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ABSTRACT Next-generation sequencing of human genomes reveals millions of missense variants, some of which may lead to
loss of protein function and ultimately disease. Here, we investigate missense variants in membrane proteins—key drivers in cell
signaling and recognition. We find enrichment of pathogenic variants in the transmembrane region across 19,000 functionally
classified variants in human membrane proteins. To accurately predict variant consequences, one fundamentally needs to
understand the underlying molecular processes. A key mechanism underlying pathogenicity in missense variants of soluble pro-
teins has been shown to be loss of stability. Membrane proteins, however, are widely understudied. Here, we interpret variant
effects on a larger scale by performing structure-based estimations of changes in thermodynamic stability using a membrane-
specific energy function and analyses of sequence conservation during evolution of 15 transmembrane proteins. We find evi-
dence for loss of stability being the cause of pathogenicity in more than half of the pathogenic variants, indicating that this is
a driving factor also in membrane-protein-associated diseases. Our findings show how computational tools aid in gaining mech-
anistic insights into variant consequences for membrane proteins. To enable broader analyses of disease-related and population
variants, we include variant mappings for the entire human proteome.
SIGNIFICANCE Genome sequencing is revealing thousands of variants in each individual, some of which may increase
disease risks. In soluble proteins, stability calculations have successfully been used to identify variants that are likely
pathogenic due to loss of protein stability and subsequent degradation. This knowledge opens up potential treatment
avenues. Membrane proteins form about 25% of the human proteome and are key to cellular function; however,
calculations for disease-associated variants have not systematically been tested on them. Here, we present a new protocol
for stability calculations on membrane proteins under the usage of a membrane-specific energy function and its proof-of-
principle application on 15 proteins with disease-associated variants. We integrate stability calculations with analysis of
sequence evolution, allowing us to separate variants where loss of stability is the most likely mechanism from those where
other protein properties such as ligand binding are affected.
INTRODUCTION

Proteins carry out the majority of functions in a cell. While
most proteins are robust to some sequence changes (1),
other single amino acid variants may render them nonfunc-
tional. For nuclear and cytosolic proteins, we and others
have shown that the molecular reason underlying loss of
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function for human pathogenic variants is often loss of
protein stability (2–10). Proteins affected by such destabiliz-
ing variants are recognized by the cellular protein quality
control system, leading to degradation and hence low levels
that cause a loss-of-function phenotype (11). For soluble
proteins, structure-based calculations of stability changes
upon mutation (DDG) (12) correlate with experimental
stability (13–16) as well as high-throughput abundance
measurements (17,18), allowing us to annotate variants
accordingly (19). The loss of stability induced by such
variants often leads to cellular protein degradation. This
mechanistic link to degradation is not only interesting
from a biophysical perspective but can also lead to
development of treatments that rescue the variant from
degradation (20,21).
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Disease variants in membrane proteins
Twenty-three percent of genes in the human proteome
encode membrane proteins, including channels, trans-
porters, enzymes, and receptors such as G-protein coupled
receptors (GPCRs) (22). Located at the junction between
two compartments and often exposed to small molecules
in the bloodstream, membrane proteins are key in cell
signaling and recognition, as well as major drug targets
(23,24). Variants in membrane proteins are associated with
a number of diseases, including, for example, cystic fibrosis,
Parkinson’s, Alzheimer’s, and atherosclerosis (25–28).

Studying membrane proteins experimentally or computa-
tionally is challenging, as the proteins need to be considered
in context of the lipid membrane (29). Furthermore, while
many soluble proteins can unfold and refold reversibly,
the processes of synthesis, folding, and assembly are intrin-
sically linked for membrane proteins (30,31). In particular,
denaturants can perturb properties of the membrane (or its
mimetics) when thermodynamic stability measurements
are performed in (near) native conditions. More recent tech-
niques such as steric trapping or label-free differential scan-
ning fluorimetry aim to avoid those drawbacks but cannot be
applied in a high-throughput manner (32,33). Therefore,
large-scale and easily accessible experimental data for
benchmarking computational tools are sparse. Despite
recent methodological advances (34), computational
methods for membrane proteins are not as developed as
those for soluble proteins. Furthermore, the diverse experi-
mental studies measure different levels of unfolding, which
further challenges computational method development.
Thus, the application of computational analyses for exam-
ining a potential correlation between protein stability,
cellular abundance, and function analogous to that for solu-
ble proteins may be particularly challenging for membrane
proteins.

Building on recent energy function developments that
make computational analysis of membrane proteins more
realistic (35), we here set out to assess whether calculations
of the change in folding free energy can be used to identify
the subset of pathogenic variants that are likely caused by
loss of stability. In particular, we calculate the change in
folding energy between a wild-type protein and a protein
variant ðDDG ¼ DGMUT � DGWTÞ, where low DDG
correspond to substitutions that—in light of stability—
appear well tolerated, and high DDG for variants that desta-
bilize the protein structure. Of note, the levels of unfolding
or destabilization in vivo do not necessarily have to lead to
complete protein unfolding. Partial unfolding may be suffi-
cient to trigger recognition by the protein quality control
system. We first combined several protein annotation data-
bases to obtain an overview of the number and types of
missense variants that are found in membrane proteins.
We then analyzed in more detail 15 human membrane pro-
teins for which high-resolution structural data as well as an-
notations of pathogenic and benign variants were available,
and calculated DDG values for them. In addition, we used an
evolutionary sequence analysis approach (36) to calculate a
value, which we term DDE, indicating the evolutionary
importance of each residue. This and similar approaches
have been shown to be useful in detecting detrimental vari-
ants and include both loss-of-stability variants and variants
that lose function due to—for example—catalytic impair-
ment of enzymes or mistrafficking (37–39). Multiple recent
works have demonstrated that sequence analysis of conser-
vation is able to capture such detrimental variants with high
accuracy (37,40,41). The mechanistic reasons for why a
variant is not tolerated by evolution, whether it be gain or
loss of function or other aspects, such as loss of stability,
are not directly apparent, as is the case for many predictors.
In the following, we associate high DDE with loss of
function to facilitate reading. In this work, we use it in com-
bination with loss of stability for dissection of underlying
causes. The combination of DDG and DDE has proven
particularly useful for providing mechanistic insight into
loss-of-function variants in soluble proteins (18,19). Here,
we apply such a combined analysis to gain mechanistic
insight into variant consequences in 15 selected membrane
proteins.
METHODS AND MATERIALS

Collection and processing of clinical, population,
and structural data

To extract all annotated human membrane proteins, we first obtained all

unique proteins (UniProt-ID) of the human proteome (organism ¼ homo

sapiens) from the UniProt (https://www.uniprot.org/help/api) (42) and

EMBL-EBI (https://www.ebi.ac.uk/proteins/api/doc/) databases. For

each UniProt-ID, we then stored its general and amino acid-based annota-

tions (such as protein domain regions) in UniProt and further selected pro-

teins of the type ‘‘TRANSMEM,’’ ‘‘INTRAMEM,’’ ‘‘TOPO DOM,’’ or

‘‘LIPID.’’ This annotation originates from assignment of structural proper-

ties or predictions by TMHMM (https://www.uniprot.org/help/topo_dom).

The UniProt-ID of the first transcript is used in the further mapping and

analysis.

We then further filtered the UniProt-ID list so that all remaining proteins

have at least one ClinVar (43) or gnomAD (44) missense variant. gnomAD

datawere taken from an in-house database built on exome data from gnomAD

v2andwhole-genomedata fromgnomADv3 (scripts available at https://github.

com/KULL-Centre/PRISM/tree/main/software/make_prism_files, release-tag

v0.1.1). The database was generated by first downloading the vcf files

(May 2021), selecting exome GRCh38 liftover for v2 and whole-genome

files for v3. The vcf files were then annotated with variant effect predictor

with the GRCh38 release 100 human transcripts set from Ensembl. From

the annotated vcfs we established for all protein-level variants, separately

in exome and genome data, allele frequencies from the variant allele count

as the sum of all DNA variants leading to the same protein-level variant.

Clinvar data were obtained by parsing the following file: https://ftp.ncbi.

nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz (May 2021)

and only admitting entries that have a rating of at least one star, are single-

nucleotide variants and mapped to GRCh38 (script available at https://

github.com/KULL-Centre/PRISM/tree/main/software/make_prism_files,

release-tag v0.1.1). The data set for the entire human proteome is provided at

https://sid.erda.dk/sharelink/c3rDfqR8nn, using a UniProt-AC-based direc-

tory structure, e.g., files for GTR1 (UniProt: P11166) can be found in subdir-

ectory prism/P1/11/66/.
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Next, we extracted all PDB-IDs from RCSB and PDBe with a matching

UniProt-ID reference. As not every PDB-ID for a given UniProt-ID in

PDBe could be found in RCSB PDB and vice versa, we searched both data-

bases.We further included phenotype and genomic disease annotations from

OMIM via mim2gene (https://omim.org/static/omim/data/mim2gene.txt)

and MIM, including the proteins’ chromosome information.

