(B) Power for association statistics. Power calculated as the percent of simulations to successfully recover the causal variant. Odds ratios
OR1 ¼ OR2 ¼ 1.2. 95% confidence interval too narrow for display.
(C) Power for a standard GWAS, SNP1, and Tractor as CAF2 is varied between 0.0 and 1.0 and CAF1 is fixed at 0.5. Power for all three
methods varies as CAF difference varies. 95% confidence interval too narrow for display.
(D) Heatmap of percent increase in power of a standard GWAS over Tractor when b1 ¼ b2 ¼ 1:0. Causal allele frequencies CAF1 and
CAF2 varied from 0.0 to 0.5 in increments of 0.1.
All simulations are for case-control (A and B) or quantitative (C and D) traits simulated 1,000 times for a population of 10,000 individuals
with 100 genotypes each with global ancestry proportion 50/50. Power calculated using (A) nominal threshold p value < 0.05, (B) Bon-
ferroni-corrected threshold p value < 1 3 10�5, or (C and D) standard threshold p value < 5 3 10�8. (A and B) Case-control traits have
case-control ratio 1:1, 10% case prevalence, and CAF1 ¼ CAF2 ¼ 0.5. (C and D) Quantitative traits have heritability h2 ¼ 0.005. Herita-
bility, global ancestry, causal effect size b, and overall CAF do not qualitatively impact these results (Figures S1–S3).
While this result corroborates previous studies,40–42 the

relationship between Tractor and admixture mapping pro-

vides insight into the mechanism behind this dynamic.

Mainly, as allele frequency differentiation by local ancestry

increases, so does the power of the admixture mapping test

statistic. In fact, ADM has no power when causal allele fre-

quencies do not differ by ancestry but achieves up to 6.7%

power when CAF1¼ 0.0 and CAF2¼ 0.5 (Figure S4A). How-

ever, the Tractor method uses the admixture mapping

statistic as its null hypothesis. A stronger null hypothesis

will be rejected less often than a weaker one even when

the alternative hypothesis is the same, causing any test uti-

lizing a strong null hypothesis to have less power. Thus,

Tractor will have less power when its null hypothesis

(ADM) has more power, which occurs in situations with

high allele frequency differentiation. When allele fre-

quencies do not differ by ancestry, Tractor achieves 91%

power in our simulations. However, when CAF1 ¼ 0.0

and CAF2 ¼ 0.5, Tractor power plummets to 44%
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(Figure S4B). SNP1, which also uses ADM as its null

hypothesis, suffers from the same deterioration in power

as causal allele frequency differentiation increases

(Figure S4C). When the causal allele frequencies are the

same, SNP1’s power matches that of a standard GWAS,

but as causal allele frequency differentiation increases,

SNP1 loses power in the same pattern as Tractor. This indi-

cates that Tractor loses power compared to a standard

GWAS due to both its additional degree of freedom and

due to its choice of null hypothesis.

While high levels of allele frequency differentiation dras-

tically decrease the power of Tractor, a standard GWAS also

has a smaller decrease in power at high levels of allele

frequency differentiation, from 95% at equal allele fre-

quencies to 93% when CAF1 ¼ 0.0 and CAF2 ¼ 0.5

(Figure S4D). This decrease in power is not as large as

that suffered by Tractor, but it is also due to increased

power of the null hypothesis at higher frequency differen-

tiation across populations. The null hypothesis of the
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Figure 3. Impact of HetLanc on percent
difference in power depends on CAF differ-
ence
(A) Heatmap of percent difference in power
for a standard GWAS versus Tractor. The ‘‘*’’
indicates the center with noHetLanc or CAF
difference. The solid line represents the
boundary between when a standard GWAS
and Tractor have higher power. The dashed
line represents the region in which a stan-
dard GWAS always has higher power than
Tractor. Quantitative trait simulated 1,000
times for a population of 10,000 individuals
on a trait with effect size b1 ranging from
�1.0 to 3.0 in increments of 0.1, and effect
size b2 ¼ 1.0. Global ancestry proportion
50/50, heritability at h2 ¼ 0.005, and causal
allele frequencies CAF1 ¼ 0.5 and CAF2
ranging from 0.1 to 1.0 in increments of
0.1. Power calculated using a standard
threshold p value < 5 3 10�8.

