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Supplementary Methods 1 

16S rRNA GCN quality control 2 

For genomes with multiple copies of 16S rRNA gene, we aligned the 16S rRNA sequences using 3 

MAFFT [1] (with parameters: --maxiterate 1000 --globalpair) and picked the 16S rRNA gene 4 

sequence that has the highest average similarity (calculated as the proportion of identical bases in 5 

the alignment) to other 16S rRNA gene sequences in the genome as the representative sequence. 6 

To remove potential errors introduced by mis-assembled genomes [2], we removed genomes 7 

whose 16S rRNA GCN differs from their 5S rRNA GCN by greater than 2 copies, genomes 8 

whose 16S rRNA sequence contains ambiguous bases, or genomes on the list of withheld 9 

genomes in the curated ribosomal RNA operon copy number database rrnDB [3]. The 17 10 

genomes in the rrnDB withheld list are rejected from rrnDB because their 16S rRNA genes are 11 

missing, the 16S rRNA GCNs are too high, or the genomes have inconsistent meta data 12 

(https://rrndb.umms.med.umich.edu/withheld/).  13 

 14 

Reconstruction of the 16S rRNA phylogeny 15 

We aligned the remaining representative 16S rRNA gene sequences using HMMER version 3.2 16 

[4] (hmmalign with parameters: --trim --dna –mapali) with the hidden Markov model (HMM) 17 

built from the GreenGenes 13.8 16S rRNA gene alignment (hmmbuild with default parameters), 18 

and trimmed the alignment with a mask from the GreenGenes database [5]. The HMM, profile 19 

alignment and the alignment mask are included in the R package RasperGade16S.  After 20 

collapsing identical 16S rRNA alignments, 6408 representative sequences remained. They serve 21 

as the reference sequences and their taxonomies of are summarized in Table S1. We built a 22 

reference tree from the trimmed alignment using RAxML version 8.2 [6] with options -f d -m 23 
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GTRGAMMA. We used the Deinococcus-Thermus group to root this reference phylogeny. To 24 

examine the effect of sequence alignment on model fitting, we also used the 16S rRNA HMM 25 

profile from the software Barrnap [7] to align the 16S rRNA genes (hmmalign with default 26 

parameters). We trimmed the alignment using a consensus posterior probability threshold of 0.95 27 

(esl-alimask with parameters: -p --ppcons 0.95) and made a 16S rRNA phylogeny as described 28 

above. 29 

 30 

Modeling 16S rRNA GCN evolution with homogeneous and heterogeneous pulsed evolution 31 

models 32 

Using the R package RasperGade [8], we fitted one PE model to the entire reference phylogeny 33 

and calculated the likelihood of this homogeneous PE model. An analysis of the variance of the 34 

PICs associated with each genus indicated that there is a slowly-evolving group and a regularly-35 

evolving group, with the average rate of the slowly-evolving group estimated to be at least 100-36 

fold lower than that of the regularly-evolving group (Fig. 1). To model the rate heterogeneity, we 37 

created two PE models: PEregular for the regularly-evolving group and PEslow for the slowly-38 

evolving group. We then use a two-step iterative binning procedure to estimate the parameters of 39 

PEregular and PEslow (i.e., jump size and frequency). The PEregular model was initiated to take the 40 

parameter values of the homogeneous PE model. PEslow was initiated to have a jump size equal 41 

to that of PEregular but a jump frequency100-fold lower. In our first round of binning, from the 42 

root to the tip of the reference phylogeny, we classified each node into the regularly- or slowly-43 

evolving group by testing which model (PEregular or PEslow) provided a better fit. We merged 44 

neighboring nodes belonging to the same group into one neighborhood and flipped neighborhood 45 

assignment if the flip resulted in an improved overall AIC value. After the first round of binning, 46 
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we updated PEregular and PEslow by fitting PEregular to nodes that were classified as regularly-47 

evolving and PEslow to slowly-evolving nodes. We used the updated models to perform a second 48 

round of binning to assign each node in the phylogeny to a group. Finally, we calculated r, the 49 

rate of evolution in each group, as the process variance per unit branch length defined in a 50 

previous study [9]. We then rescaled the reference tree by multiplying the branches in the 51 

slowly-evolving group by the ratio rslow/rregular. To accommodate time-independent variation in 52 

the tip trait values, we calculated a branch length over which the process variance of the fitted 53 

pulsed evolution model is equal to the model’s time-independent variation, and added this branch 54 

length to each tip branch. We compared the homogeneous and heterogeneous PE models by AIC. 55 