The sequences were then aligned to the UniProt sequence using pairwi-

se2.align.globalds (with BLAST defaults) from Biopython (45), a minimal

identity of 0.6, and minimal coverage of 0.1 for alignment acceptance. All

residues that do not match the UniProt sequence were discarded. The final

data contained each protein sequence, its UniProt-ID, the secondary struc-

ture prediction by residue, solvent-accessible surface area for each wild-

type residue, andUniProt annotations such as transmembrane region, protein

modifications, total allele frequency counts from gnomAD, ClinVar signifi-

cance statements, genomic disease annotations, and associated PDB-IDs.
Selection of targets used for computational
predictions

To find a set of proteins for our computational sequence and structure ana-

lyses, we selected all proteins that have at least one benign and one pathogenic

ClinVar annotation in an experimentally resolved transmembrane region of

the protein. This reduced the number of proteins with gnomADorClinVar an-

notations from 1504 proteins to 41 proteins. As the Rosetta membrane energy

functionhas been developed andbenchmarkedon structures resolved byx-ray

crystallography,we selected those, reducing the protein set to 16. The selected

proteins are listed in Table 1, additional supplemental Table 1 in the support-

ing material and supporting data at https://github.com/KULL-Centre/papers/

tree/main/2022/hMP-Xray-Tiemann-et-al.

The structures for each of the chosen proteins have been selected according

to their structure selection score (StrucSe score) and the number of variants in

total and within the transmembrane region. The StrucSel score is a combina-

tion of method resolution, sequence coverage and identity to the experiment

and the wild-type (according to UniProt), including an annotation about

inserts, deletions, mismatch, nonobserves, and modified residues. The script

is available at https://github.com/KULL-Centre/PRISM/blob/main/software/

scripts/struc_select_sifts.py and the tablewith the numbers for each of the pro-

teins at https://github.com/KULL-Centre/papers/blob/main/2022/hMP-Xray-

Tiemann-et-al/data (*date*-count hMP anno splitPDB Xray publish.xlsx).
Conservation analysis of variant effects

To calculate the effect of a variant in light of evolution, we used the global

epistatic model for predicting a mutational effects (GEMME) algorithm

(36) as described previously (19): we first construct a multiple sequence

alignment (MSA) using the sequence of the first transcript of each proteins

UniProt-ID as input to HHBlits (v2.0.15) (46) with the following settings -e

1e-10 -i 1 -p 40 -b 1 -B 20000 to search UniRef30 2020 03 hhsuite.tar.gz

(47–49). The MSA is filtered by keeping only positions present in the target

sequence and sequences with less than 50% gaps. We then further follow

the GEMME algorithm that predicts the degree of conservation for all 19

substitutions (DDE). We rank-normalized theDDE values for the entire pro-

tein to allow comparison with the other proteins in the data set. DDEz 0

corresponds to well-tolerated substitutions, whereas DDEz1 corresponds

to rare or absent variants. In addition, we extract the sequence coverage

of the MSA for each position. To understand the effects of those filtering

processes, we calculated the GEMME score against the neff coverage per

protein for different filtering steps (see Fig. S1 in the supporting material).
Thermodynamic stability predictions

To calculate changes in thermodynamic stability (DDG), we use Rosetta

version v2021.31-dev61729-0-gc7009b3115c (GitHub sha1 c7009b3115
2178 Biophysical Journal 122, 2176–2191, June 6, 2023
c22daa9efe2805d9d1ebba08426a54). We implemented an in-house pipeline

to perform preparation, relaxation, and DDG calculations of the protein

(https://github.com/KULL-Centre/PRISM/tree/main/software/rosetta_ddG_

pipeline, release-tag v0.1.1). Preparation includes cleaning of the PDB struc-

ture coordinates (hereafter referred to as structure) of ligands and alternative

rotamers and chains, superposing of the protein into the membrane plane as

well as calculation of the membrane plane, lipid-accessible residues (50),

and the solvent-accessible surface area usingDSSP (51,52) (the latter is solely

used for analysis purposes).

To utilize the membrane protein mode in Rosetta, two conditions must be

met: first, a membrane plane file, containing the residues that are within the

membrane, needs to be provided; second, the structure of the protein must be

centered and oriented within the membrane, where the membrane thickness

follows the z axis. The membrane plane can be calculated using a membrane-

aligned protein structure. Therefore, protein coordinate translation was per-

formed by structural superposition of the protein to its equivalent structure

obtained from the Orientations of Proteins in Membranes database (53),

which lies already within those coordinates. (If the chosen PDBid is not pre-

sent in the Orientations of Proteins in Membranes database, an alternative

structure for the same protein or a close homolog is chosen.) Next, the mem-

brane plane was calculated using Rosetta (54,55) and the protein structure

was relaxed as described in (56). Finally, DDG values for each variant

were calculated as the energy of the variant minus the energy of thewild-type.

Weperformed a benchmark to identify the best protocol to calculateDDGs

for membrane proteins. First, we collected 20 experimentally derived DDG

data sets in a total of 8 different membrane proteins (Table S1 in the support-

ing material). Then, we implemented three different protocols, namely

MP repack, MP flex relax ddG, and ‘‘cart prot’’, inspired by work on sol-

uble proteins (12) and previously published work on membrane proteins

(35). MP repack operates in torsion space and performs a simple repacking

of the side chains within a defined radius after mutagenesis (following the

protocol mentioned in (35)). MP flex relax ddG is inspired by (12) and al-

lows more flexibility to accommodate the variant by allowing backbone

relaxation of thevariant and its sequential neighbors, in addition to repacking

of side chains within a defined radius. cart prot follows the same protocol as

MP flex relax ddG but is executed in cartesian space. For all protocols, we

used themembrane protein score function ‘‘franklin2019’’ (35) that performs

comparably with older membrane scoring functions as recently evaluated in

(56). Finally, we selected cart prot as the computed values gave the best cor-

relation with the experimental data (0.46) and, additionally, the computed

values have a high reproducibility, indicated by the low standard deviation

for replicates (Fig. S2 in the supporting material). As mentioned in the

‘‘limitations of the study’’ section, the correlation of independent experi-

mental studies on the same protein and the same variants (57,58) is 0.65.
Enrichment of benign variant counts by gnomAD
allele frequency

To evaluate the value of our computational methods to predict variants to be

benign or pathogenic using receiver-operator characteristic (ROC) analysis,

we aimed for a large number of benign and pathogenic variants. In our target

proteins, we have 324 pathogenic but only 122 benign variants. We aimed to

supplement benign variants with variants from gnomAD. Therefore, we per-

formed an ROC analysis of the gnomAD allele frequency on the 10,260

benign and 2360 pathogenic ClinVar variants in the human membrane prote-

ome that also have a gnomAD allele frequency (Fig. 1 C) and obtained an

area under the curve (AUC) of 0.96 (Fig. S3 in the supporting material).

This analysis enables calculating a cutoff to separate benign from pathogenic

variants using gnomAD allele frequency via the highest Youden index 59. We

thereby obtain a cutoff of 9:9$10� 5 (Fig. 1 B). We define group B variants as

the union of those that are defined by ClinVar as benign and those variants

that have an allele frequency > 9:9$10� 5 and are not pathogenic (in

ClinVar). Consequently, we call pathogenic variants group A. This results

for our target proteins in 324 group A and 283 group B (benign and/or non-

rare) variants across 16 proteins.
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TABLE 1 Overview of proteins analyzed in depth, including UniProt name, protein functional class, protein length, and number of amino acids within the TM region, number

of group A (¼pathogenic), group B (¼benign and/or nonrare gnomAD) and benign variants before and after filtering, the sequence depth of the MSA used by GEMME, the Nf

(neff/
ffiffiffiffiffiffiffi

len
p

) of the MSA, the AUC for our two predictors (DDG and DDE) and the MIM disease phenotype

Protein information Length Before filtering After filtering GEMME AUC MIM

Name Class All TM Group A Group B Benign Group A Group B Benign MSA depth Nf (neff/
ffiffiffiffiffiffi

len
p

) DDG DDE Phenotype

NPC1 transporter 1278 277 60 36 13 44 12 5 1486 31.43 0.69 0.84 Niemann-Pick disease

OPSD GPCR 348 161 67 10 2 41 6 2 1183 49.16 0.79 0.69 night blindness; retinitis punctata albescens;

retinitis pigmentosa

GTR1 transporter 492 261 56 9 4 42 7 2 1772 65.62 0.65 0.92 dystonia; GLUT1 deficiency syndrome; epilepsy

AT2A2 transporter 1042 204 12 9 7 8 5 4 1924 44.33 0.85 1 acrokeratosis verruciformis; Darier disease

ACHB2 ion channel 502 86 3 16 12 1 5 3 1789 57.23 0.8 1 epilepsy

CXB2 cell junction 226 83 60 23 8 33 16 5 1351 82.1 0.42 0.84 deafness; Bart-Pumphrey syndrome; Vohwinkel

syndrome; etc.