(B) Histogram of empirical Rhet

�bb1bb2
�
for sig-

nificant SNPs found for 12 phenotypes in
the UKBB. cb1 ;cb2 estimated using Tractor.
standard GWAS test statistic only includes global ancestry,

but the power of global ancestry alone to predict a trait in-

creases as allele frequency differentiation increases.32 The

idea that including global ancestry as a covariate in these

analyses reduces power for SNPs with large CAF differences

raises the question of how much attenuation can be

expected when more exact measures of global ancestry

(such as principal components) are included in the anal-

ysis. However, the overall power attenuation due to the

inclusion of global ancestry is small compared to that

due to local ancestry; thus, we shift our focus back to

considering local ancestry-specific effects on power.

Impact of HetLanc on power depends on allele

frequency differences

Next, we investigate the impact of CAF differences and

HetLanc on power differences between a standard GWAS

and Tractor. The exact relationship between HetLanc

(measured as Rhet), CAF difference, and percent difference

in power is complex (Figure 3A). First, there is a window

when 0.5 < Rhet < 1.5 in which, regardless of CAF differ-

ence, HetLanc is not enough to increase the power of

Tractor relative to a standard GWAS. Thus, at these ‘‘low’’

levels of HetLanc, a standard GWAS will reliably have

more power than Tractor across the allele frequency spec-
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trum. Similarly, when Rhet < �0.5,

there is no allele frequency difference

which would increase the power of a

standard GWAS relative to Tractor.

This corroborates our findings that

when effect sizes are in opposite

directions, Tractor is expected to have

improved power over standard

GWASs regardless of CAF difference.
We can see that it is characteristics of both standard

GWASs and Tractor that drive this trend (Figure S5). The

power of a standard GWAS depends most strongly on the

magnitude of Rhet and is diminished the most when effect

sizes are in opposite directions. By contrast, the power of

Tractor depends strongly on both CAF difference and

Rhet. These two factors combine to create an asymmetric

shape for the percent difference in power (Figure 3A).

This asymmetry in power observed for the Tractor method

is likely due to correlations between effective sample size,

allele frequency, global ancestry, and local ancestry that

can occur in an asymmetric manner when causal effect

sizes and causal allele frequencies differ between local an-

cestries.32 In these figures, we must consider that CAF1 is

held constant at 0.5 and b2 is held constant at 1.0. For

example, Rhet ¼ 0.5 corresponds to b1 ¼ 0.5 and b2 ¼ 1.0.

When CAF1 ¼ 0.5 and CAF2¼ 0.9, most of the genetic vari-

ance from the individuals in the study will come from

ancestry 2 due to its larger causal allele frequency and

larger effect size. This leaves the association for ancestry

1 with much less genetic variance to work with, and thus

will lead Tractor’s ability to detect an association in

ancestry 1 to be under-powered. However, when CAF2 ¼
0.1, much less of the total genetic variation in the popula-

tion will come from ancestry 2, leading Tractor’s power to
n Genetics 110, 927–939, June 1, 2023 933



detect association in both populations to be more

balanced.

We also find that SNP1 power suffers not only when

causal allele frequency differences increase but also when

HetLanc increases. We additionally investigate similar sce-

narios for standard GWASs and Tractor with varied global

ancestry proportions (Figure S6), population-level CAF

(Figure S7), and heritability (Figure S8). While the exact

boundaries of these regions do differ, the overall shape of

this heatmap and the conclusions mentioned above do

not qualitatively change.

Polygenic trait simulations follow the same pattern as

single causal variant simulations

We next investigate how HetLanc impacts power in poly-

genic traits. We consider the genotypes of individuals

with African-European admixture in the UK Biobank.

These individuals have an average of 58.9% African and

41.1% European ancestry over the population of 4,327 in-

dividuals. We simulate phenotypes using 100 causal SNPs

along chromosome 1 and compare the power of a standard

GWAS and Tractor over 100 simulations. Using real geno-

types allows us to consider polygenic traits in the context

of more realistic linkage disequilibrium and admixture.

We now use genetic correlation23 instead of Rhet to mea-

sure HetLanc in the case of polygenic traits and separate

our findings by whether or not the causal SNPs are differ-

entiated (MAF difference > 0.2) or non-differentiated

(MAF difference % 0.2).