S5A2 enzyme 254 84 21 11 5 18 8 5 1177 60.18 0.63 0.9 pseudovaginal perineoscrotal hypospadias

MC4R GPCR 332 165 12 11 2 10 8 1 1265 54.02 0.66 0.9 obesity

AQP2 ion channel 271 124 10 2 1 7 1 1 1326 62.36 1 0.86 diabetes insipidus

ACHA4 ion channel 627 85 3 47 32 3 6 4 1107 27.84 0.33 0.94 epilepsy; nicotine addiction

JAGN1 transporter 183 84 5 4 3 4 3 3 196 13.45 0.42 0.92 neutropenia

SMO GPCR 787 147 1 25 6 1 7 1 823 17.7 1 0.86 Curry-Jones syndrome; Pallister-Hall-like

syndrome; basal cell carcinoma

ABCG8 transporter 673 126 1 35 11 0 15 3 86 2.14 – – gallbladder disease; sitosterolemia

ABCG5 transporter 651 127 1 27 9 0 0 0 31 0.81 – – sitosterolemia

GPT enzyme 408 228 7 5 1 6 2 1 1812 64.45 0.5 0.92 congenital disorder of glycosylation; myasthenic

syndrome

FZD4 GPCR 537 206 5 13 6 2 3 2 1055 37.22 0.83 1 exudative vitreoretinopathy; retinopathy of

prematurity

Total 324 283 122 220 104 42 0.64 0.82

MSA, multiple sequence alignment; TM, transmembrane.

D
is
e
a
s
e
v
a
ria

n
ts

in
m
e
m
b
ra
n
e
p
ro
te
in
s

B
io
p
h
y
s
ic
a
l
J
o
u
rn
a
l
1
2
2
,
2
1
7
6
–
2
1
9
1
,
J
u
n
e
6
,
2
0
2
3

2
1
7
9



A

B C

D

E

FIGURE 1 Overview of variants in human proteins and human membrane proteins (hMPs) in particular. (A) Statistics on protein and variant annotations,

ClinVar/gnomAD annotation, and availability of high-resolution structures mainly on human membrane proteins. (B) ClinVar statistics for benign, patho-

genic, and variants of unknown significance (VUS) and their coverage by gnomAD in human membrane proteins. (C) gnomAD allele frequencies for all

variants in human membrane proteins observed in gnomAD. Note that 71% of the pathogenic variants in ClinVar are not in gnomAD and hence missing

from this analysis. (D) Percentage of protein regions of different cellular elements across human membrane proteins. ‘‘Other’’ includes compartments

such as the lumen, mitochondrial matrix, and vesicular compartments. (E) Distribution of ClinVar annotations (color scheme as in B) in different regions

of the human membrane proteins. To see this figure in color, go online.
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Filtering criteria for variant analysis of the 16
target proteins

Prior to analysis, we defined filtering criteria for the calculated DDG and

DDE variants to obtain a set of variants with reliable scores. First, only

variants for which both DDG and DDE calculations are available were

selected. Second, special residues involved in disulfide bonds or known

modified residues (such as those that bind covalent ligands or palmitoy-

lated residues) were excluded. Further, variants with a low MSA sequence
2180 Biophysical Journal 122, 2176–2191, June 6, 2023
coverage of fewer than 50 sequences were excluded. Finally, variants that

have a positive wild-type Rosetta energy ðEresÞ are excluded from further

analyses as those residue conformers are likely to favor any substitution to

reduce its energy, likely due to limitations of the Rosetta energy function.

By applying all filters, we obtain a final set of 15 proteins with 220 path-

ogenic (group A) and 104 benign and/or nonrare (group B) variants, of

which 42 are benign (see Table 1 and for the single filtering steps addi-

tional data at https://github.com/KULL-Centre/papers/tree/main/2022/

hMP-Xray-Tiemann-et-al).
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Disease variants in membrane proteins
Definition of DDG and DDE thresholds and
quadrant classification

To analyze the variants in terms of their DDE and DDG scores, we defined

cutoffs for each method based on the optimal ROC value (tradeoff of high

specificity versus high sensitivity) to separate group A (pathogenic) and

group B (benign and/or nonrare) variants, in a similar fashion as done

for gnomAD allele frequency above. Next, we defined four categories

dependent on their position along the DDE and DDG axes:

1 quadrant (I) variants have highDDE andDDG and are likely to cause loss

of function via loss of stability;

2 quadrant (II) variants have high DDE and low DDG and cause loss of

function for other reasons than loss of stability;

3 quadrant (III) variants have low DDE and low DDG and are from a

structural and evolutionary perspective expected to be tolerated;

4 quadrant (IV) variants have low DDE and high DDG and are from an

evolutionary perspective expected to be tolerated but from a structural

perspective expected to cause instability.
Definition of protein regions

For analysis purposes, we assigned residues into different regions based on

their solvent accessibility and their positioning within the membrane (TM-re-

gion). Relative solvent accessibility was calculated using DSSP (51,52) with

a cutoff of 0.3, placing residues with a smaller value into the category of

buried residues. The positioning within the membrane was obtained as

described above. We can thereby divide the protein into four regions:

� Buried: residues with a DSSP < 0.3 and that are placed outside the

membrane; this cutoff places residues within contacts as buried

although they might be close to the surface of the protein

� Solvent-accessible: residues with a DSSP R 0.3 and that are placed

outside of the membrane

� TM-region X buried: buried residues that are placed within the mem-

brane

� TM-region X solvent-accessible: solvent-accessible residues within

the membrane

For additional analysis, we divide residues by whether they are ori-

ented toward the lipids or not. To assess whether a residue faces toward

the lipids, we used a dedicated Rosetta function that returns a true or

false value (50). Most of those residues are within the transmembrane

region but there can be exceptions that nontransmembrane residues

(either solvent accessible or buried) can face the lipids by ‘‘dipping’’

into the membrane plane. For Fig. S4, C and D in the supporting

material, we expended the regions above by three more, which are sub-

sections of the above (with overlaps, see Fig. S4 in the supporting

material):

� TM-region X lipid-facing X buried: buried residues within the mem-

brane that are oriented toward the lipids

� TM-region X lipid-facing X solvent-accessible: solvent-accessible

residues within the membrane that are oriented toward the lipids

� Others: combination of residues that are rare and few in number, such

as TM-region X solvent-accessible, lipid-facing X solvent-acces-

sible, or lipid-facing X buried
Utilized software

� python3, including following third-party libraries: adjustText, Bio-

python, circlify, matplotlib, numpy, pandas, seaborn, scipy, sklearn,

squarify, xmltodict, nglview

� Rosetta version 2021.31þHEAD.c7009b3115c (c7009b3115c22daa9e-

fe2805d9d1ebba08426a54, default.linuxgccrelease mode)
– mp_span_from_pdb (54)
– rosetta_scripts (60)

– FastRelax (61,62)

– MembraneMover (54)

– cartesian_ddg (12,14)

– energy function: franklin2019 (35) þ cart_bonded ¼ 0.5 þ
fa_water_to_bilayer ¼ 1.5

� Scripts available at https://github.com/KULL-Centre/papers/tree/

main/2022/hMP-Xray-Tiemann-et-al

– hMP statistics (hMP_stats.ipynb)

– DDG pipeline benchmark (MP_ddG_benchmark.ipynb)

– Xray subset calculations (Xray_subset-calc.ipynb)

– Xray subset analysis (Xray_subset-ana.ipynb)

� Pipelines

– PRISM_tools (https://github.com/KULL-Centre/PRISM/software/

rosetta_ddG_pipeline, release version v0.1.1)

– PrismData, FillVariants, and struc_select_sifts (https://github.

com/KULL-Centre/PRISM/software/scripts, release version

v0.2.2)