First, we find that both standard GWASs and Tractor

have relatively well-calibrated type I error rates

(Figure 4A). At an expected false positive rate of 5%, a stan-

dard GWAS has a 5.06% false positive rate for differentiated

SNPs and a 5.00% false positive rate for non-differentiated

SNPs. In this situation, in which genetic correlation ¼ 1.0

(which corresponds to zero effect size heterogeneity),

Tractor has a well-calibrated false positive rate of 4.99%

for differentiated SNPs, but a false positive rate of 3.35%

for non-differentiated SNPs, which is significantly deflated

(p value < 10�16).

Similar to our simulations with only a single causal SNP,

a standard GWAS and Tractor each have higher power in

different combinations of genetic correlation and MAF dif-

ferences.When genetic correlation remains 1.0 (Figure 4B),

a standard GWAS has 23.0% power for differentiated SNPs

and 25.5% power for non-differentiated SNPs, in contrast

to Tractor’s 19.5% power for differentiated SNPs and

23.3% power for non-differentiated SNPs. The difference

in power between differentiated SNPs and non-differenti-

ated SNPs is significant (p values 3.533 10�3 for a standard

GWAS and 1.73 3 10�6 for Tractor). The difference in po-

wer between a standard GWAS and Tractor is significant

as well (p values 4.84 3 10�4 for differentiated SNPs and

3.22 3 10�4 for non-differentiated SNPs).

After we introduce HetLanc, its direction andmagnitude

impact which method has the most power, a result which

resembles our previous findings. When effect sizes vary by
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ancestry but are in the same direction (genetic

correlation ¼ 0.5, Figure 4C), a standard GWAS has more

power for differentiated SNPs (18.7% for a standard

GWAS and 16.8% for Tractor, p value 0.04), whereas

Tractor has more power than a standard GWAS for non-

differentiated SNPs (18.0% for standard GWAS and

20.1% for Tractor, p value 5.44 3 10�4). When effect sizes

are in opposite directions however (genetic correlation ¼
�1.0, Figure 4D), Tractor has more power than standard

GWASs for both differentiated SNPs (4.90% for a standard

GWAS and 11.5% for Tractor, p value ¼ 3.50 3 10�11) and

non-differentiated SNPs (1.93% for a standard GWAS and

14.7% for Tractor, p value < 10�16).

We also consider the SNP1 test for these polygenic an-

alyses. As expected, SNP1 remains well calibrated in the

polygenic case but falls between Tractor and standard

GWASs in terms of power when effect sizes are the

same (genetic correlation ¼ 1.0). However, when effect

sizes are different (genetic correlation ¼ 0.5 or �1.0),

SNP1 performs less well than either standard GWASs or

Tractor (Figure S9). We also consider how the level of pol-

ygenicity impacts power in the case with genetic

correlation ¼ 1.0 (Figure S10). We find that while a stan-

dard GWAS remains more powerful than Tractor when

polygenicity is reduced to 10, the differences in power be-

tween a standard GWAS and Tractor do not remain signif-

icant in either the differentiated or non-differentiated

case. This is likely due to the high heritability in this

case since for the polygenic simulations we held

h2 ¼ 0.5. Thus, in the case of 100 causal SNPs, each

SNP had a h2 ¼ 0.005, which is identical to the heritabil-

ity in the single causal SNP simulations. In the case of 10

causal SNPs, however, each SNP had h2 ¼ 0.05, which

increased overall power, causing a necessary decrease in

power difference between methods.

A standard GWAS finds more significant loci across 12

traits in the UK Biobank

Wenext seek tounderstand the impactof correcting for local

ancestry in genetic analyses in real data.We investigate both

Tractor and a standard GWAS in the same population of

African-European admixed individuals from the UK Bio-

bank. In real data, we investigate MAF (minor allele fre-

quency) differences in lieu of CAF differences, since it is

common practice to test minor alleles in real GWASs. First,

we investigateMAFdifferences between segments ofAfrican

andEuropean local ancestry over 16,584,433 imputed SNPs.

We find that the mean absolute minor allele frequency dif-

ference of these SNPs is 0.0959, with a standard deviation

of 0.115. 85.2% of them have an absolute allele frequency

difference of <0.2 across local ancestry (Figure S11).