� Others

– overleaf.com

– Affinity Designer
RESULTS AND DISCUSSION

Variant annotations in human membrane proteins

We first set out to obtain an overview of the presence and
properties of missense variants in human membrane pro-
teins. We searched UniProt (42) for keywords such as
TRANSMEM (see methods and materials for details) and
used the results to define a list of 5522 proteins that are
thought to be embedded in the membrane (Fig. 1 A). We
subsequently searched the gnomAD (44) and ClinVar (43)
databases for missense variants in the genes encoding these
proteins (see methods and materials for additional details).
gnomAD is a database aggregating the variants observed
in �150,000 exome and genome sequences, and thus
provides a relatively unbiased view of the variants that are
present in the human population (44). ClinVar is a database
containing, among other things, missense variants that have
been categorized as benign, pathogenic, or variants of
uncertain significance, the latter indicating that the patho-
physiological consequences of the variant are not clear
(43). We obtain almost 1.9 million variants in total for
human membrane proteins, which makes up 29% of all hu-
man protein variant annotations (see Table 2). Almost all
(98.1%) membrane proteins have at least one variant in
gnomAD, and about half (44.0%) have at least one variant
in ClinVar (Fig. 1 A). Across the two data sets, we find
1:9$106 unique variants in 5471 membrane proteins. We
excluded synonymous and indel variants, which make up
0.3% (5403 variants) from any further analysis. Nearly all
(99.1%) of the nonsynonymous variants are either from
gnomAD or are assigned as variants of uncertain signifi-
cance in ClinVar, and only 19,089 of the 1.9 million variants
have an assigned status of being pathogenic or benign
(Fig. 1 A and Table 2), highlighting the scope of the problem
of determining variant effects. Thirty-eight percent of all
human pathogenic variants are found within membrane
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TABLE 2 Number of variants annotated by ClinVar (as benign, pathogenic, and VUS), gnomAD for all human proteins (including

membrane proteins) and human membrane proteins exclusively

In human proteins In human membrane proteins

All All Extracellular Cytoplasmic Transmembrane Other

Total 6,526,797 1,867,856 574,211 447,435 258,366 587,844

Benign 36,770 11,063 3489 3544 961 3069

Benign X gnomAD 33,944 10,260 3214 3326 908 2812

Pathogenic 21,107 8026 2327 2233 1863 1603

Pathogenic X
gnomAD

6200 2360 632 628 454 646

VUS 217,726 64,584 17,451 25,119 6814 15,200

VUS X gnomAD 116,325 36,700 9907 14,693 3574 8526

Only gnomAD 6,251,194 1,784,183 550,944 416,539 248,728 567,972

For membrane proteins, the total counts are further divided into each of the cellular regions they occur in. VUS (ClinVar) includes conflict variants. VUS,

variants of uncertain significance.

Tiemann et al.
proteins (see Table 2), underlining the importance of
method development suited for this protein class.

Variants that are pathogenic are expected to be depleted in
the human population compared with those that are benign,
and indeed we find a clear separation of the distributions of
allele frequencies between the two classes (Fig. 1 C). We
also observe that, while 92.7% of benign ClinVar variants
have been observed in gnomAD, this is only true for
29.4% of pathogenic variants (Fig. 1 B and Table 2). The
separation in the distribution of allele frequencies between
pathogenic and benign variants suggests that variants with
allele frequencies > 9:9$10� 5 are more likely to be benign
than pathogenic (Fig. 1 C, cutoff calculated from the ROC
analysis, see methods and materials). While the allele
frequency in gnomAD appears to be a good predictor of
pathogenicity (AUC ¼ 0.96; Fig. S3 in the supporting mate-
rial, with similar results for all human proteins; AUC ¼
0.95), we note that this result should be taken with some
caution. First, many ClinVar variants are not found in gno-
mAD (Fig. 1 B), limiting the practical utility. Second, since
the presence in gnomAD might have been used to assign
(lack of) pathogenicity, it is difficult to ensure that the two
sets of data are independent.

We analyzed in which regions of the membrane protein
structures the ClinVar (Fig. 1, D and E) and gnomAD
(Table 2) variants are located. We find that most variants are
found in soluble domains, although this is likely due to the
fact that these regions make up 83% of membrane proteins
(Fig. 1, D and E). Notably, however, we find that, while the
numbers of known benign and pathogenic variants are similar
in the different types of soluble regions, there appears to be an
almost twofold excess of pathogenic variants compared with
benignvariants in the transmembrane regions (Fig. 1E andTa-
ble 2).While we cannot exclude that this enrichment is in part
due to an increased focus on the transmembrane region in clin-
ical research, we suggest—in line with previous work
(63,64)—that this observation also reflects a decreased muta-
tional tolerance of the transmembrane region.

Membrane proteins are typically defined by their interac-
tion and/or location within the membrane. As not all of them
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are located to a similar degree inside the membrane, we
divided the complete data set of 5796 membrane proteins
into their categories as being single-pass, multi-pass, lipid-
anchored, or integral membrane proteins (see Table 3). We
find thatmost proteins are single- (40.2%) ormulti-passmem-
brane proteins (47.7%) and alsomost of the variants are found
in these categories (46.1 and 44.1% of 1,867,856 variants).
Looking into the transmembrane region,we see the previously
described enrichment of pathogenic variants especially for
multi-pass membrane proteins. This makes the multi-pass
membrane protein category especially interesting for further
studying of the role of residues within this region.

To gain a better understanding of the mechanisms causing
benign or pathogenic variant consequences, we mapped the
variants onto known protein structures. Despite recent ad-
vances in protein structure prediction (65) and analysis using
computational methods (66,67), we decided to focus our
work on experimentally determined structures. Specifically,
we searched the protein databank (68) for structures with at
least one variant in the resolved part of the protein structure
and found that 27.5% of all annotated human membrane pro-
teins have at least some part resolved and that 15.1% of the
total set of variants are found in the region covered by these
structures (Fig. 1 A, additional data at https://github.com/
KULL-Centre/papers/tree/main/2022/hMP-Xray-Tiemann-
et-al). Of the 281,220 variants found in resolved regions, only
2.2% of those (6119 variants) have been assigned as benign
(2089 variants, 18.9% of total benign variants in membrane
proteins) or pathogenic (4030 variants, 50.2% of total patho-
genic variants in membrane proteins) (Table S2 in the sup-
porting material).
Computational assessment of stability and
evolution shows loss of function due to loss of
stability for �62% of disease variants in selected
proteins

To examine the importance of changes in protein stability in
membrane proteins for causing loss of function and disease,
we analyzed a smaller set of proteins in more detail.

https://github.com/KULL-Centre/papers/tree/main/2022/hMP-Xray-Tiemann-et-al
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TABLE 3 Number of variants annotated by ClinVar or gnomAD, separated by their membrane protein category: single-pass, multi-

pass, lipid-anchored, integral

Membrane protein category All Single-pass Multi-pass Lipid-anchored Integral

Variant counts for All Transmembrane All Transmembrane All Transmembrane All Transmembrane All Transmembrane

Total 1,867,856 258,379 861,305 30,480 824,532 218,193 127,370 0 54,649 9706

Benign 11,063 961 4960 138 4794 744 817 0 492 79

Benign X gnomAD 10,260 908 4634 132 4455 699 690 0 481 77

Pathogenic 8026 1863 2328 77 4741 1719 544 0 413 67

Pathogenic X gnomAD 2360 454 694 20 1377 412 144 0 145 22

VUS (ClinVar) 64,584 6814 25,707 693 29,677 5784 5311 0 3889 337

VUS X gnomAD 41,511 4038 17,128 459 19,307 3371 2589 0 2487 208

Only gnomAD 1,784,183 248,741 828,310 29,572 785,320 209,946 120,698 0 49,855 9223

Protein count 5796 2330 2762 561 143

Disease variants in membrane proteins
Specifically, we searched for proteins that had at least one
pathogenic and one benign variant in the transmembrane re-
gion. As our aim was to use the Rosetta software to predict
changes in thermodynamic stability, we focused on protein
structures that had been determined via x-ray crystallography
as Rosetta has been developed and benchmarkedmost exten-
sively on such structures. These requirements narrow down
the set to 16 proteins: 6 transporters, 3 ion channels, 4
GPCRs, 2 enzymes, and 1 cell junction protein (Table 1
and additional data at https://github.com/KULL-Centre/
papers/tree/main/2022/hMP-Xray-Tiemann-et-al). These
16 proteins represent different types of membrane proteins
with diverse functions, structures, and involvement in
different diseases. Of note, these proteins belong to the class
of multi-pass transmembrane proteins and the secondary
structure of these proteins is mostly a-helical (>50%), while
unstructured regions or extended strands add up to 27%
(Fig. S5 in the supporting material).

Inspired by previous analyses of soluble proteins, we
investigated these membrane proteins in terms of structural
stability and sequence conservation. Specifically, we devel-
oped and benchmarked a revised Rosetta protocol for stabil-
ity calculations of membrane proteins (see methods and
materials and supporting material). We used this method
to calculate the change in thermodynamic stability ðDDGÞ
upon single amino acid substitutions. In each case, we
selected a high-resolution structure (Table 1), and removed
any cocrystallized molecules. We also constructed MSAs of
each protein and used GEMME (36) to estimate the evolu-
tionary effects of the variants. Specifically, we calculated
a normalized score (DDE) with DDEz0 corresponding to
substitutions that—in light of evolution—appear well toler-
ated, and DDEz1 for variants that—based on the evolu-
tionary record—are rare or absent, and expected to cause
loss of function. In analyses of soluble proteins, we have
previously found that a high value of DDE is a good predic-
tor for a variant to cause loss of function and that variants
with both high DDE and DDG are likely to cause loss of
function via loss stability and cellular abundance (18).

We calculatedDDGandDDE for all variants that have been
observed in humans and where the wild-type residue was
resolved using x-ray crystallography. We did not analyze var-
iants at positions where the Rosetta energy function suggested
a potential incompatibility between the experimental structure
and the Rosetta energy function (e.g., disulfide bridges (filter
II) or residues with a positive energy where mutations are
likelymore tolerated bydefault (¼Eres, filter IV)), and variants
at positionswith< 50 sequences in theMSA (seemethods and
materials, Table 1, and supporting data at https://github.com/
KULL-Centre/papers/tree/main/2022/hMP-Xray-Tiemann-et-al,
table 2022 11 11-count hMP anno nonsyndel PDB pub-
lish, tab X-ray set app for the variant loss at each of the
sequential filtering steps and further information). After
this quality control, we retain 220/324 pathogenic and 42/
122 benign variants and lose one protein (ABCG8) as it
does not have any variants left after filtering. Thus, we
analyzed two sets of variants: group A is the set of 220 vari-
ants that are described as pathogenic in ClinVar and group B
is the set of 104 variants that are either assigned as benign in
ClinVar and/or nonrare gnomAD variants that, as discussed
above, are more likely to be benign than pathogenic as their
allele frequencies in gnomAD are> 9:9$10� 5 (Figs. 1 and S3
in the supporting material). In what follows we refer to group
B as benign, but note that among the 104 variants in group B
only 42 are classified as benign in ClinVar and the remainder
comes from gnomAD. To get an indication of the influence of
this filtering process, we performed all AUC measurements
also on the respective filtering steps/subsets (see additional
supplemental Table 2 worksheet tab X-ray_set_app_AUC
in the supporting material).

To quantify how well DDE and DDG distinguish be-
tween the two classes of variants, group A (pathogenic)
and group B (benign and/or nonrare), we constructed a
ROC curve and calculated the AUC as a measure of how
well each of the two scores can predict pathogenicity
(Fig. 2 A). Of note, to reduce possible bias by the limited
data set, we performed leave-one-protein-out (LOPO) cal-
culations when performing the ROC curves and their
derived cutoffs, giving us mean values with standard devi-
ation for the AUC and mean, min, and max cutoffs values.
In the following, we report the AUC as AUCLOPO ¼
mean AUC5SD. Variant counts in the quadrant (and their
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FIGURE 2 Correlation of ClinVar variants with

computational predictors for human membrane pro-

teins. (A) ROC curves of Rosetta DDG and GEMME

DDE with variant counts for each group. AUC stan-

dard errors were determined by bootstrapping. (B)

Distribution of group A (pathogenic) and group B

(benign and/or nonrare) along DDG and DDE land-

scape and separation into quadrants by mean, max,

and min optimal cutoff obtained from leave-one-pro-

tein-out ROC curves. The counts of each group are

shown for the quadrants, the respective number of

variants in the uncertain area in parentheses.
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respective percentages) are determined from the total cut-
offs and the leave-one-protein-out calculations. In the
latter, variants that are located inside the min to max
leave-one-protein-out cutoff values are considered as
‘‘gray’’ and contribute to the standard deviation of the re-
ported percentages. Looking at out complete data, we find
that both DDE and DDG can separate the group A and
group B variants, although DDE, as expected, performs
better than DDG (AUC 0.82 vs. 0.64; DDE AUCLOPO ¼
0:8250:01, DDG AUCLOPO ¼ 0:6250:01). This is in
line with previous observations for soluble proteins
(6,7,9,11) and the hypothesis that many, but not all, path-
ogenic variants are destabilized so that DDG calculations
can capture these pathogenic variants, but not those caused
by other mechanisms for loss/gain of function.

We further analyzed the group A (pathogenic) and group
B (benign and/or nonrare) variants in terms of their DDE and
DDG scores (Fig. 2 B). To simplify the discussion, we
analyze the variants in terms of whether DDE and DDG
are low or high, with respect to cutoffs from the ROC anal-
ysis (see methods and materials). This analysis separates the
variants into four quadrants with only a few variants (14.2%,
meanLOPO ¼ 1456%) falling in the quadrant of low DDE
and high DDG (Fig. 2 B (IV)), which is comparable with
previous observations for soluble proteins (18,19). The three
remaining quadrants correspond roughly to:

(I) variants that cause loss of function via loss of stability
(high DDE and high DDG),

(II) variants that cause loss of function for other reasons
than loss of stability, such as substitutions at key func-
tional sites (high DDE and low DDG),

(III) variants that are expected to be tolerated both from a
structural and evolutionary sequence perspective
(low DDE and low DDG).

As expected, we find thatmost group B (benign and/or non-
rare) variants have low DDE (75%, meanLOPO ¼ 7353%)
and 73% ðmeanLOPO ¼ 7554%Þ of those also low DDG,
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whereas most pathogenic variants (group A) have large DDE
(76.8%, meanLOPO ¼ 7751%, see Fig. 2 B). Among the
167 (2 in gray area) pathogenic variants that have high DDE
values, we find that 62.1% ðmeanLOPO ¼ 6251%Þ also
have high DDG values, suggesting that loss of stability plays
an important role for disease in the 15 investigated membrane
proteins.

We observe a number of pathogenic variants with very
negative DDG, which indicates a stabilizing effect on the
structure. As recently shown (69), gain of function variants
can lead to pathogenicity, and those variants we observe
might be explained in a similar way. To confirm, more infor-
mation and benchmark is needed.

Pathogenic variants inGPCRs, especially in the transmem-
brane region, lose function mostly by loss of stability, while
this is less prominent in transporters or other protein classes

Our data set contains several members of the main mem-
brane protein classes, namely five transporters (98 group A/
pathogenic þ 62 group B [benign and/or nonrare variants]),
three ion channels (11 þ 15 variants), four GPCRs (54 þ 28
variants), and two enzymes (24þ 13 variants) (Table 1). We
examined the results from our computational predictors to
probe for class-specific trends. In all four classes, evolu-
tionary conservation predictions (DDE) have a high AUC
(>0.8), similar to the analysis with all proteins combined
(Table S3 in the supporting material). Focusing on the trans-
membrane region, we find a very high AUC of 0.97
ðAUCLOPO ¼ 0:9850:02Þ for variant classification of
transporters (underlying datapoints: 44 pathogenic group
A þ 10 group B variants). Interestingly, we find that, for
GPCRs, loss of stability is the main cause of pathogenicity,
as indicated by an increased AUC (0.79, AUCLOPO ¼
0:7750:05) for DDG predictions (Fig. 3 A and Table S3
in the supporting material) compared with the complete
data set with 15 proteins (AUC ¼ 0.64, AUCLOPO ¼
0:6250:01, Fig. 3). This is even more prominent for vari-
ants located within the transmembrane region (AUC ¼
0.81, AUCLOPO ¼ 0:8150:03).
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FIGURE 3 Analysis of GPCR variant classification performance and structural differences of variant effects. (A) ROC curve and (B) distribution of DDG

versusDDE plotted for GPCRs for all variants and only for variants within the transmembrane region (dashed line and diamond symbol). AUC standard errors

were determined by bootstrapping. (C) (Left) Illustration of the different residue categories used in this work on OPSD, namely, whether they are inside (blue

and violet) or outside of the transmembrane region (TM-region) (green and pink), and whether they are solvent-accessible (violet and pink) or buried (blue

and green). The structure on the left shows disease-associated variants, while the excerpt on the right illustrates solvent-accessible versus buried, more gener-

ally, and are for illustration purposes not restricted to a disease relationship. For more details on how the classes were assigned, see methods and materials. On

the right, the variant counts in the four quadrants, separated by their position in the proteins, are shown for group A (pathogenic, full) and group B (benign and/

or nonrare, hashed) variants. (D) Variant counts as seen in (C) are shown summed over all 15 proteins. To see this figure in color, go online.