Next, we investigate empirically derived values of Rhet to

determine in which region of the heatmap estimated effect

sizes are likely to be found in real data (Figure 3B). We ran

the Tractor method on 12 quantitative traits to find the

actual values of Rhet for the estimated effect sizes bAFR

and bEUR. These traits were aspartate transferase enzyme
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Figure 4. Effect size heterogeneity in the context of polygenicity
(A) Boxplot of type I error for Tractor and a standard GWAS split by non-differentiated (MAF difference % 0.2) and differentiated (MAF
difference > 0.2) SNPs.
(B) Boxplot of power for Tractor and a standard GWAS in the case of no effect size heterogeneity split by non-differentiated and differ-
entiated SNPs.
(C) Boxplot of power for Tractor and a standard GWAS in the case of effect size heterogeneity split by non-differentiated and differen-
tiated SNPs.
(D) Boxplot of power for Tractor and a standard GWAS in the case of opposite effect sizes split by non-differentiated and differentiated
SNPs.
All simulations used real UKBB admixed genotypes and simulated phenotypes with 100 causal SNPs and a total additive genetic herita-
bility of h2 ¼ 0.5 (see subjects and methods). ‘‘*’’ indicates a nominally significant p value (<0.05). ‘‘**’’ indicates a Bonferroni-corrected
significant p value (<1.28 3 10�3). The boxes show the inter-quartile range while the whiskers show the rest of the distribution (not
including outliers).
(AST), BMI, cholesterol, erythrocyte count, HDL, height,

LDL, leukocyte count, lymphocyte count, monocyte

count, platelet count, and triglycerides. Then, we line up

the histogram of these empirically derived values of Rhet
The Ame
with the heatmap.We find that for 69.3% of all SNPs found

to be significant using the Tractor test statistic, the empir-

ical value for Rhet is within this [�0.5, 1.5] window. While

this is an estimate, we predict the true difference between
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estimated marginal effect sizes might be smaller than indi-

cated by these empirical values because Tractor is more

powerful in identifying SNPs with heterogeneous effect

sizes. This result reflects previous findings that causal

effects are similar across ancestries within admixed popula-

tions.22 Due to this similarity in effect size, most of the

significant SNPs sit in the center of the heatmap. This re-

gion of this heatmap predicts that standard GWASs will

have more power than Tractor. While we cannot directly

compare the standard GWAS c2
1 score with the Tractor c2

2

score due to their differing degrees of freedom, we can

compare the mean adjusted c2 statistics. To calculate the

adjusted statistic, we take the p value from a c2 statistic

and convert it back to a c2
1 statistic, regardless of the

original degrees of freedom. In this way, we can compare

the mean adjusted c2 statistic of the SNPs found to be

significant in this case. We find that this statistic is

significantly larger for the standard GWAS method

than the Tractor method (Figure S12). For significant

SNPs, the mean standard GWAS c2
1 is 42.9, the mean

adjusted Tractor c2
1 is 37.5, and the p value for the differ-

ence is 2.11 3 10�4.

In addition to assessing HetLanc directly, we can also

compare the number of independent significant SNPs

found by a standard GWAS and Tractor for these pheno-

types. We find that while the number of independent sig-

nificant SNPs varies across all traits, including when group-

ed by independent loci (Table S1), overall a standard GWAS

finds more significant independent signals than Tractor

(Figure 5A). We find 22 independent significant loci,

with 19 loci found in a standard GWAS and 10 found in

Tractor. This trend is most pronounced in HDL, in which

5 independent loci were determined to be significant by

a standard GWAS compared to none for Tractor. Similarly,

BMI, leukocyte count, and monocyte count also only had

independent significant loci when testing using a standard

GWAS as opposed to Tractor. Cholesterol and LDL had sig-

nificant loci found by both standard GWAS and Tractor,

with a larger number found by the standard GWAS. Height

is the only trait for which Tractor identified one significant

locus but not the standard GWAS. Unfortunately, our sam-

ple sizes were not large enough to detect any significant

loci for platelet count, triglycerides, or lymphocyte count.

All independent significant loci for these 12 phenotypes

are detailed in Table S2.

Additionally, we find that while a standard GWAS often

finds more significant independent loci than Tractor, the

two methods do not always find the same loci. Erythro-

cyte count is one phenotype in which we find an equal

number of independent significant loci using both a stan-

dard GWAS and Tractor. However, not all loci overlap.