Disease variants in membrane proteins
In the transmembrane region of GPCRs, 77.4%
ðmeanLOPO ¼ 74526%Þ of the pathogenic variants have
high DDG values (Fig. 3 B), suggesting that their pathoge-
nicity is due to loss of stability. When separating the proteins
into specific regions, namely by whether they are buried, sol-
vent accessible, and are within and outside the transmem-
brane regions (Fig. 3 C), we see that those pathogenic
variants that lose function via loss of stability are typically
buried (Fig. 3 C). In contrast, solvent-accessible pathogenic
variants are not found to lose function due to loss of stability,
and variants located in those regions are more likely to be
tolerated (11.1% of group A/pathogenic compared with
44.4% of group B variants). Within the transmembrane re-
gion, most variants (90% group A and 97% for group B/
benign and/or nonrare) are buried, in contact with other res-
idues. Looking at pathogenic variants that lose function due
to other reasons than loss of stability (quadrant (II)), variants
in GPCRs are more often within the transmembrane (Fig. 3
C) compared with all data sets (Fig. 3 D), where we see a
larger proportion of variants at buried sites in extracellular
or intracellular environments. When we further divide resi-
dues into whether they face the lipid bilayer or not, we see
that most of those pathogenic variants within the transmem-
brane region face the lipids while being in contact with other
Biophysical Journal 122, 2176–2191, June 6, 2023 2185
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residues, as indicated by their buriedness (Fig. S4 in the sup-
porting material) in contrast to their likely benign counterpart
that is seen to be more solvent accessible.

Next, we focused on individual proteins and examined the
location and potential mechanism behind disease variants in
one GPCR and one transporter protein. We used the calcu-
lated values of DDE and DDG to aid in a structural analysis
of the disease variants in rhodopsin (OPSD; Fig. 4, A–C) and
a glucose transporter (GTR1; Fig. 4, D–F). We examined
the structures of the two proteins to find the residues that
interact with ligands or cofactors and searched the literature
to find residues that are known to be key to function. We find
that many disease variants are located at these residues, sug-
gesting that they directly disrupt function, and some of them
also decrease stability. For example, in OPSD we find a
number of disease mutants at residues that interact with
the retinal cofactor as well as residues in, e.g., the so-called
ionic lock (70) (Fig. 4, A and B). Similarly, many disease
variants in GTR1 are located at sites known to interact
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with a chloride ion that is important for function (71), the
sugar molecule, known inhibitors (72), or residues known
to affect transport (71) (Fig. 4, C and D).

Looking across the two proteins (Fig. 4), most of the high-
DDE, low-DDG disease variants are found at residues that
have known functional roles.We expect such variants in quad-
rant (II) to lose function due to other reasons than stability
(18).This also includes variation in residues in close proximity
to ligands and interaction partners, whichwere not included in
our stability calculations. Further, wefind thatmany of the dis-
ease variants that are not located at known functional sites
have both high values ofDDE andDDG, suggesting that these
variants instead disrupt the stability of the folded state.
Correlating physicochemical changes with
variant effects

We examined the data set containing all 15 proteins and the
amino acid properties within the four quadrants, where
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Disease variants in membrane proteins
quadrant (I) contains destabilized and quadrant (II) stable
variants, while both quadrants (I) and (II) are—in light of
evolution—not tolerated. Quadrants (III) and (IV) are evolu-
tionarily tolerated, but quadrant (III) contains stable and
quadrant (IV) destabilized variants (see Fig. 5, A and B,
and methods and materials for a more detailed quadrant
definition). Across all quadrants, hydrophobic amino acids
are most commonly observed (wild-type, 33%; target,
37%), which can be explained by the general preference
for hydrophobic residues in membrane proteins, especially
within the TM region (23). Almost 65% of the group B
(benign and/or nonrare) variants located in quadrant (III)
have, as expected, the same amino acid property for wild-
type and target (35.1% remain hydrophobic, 21.1%
charged, 8.8% polar). For the pathogenic variants that lose
function due to loss of stability (quadrant (I)), we see greater
A

FIGURE 5 Variant effects depend on the chemical nature of the wild-type and t

and variant per quadrants and groups. Quadrant (I) contains destabilized and ev

iants; quadrant (III) stable and tolerated variants; and quadrant (IV) destabilized

of target versus wild-type amino acids, colored by their median values DDG (to

‘‘transmembrane tendency’’ scale by (73). The rectangles show the enrichmen
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changes in physicochemical properties among those substi-
tutions (Fig. 5 A). Interestingly, in quadrant (II), where var-
iants lose function due to other reasons than stability, we
see mainly hydrophobic target amino acid types
(54.8%, with one-third coming from charged to hydropho-
bic substitutions).

Inspired by the enrichment of pathogenic variants in the
transmembrane region (Fig. 1 E), which is enriched with
hydrophobic residues (23), we analyze substitutions by
physicochemical properties. Specifically, we calculated the
median score for DDG and DDE for each combination of
wild-type and target amino acids and arranged the amino
acids by hydrophobicity (73) (Fig. 5 B). For variants where
the target residue is more hydrophobic (e.g., Arg to Leu, Arg
to Trp, or Asp to Tyr variants), we indeed see a different
pattern when looking at the median stability values (DDG)
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compared with the median DDE values. These variants
appear to be tolerated by protein stability, but not by evolu-
tion (Fig. 5 B, dashed upper rectangle). In contrast, variants
changing the residue to be less hydrophobic are indicated as
not tolerated by evolution and destabilizing (Fig. 5 B, solid
lower rectangle).
CONCLUSIONS

Here, we present an analysis of missense variants and their
properties within human membrane proteins. We identified
1:9$106 unique variants in 5471 proteins, of which 99.1%
are of uncertain significance and only 19,089 have been
classified as pathogenic or benign. In addition, we see an
almost twofold excess of pathogenic variants compared
with benign variants in the transmembrane regions, which
make up only 16.1% of the proteins.

We have examined the importance of changes in mem-
brane protein stability for causing loss of function. We
analyzed 15 proteins and calculated the change in thermo-
dynamic stability ðDDGÞ and evolutionary conservation
(DDE). Our ROC analysis shows good performance in sepa-
rating benign from pathogenic variants by their sequence
conservation (AUC ¼ 0.82 for DDE), and we find that, for
our 15 analyzed transmembrane proteins,�62% of the path-
ogenic variants appear to cause loss of function via loss of
stability. This indicates that loss of stability indeed plays
an important role for disease variants in membrane proteins,
in line with previous findings on soluble proteins, although
this needs to be confirmed with studies on larger data sets. In
the 15 selected proteins, we observe that most variants have
a hydrophobic wild-type (33%) or target (37%) amino acid
type and that almost 65% of benign and/or nonrare variants
that are likely tolerated, as assessed by both DDE and DDG,
do not change their amino acid type. Among pathogenic var-
iants that lose function due to loss of stability, substitutions
to charged, polar, or hydrophobic are more prominent, while
we observe substitutions from more hydrophobic to less hy-
drophobic residues in variants that lose function due to other
reasons than stability.

When analyzing the different classes of membrane pro-
teins, we observe for transporter proteins that pathogenic
variants in the transmembrane region have an AUC of
0.97 for DDE, and loss of stability does not appear to be
the predominant factor in loss of function for the cell junc-
tion protein we examined. In contrast, pathogenic variants in
GPCRs lose function —mainly via loss of stability (AUC¼
0.79 for DDG). We therefore suggest that pathogenic vari-
ants lose function via loss of stability more often in the
transmembrane region of GPCRs than in the other protein
classes we examined.

From a more detailed inspection of individual proteins,
we found that most of the high-DDE, low-DDG disease var-
iants are located at positions that have known functional
2188 Biophysical Journal 122, 2176–2191, June 6, 2023
roles, while many of the disease variants that are not located
at functional sites have both high values of DDE and DDG,
suggesting that these variants instead disrupt the stability of
the folded state.

Our observations underline the importance of stability and
the loss thereof in disease-causing variants ofmembrane pro-
teins and thereby showhow computational tools can aid in in-
terpreting molecular mechanisms that underlie disease. Such
functional understanding may help address the substantial
challenge of classifying variants of uncertain significance
(74). Given the limited number of variants and proteins
within this study, utilizing recent advantages such as the large
excess of experimental structures derived from electron mi-
croscopy or computational models from, e.g., AlphaFold
(75) could enable a broader analysis. We include the collec-
tion of population and ClinVar variants for the entire human
proteome to facilitate such studies onmembrane proteins and
beyond.
Limitations of the study

We note several limitations that should be considered when
interpreting the results. Our general observations and con-
clusions on membrane proteins and their classes are limited
by the available data and proteins, partly due to our choice to
only analyze experimental structures with annotated patho-
genic and benign variants.