Investigating the Manhattan plot of erythrocyte count

specifically (Figure 5B), we see that loci on chromosome

16 are found by both a standard GWAS and Tractor. But

outside of the main locus, both the standard GWAS and

Tractor find separate additional significant regions. At

the main locus, this Manhattan plot clearly shows that
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a standard GWAS has significantly smaller p values for

the same locus. Thus, in a smaller sample size only a stan-

dard GWAS would have found this important region. This

example highlights the importance of choosing the most

highly powered association statistic for any given situa-

tion. Manhattan plots for other phenotypes can be found

in Figure S13.
Discussion

In this work, we seek to understand the impact that esti-

mated allelic effect-size heterogeneity by ancestry

(HetLanc) has on the power of a GWAS in admixed pop-

ulations. Our main goal is to find whether conditioning

disease mapping on local ancestry leads to an increase

or decrease in power. We find that HetLanc and CAF dif-

ferences are the two most important factors when consid-

ering various methods for disease mapping in admixed

populations. We focus on two association statistics: a stan-

dard GWAS, which ignores local ancestry, and Tractor,

which conditions effect sizes on local ancestry. We find

that in cases with small or absent levels of HetLanc, a

standard GWAS is more powerful than Tractor in simula-

tions of quantitative traits. This conclusion holds across

a variety of global ancestry proportions and levels of

SNP heritability. We find that as CAF differentiation be-

tween ancestries increases, so does the improvement of

power of a standard GWAS compared to Tractor. At high

HetLanc (Rhet >1.5) or when effect sizes are in opposing

directions (Rhet < �0.5), we find that Tractor out-performs

a standard GWAS. For African-European admixed individ-

uals in the UKBB, most significant loci have both small

measured HetLanc and MAF differences. We find that

across 12 quantitative traits, a standard GWAS finds

more significant independent loci than Tractor. Further-

more, a standard GWAS has smaller p values for the loci

that it shares with Tractor. This suggests that on smaller

datasets, more of the shared loci would be found by a

standard GWAS than by Tractor.

This work has several implications for GWASs in ad-

mixed populations. Our results suggest that usually, a

standard GWAS adjusted for global ancestry is the most

powerful way to perform a GWAS in an admixed popula-

tion. However, it may be possible to predict the compara-

tive power of a standard GWAS and Tractor using the

allele frequencies and linkage disequilibria of a specific

sample. Additionally, since in real analyses a standard

GWAS and Tractor often find different loci, it is important

to keep both methods in mind when performing analyses.

These methods prioritize different types of loci, with stan-

dard GWASs likely prioritizing loci with higher MAF dif-

ferences and Tractor prioritizing loci with higher levels

of HetLanc. Furthermore, our findings suggest that condi-

tioning on local ancestry is a major factor in Tractor’s loss

of power in situations in which causal allele frequencies

differ. Thus, the performance of a method which includes
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Figure 5. Comparing significant SNPs
found with a standard GWAS and Tractor
(A) Venn diagram of independent signifi-
cant loci found using a standard GWAS
and Tractor in the UKBB across 12 quantita-
tive traits.
(B) Manhattan plot of erythrocyte count in
the UKBB. Significant SNPs found with a
standard GWAS shown in red and signifi-
cant SNPs found with Tractor shown in
blue. Manhattan plot SNPs shown filtered
for p value < 0.01 and SNPs are plotted
based on post-filter indices.
effect size heterogeneity could potentially be considerably

improved if local ancestry were not included in the null

hypothesis. We leave assessment of the power and calibra-

tion of this type of hybrid method for future work.

We conclude with caveats and limitations of our work.

When hoping to understand these patterns of power for

association statistics, there are many combinations of

different elements of genetic architecture to consider.

These include phenotypic factors such as environmental

variance and polygenicity, as well as elements of admix-

ture such as the number of generations of admixture and

the strength of linkage disequilibrium. We could not

consider them all, and thus it is likely that additional nu-

ances to our findings exist when other factors are consid-

ered. One major element not considered in this work is

case-control traits. While we chose to focus on quantita-

tive traits in this analysis due to their simplicity and

ubiquity, case-control traits are also important in medi-

cine. It is possible that the behavior of these phenotypes

will vary compared to the quantitative traits that we

analyze here, both in simulations and real data. We sug-

gest case-control traits as an interesting avenue of

research for future works. Lastly, we chose to focus our

analyses on standard GWASs and Tractor due to their
The American Journal of Huma
popularity and ease of use. We

compare how these methods work

‘‘out of the box’’ to provide simple

and usable guidance for others. How-

ever, as discussed in the introduction

to this work, a variety of other associ-

ation tests exist. It is likely that in

certain circumstances one of these ex-

isting methods would outperform

both a standard GWAS and Tractor.

From both scientific and social per-

spectives, it is important that ad-

mixed populations are incorporated

more effectively into genetic studies.

By providing insight into the

strengths and limitations of these

methods, we hope to enable studies

to maximize their power in admixed

populations.
Data and code availability

Code for this project including simulation experiments and data

processing pipeline are available on github: https://github.com/

rachelmester/AdmixedAssociation. An application for UK Biobank

individual-level genotype and phenotype data can be made at the

UK Biobank: http://www.ukbiobank.ac.uk.

Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2023.05.001.
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Figure S1: Global ancestry does not have a large impact on power compared to the choice 

of test statistic and SNP heritability. Power curves of Standard GWAS and Tractor as SNP 

heritability varies. In this case where neither frequency nor causal effect size vary by local 

ancestry, Standard GWAS has increased power over Tractor, especially at small levels of SNP 

heritability. Simulation results of 1,000 replicates with N = 10,000 individuals with causal allele 

frequency CAF1 = CAF2 = 0.5, and causal effect sizes 𝛽𝛽1 =  𝛽𝛽2 = 1.0. 95% confidence interval too 

narrow for display. 

 

 

 



 

Figure S2: Effect size does not have a large impact on power compared to the choice of 

test statistic and SNP heritability. Power curves of Standard GWAS and Tractor as SNP 

heritability varies. In this case where neither frequency nor causal effect size vary by local 

ancestry, Standard GWAS has increased power over Tractor, especially at small levels of SNP 

heritability. Simulation results of 1,000 replicates with N = 10,000 individuals with causal allele 

frequency CAF1 = CAF2 = 0.5, global ancestry proportions at 50/50, and causal effect sizes 𝛽𝛽1  =

 𝛽𝛽2. 95% confidence interval too narrow for display. 

 

 

 

 

 



 

Figure S3: Causal allele frequency does not have a large impact on power compared to the 

choice of test statistic and SNP heritability. Power curves of Standard GWAS and Tractor as 

SNP heritability varies. In this case where neither frequency nor causal effect size vary by local 

ancestry, Standard GWAS has increased power over Tractor, especially at small levels of SNP 

heritability. Simulation results of 1,000 replicates with N = 10,000 individuals with causal allele 

frequency CAF1 = CAF2, global ancestry proportions at 50/50, SNP heritability ℎ2 = 0.005, and 

causal effect sizes 𝛽𝛽1  =  𝛽𝛽2 = 1.0. 95% confidence interval too narrow for display. 



 

Figure S4: Association statistic power at differing levels of causal allele frequency 

difference. (a) Admixture mapping has maximum power when causal allele frequency difference 

by local ancestry is increased. (b) Tractor has drastically decreased power when causal allele 

frequency difference by local ancestry is increased. In this case where causal effect size does not 

vary by local ancestry, the decrease in Tractor power at high levels of minor allele frequency 

difference by local ancestry is driven by the increase in power for admixture mapping, which 

serves as the null hypothesis against which Tractor tests SNP-level effects. (c) SNP1 has higher 

power than Tractor generally but also suffers from drastically decreased power when causal allele 

frequency difference by local ancestry is increased, likely due to its identical null hypothesis. (d) 

Standard GWAS has slightly decreased power when causal allele frequency difference by local 



ancestry is increased. Standard GWAS does not suffer from using ADM as its null hypothesis as 

Tractor does, but the decrease in power is likely due to increased correlation between global and 

local ancestry at high levels of allele frequency difference. All panels are simulation results of 

1,000 replicates with N = 10,000 individuals with global ancestry proportions at 50/50, SNP 

heritability ℎ2 = 0.005, and causal effect sizes 𝛽𝛽1  =  𝛽𝛽2 = 1.0. 

 

 

 

 

 



 

Figure S5: Impact of HetLanc and CAF difference on power of Standard GWAS, Tractor, 

and SNP1 individually. As HetLanc increases, Standard GWAS power decreases, especially 

when causal effects are in opposite directions. CAF difference impacts Tractor and SNP1 more 

drastically than Standard GWAS. Simulation results of 1,000 replicates with N = 10,000 individuals 

with minor allele frequency CAF1 = 0.5, global ancestry proportions at 50/50, heritability ℎ2 = 

0.005, and causal effect size 𝛽𝛽2 = 1.0. 