Several membrane proteins, for example, channels and
cell junction proteins, function as (homo-) oligomers. In
this study, we used structures of the individual proteins for
our stability calculations and thereby may miss destabilizing
variants in interfaces. Those variants are more difficult to
interpret using stability calculations due to the lack of con-
tacts that are affected by stability. In addition to missing in-
teractions, conformational changes of the structure or
different conformations might alter DDG values, and several
stabilizing variants can be explained due to missing interac-
tion partners in these structures (e.g., R135W, R135L, and
G121V in OPSD are missing either the ligand or an intracel-
lular binding partner).

In general, we do not expect variants to lead to complete
protein unfolding but rather a partial unfolding, which al-
lows recognition by the protein quality control system.
Due to limited available experimental data, we are not
able to differentiate stages of unfolding, which might affect
the accuracy of the DDG calculations. Furthermore, our
membrane protein data set is mainly a-helical, which is
also true for most human membrane proteins; however,
the stability score function was parameterized and bench-
marked on bacterial proteins, which are often b barrels
and might fold differently compared with their helical coun-
terparts. When we compared experimental and computa-
tional DDG values, we obtained a Spearman rank
correlation coefficient of 0.46, leaving uncertainty about
the predictability of the extent of loss of stability. It is worth
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noting that the correlation between two sets of experimental
DDGmeasurements in GlpG (57,58) shows a Spearman cor-
relation of 0.65, and when correlating all experimental data
sets with at least 12 overlapping variants we obtain a mean
Spearman correlation of 0.6. Preferences for specific amino
acid properties in certain environments such as the mem-
brane might be biased by their values within the respective
scoring function. Our results also depend on how different
protein regions are defined.

Evolutionary sequence conservation measurements
cannot give direct insights into the mechanism that causes
pathogenicity. Variants labeled loss of function here may
instead exhibit the more rare gain of function. Furthermore,
our calculations of DDE scores depend on the MSA, and we
note that using a different MSA, e.g., by changing the E
value cutoff, could shift some of the DDE values from
tolerated to not tolerated.

The filters we apply on the variants are chosen based on
literature and experience. A more detailed analysis on the
effects of this filtering (and their cutoffs) with a larger
data set of variants is needed. For now, we applied AUC cal-
culations on each of the filtering steps to address a potential
bias (see supporting material).

Finally, and as already discussed above, we combine
benign and/or nonrare gnomAD variants into group B.
This should be taken into account when interpreting the re-
sults and especially when investigating outliers of group B,
as those could be variants of unknown significance.
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71. Custódio, T. F., P. A. Paulsen,., B. P. Pedersen. 2021. Structural com-
parison of GLUT1 to GLUT3 reveal transport regulation mechanism in
sugar porter family. Life Science Alliance. 4:1–12. https://www.
life-science-alliance.org/content/4/4/e202000858.

72. Kapoor, K., J. S. Finer-Moore, ., R. M. Stroud. 2016. Mechanism of
inhibition of human glucose transporter GLUT1 is conserved between
cytochalasin B and phenylalanine amides. Proc. Natl. Acad. Sci. USA.
113:4711–4716. https://europepmc.org/articles/PMC4855560.

73. Zhao, G., and E. London. 2006. An amino acid ’’transmembrane ten-
dency’’ scale that approaches the theoretical limit to accuracy for pre-
diction of transmembrane helices: relationship to biological
hydrophobicity. Protein Sci. 15:1987–2001.

74. Anderson, C. L., S. Munawar,., L. L. Eckhardt. 2022. How functional
genomics can Keep pace with VUS identification. Front. Cardiovasc.
Med. 9:900431.

75. Jumper, J., R. Evans, ., D. Hassabis. 2021. Highly accurate protein
structure prediction with AlphaFold. Nature. 596:583–589. https://
www.nature.com/articles/s41586-021-03819-2.

76. Gaffney, K. A., and H. Hong. 2019. The rhomboid protease GlpG has
weak interaction energies in its active site hydrogen bond network.
J. Gen. Physiol. 151:282–291. https://doi.org/10.1085/jgp.201812047.

77. Guo, R., K. Gaffney, ., H. Hong. 2016. Steric trapping reveals a co-
operativity network in the intramembrane protease GlpG. Nat. Chem.
Biol. 12:353–360. https://www.nature.com/articles/nchembio.2048.

78. Min, D., R. E. Jefferson, ., T.-Y. Yoon. 2015. Mapping the energy
landscape for second-stage folding of a single membrane protein.
Nat. Chem. Biol. 11:981–987. https://www.nature.com/articles/
nchembio.1939.

79. Hong, H., S. Park,., L. K. Tamm. 2007. Role of aromatic side chains
in the folding and thermodynamic stability of integral membrane pro-
teins. J. Am. Chem. Soc. 129:8320–8327. https://doi.org/10.1021/
ja068849o.

80. Hong, H., G. Szabo, and L. K. Tamm. 2006. Electrostatic couplings in
OmpA ion-channel gating suggest a mechanism for pore opening. Nat.
Chem. Biol. 2:627–635. https://www.nature.com/articles/nchembio827.

81. Moon, C. P., and K. G. Fleming. 2011. Side-chain hydrophobicity scale
derived from transmembrane protein folding into lipid bilayers. Proc.
Natl. Acad. Sci. USA. 108:10174–10177. https://www.pnas.org/
content/108/25/10174.

82. Stanley, A. M., and K. G. Fleming. 2007. The role of a hydrogen
bonding network in the transmembrane b-barrel OMPLA. J. Mol.
Biol. 370:912–924. https://www.sciencedirect.com/science/article/pii/
S0022283607006213.

83. McDonald, S. K., and K. G. Fleming. 2016. Aromatic side chain water-
to-lipid transfer free energies show a depth dependence across the
membrane normal. J. Am. Chem. Soc. 138:7946–7950. https://doi.
org/10.1021/jacs.6b03460.

84. Marx, D. C., and K. G. Fleming. 2017. Influence of protein scaffold on
side-chain transfer free energies. Biophys. J. 113:597–604. https://
www.cell.com/biophysj/abstract/S0006-3495(17)30682-3.

85. Huysmans, G. H. M., S. A. Baldwin,., S. E. Radford. 2010. The tran-
sition state for folding of an outer membrane protein. Proc. Natl. Acad.
Sci. USA. 107:4099–4104. https://www.pnas.org/content/107/9/4099.
Biophysical Journal 122, 2176–2191, June 6, 2023 2191

http://refhub.elsevier.com/S0006-3495(22)03941-8/sref54
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref54
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref54
https://doi.org/10.1093/bioinformatics/btw716
https://www.nature.com/articles/s41467-021-27222-7
https://www.nature.com/articles/s41467-021-27222-7
https://www.nature.com/articles/nchembio.1021
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref58
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref58
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref58
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref58
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref59
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref59
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref60
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref60
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref60
https://doi.org/10.1073/pnas.1115898108
https://doi.org/10.1073/pnas.1115898108
https://doi.org/10.1002/prot.26030
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref63
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref63
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref63
https://www.sciencedirect.com/science/article/pii/S0021925819619800
https://www.sciencedirect.com/science/article/pii/S0021925819619800
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref65
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref65
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref65
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref65
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref66
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref66
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref66
https://www.nature.com/articles/s41594-022-00849-w
https://doi.org/10.1093/nar/gky949
https://www.nature.com/articles/s41588-022-01185-x
https://www.nature.com/articles/s41588-022-01185-x
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref70
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref70
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref70
https://www.life-science-alliance.org/content/4/4/e202000858
https://www.life-science-alliance.org/content/4/4/e202000858
https://europepmc.org/articles/PMC4855560
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref73
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref73
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref73
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref73
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref73
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref73
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref74
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref74
http://refhub.elsevier.com/S0006-3495(22)03941-8/sref74
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://doi.org/10.1085/jgp.201812047
https://www.nature.com/articles/nchembio.2048
https://www.nature.com/articles/nchembio.1939
https://www.nature.com/articles/nchembio.1939
https://doi.org/10.1021/ja068849o
https://doi.org/10.1021/ja068849o
https://www.nature.com/articles/nchembio827
https://www.pnas.org/content/108/25/10174
https://www.pnas.org/content/108/25/10174
https://www.sciencedirect.com/science/article/pii/S0022283607006213
https://www.sciencedirect.com/science/article/pii/S0022283607006213
https://doi.org/10.1021/jacs.6b03460
https://doi.org/10.1021/jacs.6b03460
https://www.cell.com/biophysj/abstract/S0006-3495(17)30682-3
https://www.cell.com/biophysj/abstract/S0006-3495(17)30682-3
https://www.pnas.org/content/107/9/4099


Biophysical Journal, Volume 122
Supplemental information
Interpreting the molecular mechanisms of disease variants in human

transmembrane proteins

Johanna Katarina Sofie Tiemann, Henrike Zschach, Kresten Lindorff-Larsen, and Amelie
Stein



Article

SUPPORTING MATERIAL: Interpreting the molecular
mechanisms of disease variants in human
transmembrane proteins
Johanna Katarina Sofie Tiemann1,2, Henrike Zschach1

2, Kresten Lindorff-Larsen1*, and Amelie Stein2*

1Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N,
Denmark.
2Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N,
Denmark.
*Correspondence: lindorff@bio.ku.dk (KL-L)
*Correspondence: amelie.stein@bio.ku.dk (AS)

SUPPLEMENTARY MATERIAL
Supplementary Figures

1Present Address: Center for Health Data Science, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N., Denmark.