Figure S6: Impact of HetLanc and CAF difference on percent difference in power depends 

on global ancestry ratios. Heatmap of percent difference in power for Standard GWAS vs 

Tractor. Red indicates where PowerStandard GWAS > PowerTractor. As global ancestry ratios become 

further from 50%, the range of HetLanc and CAF difference in which Standard GWAS has more 

power than Tractor increases. Simulation results of 1,000 replicates with N = 10,000 individuals 

with minor allele frequency CAF1 = 0.5, heritability ℎ2 = 0.005, and causal effect size 𝛽𝛽2 = 1.0. 



Figure S7: Impact of HetLanc and CAF difference on percent difference in power depends 

on CAF. Heatmap of percent difference in power for Standard GWAS vs Tractor. Red indicates 

where PowerStandard GWAS > PowerTractor. As CAF becomes further from 0.5, the range of HetLanc 

and CAF difference in which Standard GWAS has more power than Tractor increases. Simulation 

results of 1,000 replicates with N = 10,000 individuals with global ancestry proportions at 50/50, 

SNP heritability ℎ2 = 0.005, and causal effect size 𝛽𝛽2 = 1.0. 



Figure S8: Impact of HetLanc and CAF difference on percent difference in power depends 

on heritability. Heatmap of percent difference in power for Standard GWAS vs Tractor. Red 

indicates where PowerStandard GWAS > PowerTractor. As heritability decreases, the percent difference 

in power between Standard GWAS and Tractor increases. Simulation results of 1,000 replicates 

with N = 10,000 individuals with causal allele frequency CAF1 = 0.5, global ancestry proportions 

at 50/50, and causal effect size 𝛽𝛽2 = 1.0. 



 

Figure S9: Effect Size Heterogeneity of Tractor, SNP1, and Standard GWAS in the Context 

of Polygenicity (a) Box plot of Type I error for Tractor, SNP1, and Standard GWAS split by non-

differentiated (MAF difference ≤ 0.2) and differentiated (MAF difference > 0.2) SNPs. (b) Box plot 

of power for Tractor, SNP1, and Standard GWAS in the case of no effect size heterogeneity split 

by non-differentiated and differentiated SNPs. (c) Box plot of power for Tractor, SNP1, and 

Standard GWAS in the case of effect size heterogeneity split by non-differentiated and 



differentiated SNPs. (d) Box plot of power for Tractor, SNP1 and Standard GWAS in the case of 

opposite effect sizes split by non-differentiated and differentiated SNPs. (a-d) All simulations used 

real UKBB admixed genotypes and simulated phenotypes with 100 causal SNPs and a total 

additive genetic heritability of ℎ2 = 0.5 (see methods). “*” indicates a nominally significant p-value 

(<0.05). “**” indicates a Bonferroni-corrected significant p-value (<1.28 x 10-3). The boxes show 

the inter-quartile range while the whiskers show the rest of the distribution (not including outliers). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S10: Effect Size Heterogeneity in the Context of Varying Levels of Polygenicity (a) 

Box plot of power for Tractor, SNP1, and Standard GWAS in the case of one causal SNP split by 

non-differentiated and differentiated SNPs. All methods had 100% power in this case due to a 

high SNP heritability of 50%. (b) Box plot of power for Tractor, SNP1, and Standard GWAS in the 

case of 10 causal SNPs split by non-differentiated and differentiated SNPs. (c) Box plot of power 

for Tractor, SNP1, and Standard GWAS in the case of 100 causal SNPs split by non-differentiated 

and differentiated SNPs. (a-d) All simulations used real UKBB admixed genotypes and simulated 

phenotypes with genetic correlation = 1.0 and a total additive genetic heritability of ℎ2 = 0.5 (see 

methods). “*” indicates a nominally significant p-value (<0.05). “**” indicates a Bonferroni-

corrected significant p-value (<1.28 x 10-3). The boxes show the interquartile range while the 

whiskers show the rest of the distribution (not including outliers). 

 

 

 



 

Figure S11: Minor allele frequency differences between European and African local 

ancestries in the African-European admixed population in the UKBB. Minor allele frequency 

differences center near zero, at -2.39 x 10-2, indicating only a small systematic bias towards larger 

minor allele frequencies in the African local ancestry segments. Mean absolute value of minor 

allele frequency differences is 9.59 x 10-2, indicating a small average allele frequency difference, 

with a standard deviation of 1.15 x 10-1. Study population is 4,327 individuals from the UK Biobank 

with on average 58.9% African and 41.1% European admixed ancestry.  

 



 

Figure S12: Adjusted Chi Square Statistics for significant SNPs for 12 traits in the UKBB. 

Standard GWAS 𝜒𝜒12 is significantly larger than the Tractor statistic (adjusted from 𝜒𝜒22 to 𝜒𝜒12). Mean 

Standard GWAS 𝜒𝜒12 for significant SNPs is 42.9, mean Tractor 𝜒𝜒22 for significant SNPs is 37.5, p-

value 2.11 x 10-4. Study population is 4,327 individuals from the UK Biobank with on average 

58.9% African and 41.1% European admixed ancestry. Tractor and Standard GWAS statistics 

computed over 16,584,433 SNPs and 12 traits including AST, BMI, cholesterol, erythrocyte count, 

HDL, height, LDL, leukocyte count, lymphocyte count, monocyte count, platelet count, and 

triglycerides. See methods for chi-square adjustment. The boxes show the inter-quartile range 

while the whiskers show the rest of the distribution (not including outliers). 



 

Figure S13: Manhattan plots for 12 quantitative traits in the UKBB African-European 



admixed population. Study population is 4,327 individuals from the UK Biobank with on average 

58.9% African and 41.1% European admixed ancestry. Manhattan plot SNPs shown filtered for 

p-value < 10-4 and SNPs are plotted based on post-filter indices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1: Number of Independent Significant Loci by Phenotype 

Phenotype # Loci Standard GWAS # Loci Tractor # Loci Shared 

cholesterol 3 2 2 

erythrocyte 3 3 2 

Height 0 1 0 

LDL 4 3 3 

log(AST) 1 1 0 

log(BMI) 1 0 0 

log(HDL) 5 0 0 

log(leukocyte) 1 0 0 

log(lymphocyte) 0 0 0 

log(monocyte) 1 0 0 

log(platelets) 0 0 0 

log(triglycerides) 0 0 0 

 

 

 

 

 

 

 

 

 

 



Table S2: Independent Significant SNPs in UKBB Admixed Population 

Phenotype SNP  
(Reference Allele / Alternate Allele) 

Standard GWAS 
p value 

Tractor  
p value 

cholesterol chr1:55054772 (A / G) 3.72 ×  10−8 not significant 

cholesterol chr8:118543713 (A / T) 1.19 ×  10−9 8.31 ×  10−9 

cholesterol chr19:44908822 (C / T) 1.22 ×  10−31 2.31 ×  10−30 

erythrocyte chr16:261108 (G / A) 5.44 ×  10−26 not significant 

erythrocyte chr16:360054 (A / G) 9.15 ×  10−13 not significant 

erythrocyte chr16:50884914 (A / T) 4.92 ×  10−10 not significant 

erythrocyte chr16:117409 (C / T) not significant 3.47 ×  10−18 

erythrocyte chr16:260355 (C / T) not significant 6.34 ×  10−18 

erythrocyte chr16:384271 (G / A) not significant 2.33 ×  10−11 

Height chr7:78824856 (G / A) not significant 7.79 ×  10−9 

LDL chr1:55063542 (C / A) 2.47 ×  10−11 1.14 ×  10−10 

LDL chr1:88869866 (G / A) 3.01 ×  10−8 not significant 

LDL chr8:118543713 (A / T) 5.74 ×  10−9 2.45 ×  10−8 

LDL chr19:44908822 (C / T) 3.58 ×  10−50 6.24 ×  10−49 

log(AST) chr10:17819068 (G / A) 5.03 ×  10−11 not significant 

log(AST) chr19:17024164 (C / T) not significant 2.30 ×  10−8 

log(BMI) chr3:196672134 (G / A) 4.83 ×  10−8 not significant 

log(HDL) chr15:76063105 (G / A) 1.54 ×  10−8 not significant 

log(HDL) chr16:56957451 (C / T) 1.34 ×  10−8 not significant 

log(HDL) chr17:58519260 (G / A) 4.30 ×  10−8 not significant 

log(HDL) chr17:58607316 (C / G) 4.94 ×  10−8 not significant 

log(HDL) chr17:58744530 (C / T) 4.94 ×  10−8 not significant 

log(leukocyte) chr14:30683993 (A / G) 4.96 ×  10−8 not significant 

log(monocyte) chr1:159092646 (G / A) 2.21 ×  10−8 not significant 
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