Tiemann, Zschach, Lindorff-Larsen and Stein

Figure S1: Neff values evaluated against GEMME coevolutionary score and sequence coverage per position: Per protein in
the X-ray subset three plots are shown: first, the sequence coverage at each residue position vs. neff; second, the GEMME
score (not normalized) vs. neff; third, the GEMME score vs. MSA sequence coverage. For the sequence coverage, our chosen
threshold line is drawn at 50.

A B

Figure S2: Benchmark of Rosetta ΔΔG calculations for MPs. (A) Comparison of accuracy of stability calculations performed
with different membrane protein score functions but using the same protocol and data set. Data was extracted from (1). (B)
Comparison using different protocols but the same score function (franklin2019; (2)) and was conducted on the benchmark set
described in table 1 in the main manuscript.
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Figure S3: ROC analysis for gnomAD allele frequencies
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Figure S4: Protein regions and their overlaps and analysis of GPCR variant classification performance and structural differences
of variant effects. (A) [left] Illustration of the different residue categories used in this work on OPSD, namely, whether they are
inside (dark blue, turquoise, and violet) or outside of the transmembrane (TM) region (green and pink), and their orientation
towards the membrane (lipid-facing: blue and violet), and whether they are solvent-accessible or buried. The structure on the
left shows disease-associated variants, while the two inserts on the right illustrate solvent-accessible vs. buried, and inwards vs.
lipid-facing, more generally and are not restricted to a disease relationship. Variants labeled with other are rare combinations,
e.g., residues within the TM region that are solvent accessible but do not face the membrane, and some at the intersection
between the membrane and the solvent (like lipid-facing but not placed within the TM region; see note in Limitations section).
(B) Overview about the protein region distribution. (C) Similar as Fig.3C, variant counts in the four quadrants, separated by
their position in the proteins, are shown for group A (pathogenic, full) and group B (benign and/or non-rare, hashed) variants.
(D) Variant counts as seen in (C) are shown summed over all 15 proteins.
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Figure S5: Secondary structure of target dataset calculated using DSSP (3). Abbreviation stand for H = U-helix; B = residue in
isolated V-bridge; E = extended strand, participates in V ladder; G = 3-helix (310 helix); I = 5 helix (c-helix); T = hydrogen
bonded turn; S = bend; - = unstructured
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Supplementary Tables

Table S1: Experimental ΔΔG datasets (all from E. coli) used for benchmarking. Multiple variant counts indicate different pH,
labeling tags or temperatures.

uniprotID protein #variants reference
P09391 GLPG 6, 3 (4)
P09391 GLPG 69 (5)
P09391 GLPG 142 (6)
P09391 GLPG 20, 20, 8, 8 (7)
P09391 GLPG 2 (8)
P0A910 OMPA 19, 20 (9)
P0A910 OMPA 15 (10)
P0A921 PA1 36 (11)
P0A921 PA1 6, 6, 6 (12)
P0A921 PA1 49 (13)
P37001 PAGP 20 (14)
P37001 PAGP 19, 19 (15)

Table S2: Number of variants annotated by ClinVar or gnomAD for those proteins with at least one experimentally resolved
structure per cellular compartment

all Extracellular Cytoplasmic Transmembrane other
total 281,220 112,643 61,112 29,944 77,521
benign 2,089 957 495 169 4,029
benign

⋂
gnomAD 1,951 883 467 155 446

pathogenic 4,030 1,430 1,118 807 3,822
patho.

⋂
gnomAD 1,046 326 320 208 192

VUS (ClinVar) 18,882 7,592 5,962 1,974 3,354
VUS

⋂
gnomAD 9,685 3,777 3,190 908 1,810

only gnomAD 256,219 102,664 53,537 26,994 73,024
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Table S3: Variant counts, AUC and variant counts within the quadrants for each protein class. Cutoffs are taken from the
complete dataset.

protein class info after filtering AUC Q I Q II Q III Q IV
class # proteins subselection group A group B ΔΔG ΔΔE group A group B group A group B group A group B group A group B
Cell Junction 1 all 33 16 0.42 0.84 8 1 12 0 8 11 5 4

TM region 24 8 0.47 0.78 6 1 9 0 4 6 5 1
Enzyme 2 all 24 10 0.62 0.83 12 0 8 3 2 4 2 3

TM region 6 33 1 0.83 4 0 0 1 0 1 2 1
GPCR 4 all 54 24 0.79 0.83 31 1 12 5 2 14 9 4

TM region 31 11 0.81 0.87 19 1 6 2 1 5 5 3
Ion channel 3 all 11 12 0.72 0.81 6 1 3 3 2 8 0 20

TM region 4 3 0.42 0.75 1 0 2 1 1 2 0 0
Transporter 5 all 98 42 0.63 0.82 48 3 29 9 12 20 9 10

TM region 44 10 0.71 0.97 27 0 11 1 2 6 4 3
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Additional Supplementary Tables
Additional Supplementary Table 1:

Information of variants for each X-ray PDB with at least 1 benign and 1 pathogenic variant: 2022_05_05-count_hMP_
anno_splitPDB_Xray_publish.xlsx

The extended supplemental table is a collection of variant information (ClinVar and gnomAD per cellular compartment)
per protein (each in a separate worksheet tab) per PDB-ID and chain. This is only generated for proteins, where at least one
benign and one pathogenic variant is located in an experimentally resolved region. Further the StrucSel score (see Methods and
Materials) is given, including further information about the PDB

Additional Supplementary Table 2:

Variant counts per protein: 2022_11_11-count_hMP_anno_nonsyndel_PDB_publish.xlsx
The extended supplemental table is a collection of all displayed data and additional information on the data shown in the

main manuscript and the supplement, including worksheet tabs:

• 2022_05_05-count_hMP_Clinvar_gnomad_PDB_nonsyndel_df : contains a statistic of variant counts and PDB ids for
each human membrane proteins that was experimentally resolved (data fetched by 2022-05-05)

• Variant_annotation: variant count from ClinVar and gnomAD for all human membrane proteins separated by cellular
compartments

• Variant_annotation_hP: variant and protein count from ClinVar and gnomAD for all human proteins

• Variant_annotation_PDB: variant count from ClinVar and gnomAD for all human membrane proteins that are located in
experimentally resolved protein regions, separated by cellular compartments

• Category_variant_annotation: variant count from ClinVar and gnomAD for all human membrane proteins separated by
their membrane protein category and further subdivided into the variants located in the membrane bilayer; protein counts
per category are also added.

• Category_variant_annotation_PDB: variant count from ClinVar and gnomAD for all human membrane proteins that are
located in experimentally resolved protein regions, separated by their membrane protein category and further subdivided
into the variants located in the membrane bilayer; protein counts per category are also added.

• exp_ddg_benchmark: data used for Rosetta stability benchmark (Supplementary Material table S1).

• X-ray_set: X-ray protein information table (equal to table 1

• X-ray_set_app: extended X-ray protein information table including variant counts after each sequential filtering steps and
GEMME/MSA statistics

• X-ray_set_app_AUC: further extended X-ray protein information table (from worksheet tab X-ray_set_app) including
additionally the AUC calculations (error via bootstrapping) for each filtered set of variants and the sequential filtered
remaining data.

• classes: AUC and quadrant variant counts for each protein class in total and in the TM region.

2022_05_05-count_hMP_anno_splitPDB_Xray_publish.xlsx
2022_05_05-count_hMP_anno_splitPDB_Xray_publish.xlsx
2022_11_11-count_hMP_anno_nonsyndel_PDB_publish.xlsx
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