 56 

Simulating bacterial communities with 16S rRNA GCN variation 57 

To evaluate the effect of 16S rRNA GCN correction on bacterial diversity analyses, we 58 

simulated two sets of bacterial communities using the reference genomes: one set for relative cell 59 

abundance analyses (SC1) and the other set for beta-diversity analyses (SC2).  60 

 61 

For SC1, we simulated a total of 100 communities. For each simulated community, we randomly 62 

selected 2000 OTUs from the 6408 reference genomes, treating each reference genome as one 63 

OTU, and assigned each OTU a cell abundance randomly drawn from a log-series species 64 

abundance distribution with the expected number of individuals in the community set to 40000 65 

and Fisher’s ! set to 400.  66 

 67 

In SC2, we simulated communities in two environmental types to evaluate the effect of 16S 68 

rRNA GCN correction on beta diversity analyses. We simulated 10 communities per 69 
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environmental type and 2000 OTUs per community. The 16S rRNA GCN of each OTU was 70 

assigned randomly from the reference genomes’ GCN. We controlled the community turnover 71 

rate by controlling the number of unique OTUs in each community. For example, at a turnover 72 

rate of 10%, a community would have 200 unique OTUs and 1800 core OTUs that are shared 73 

among all communities across all environmental types. We varied the turnover rate from 10% to 74 

90% at 10% intervals. To control for the effect size of environmental type, we assigned 5 75 

(0.25%), 20 (1%) or 100 (5%) signature OTUs from the core OTUs to each environmental type. 76 

These signature OTUs were twice more likely to be placed in top ranks of the log-series 77 

distribution (i.e., to be more abundant) than the non-signature OTUs in their corresponding 78 

environmental type. We simulated 50 batches of communities for each combination of 9 turnover 79 

rates and 3 signature OTU numbers, resulting in 27000 (10 communities/type × 2 types × 50 × 9 80 

× 3) simulated communities in SC2. 81 

 82 

Evaluating the effect of GCN correction in HMP1 and EMP dataset 83 

To check the effect of 16S rRNA GCN correction in empirical data, we analyzed the 16S rRNA 84 

V1-V3 amplicon sequence data of the first phase of Human Microbiome Project (HMP1) [10] 85 

and the sequence data processed by Deblur [11] in the first release of the Earth Microbiome 86 

Project (EMP) [12]. The 16S rRNA GCN for each OTU in the HMP1 and EMP datasets was 87 

predicted using RasperGade16S. We picked 2560 samples in the HMP1 dataset with complete 88 

metadata and used the 2000-sample subset of EMP, and determined the adjusted NSTI and 89 

relative cell abundance in each community as described above. For beta-diversity, we randomly 90 

picked 100 representative samples from each of the 5 body sites in the HMP1 dataset and 91 

analyzed their beta-diversity as described above. For the EMP dataset, we analyzed the beta-92 
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diversity within each level-2 EMP ontology (EMPO) category (around 400 to 600 samples per 93 

category). 94 

 95 

Predicting 16S rRNA GCN for SILVA OTUs 96 

We downloaded 592605 full-length representative bacterial 16S rRNA sequences of non-97 

redundant OTUs at 99% similarity (OTU99) in the SILVA release 132 [13]. We aligned and 98 

trimmed the sequences using the method described above. We then inserted the OTUs into the 99 

reference phylogeny using the evolutionary placement algorithm (EPA-ng) [14] with the model 100 

parameters estimated by RAxML when building the reference phylogeny. We limited the 101 

maximum number of placements per SILVA representative sequence to 1. We predicted the 16S 102 

rRNA GCN for each SILVA OTU99 as described above using the heterogeneous pulsed 103 

evolution model and calculated adjusted NSTDs. 104 

 105 

Supplementary Results 106 

Copy number correction provides limited improvements on beta-diversity analyses in empirical 107 

data 108 

We analyzed the beta-diversity using the HMP1 and EMP datasets. Because we observed that the 109 

effect of GCN correction is independent of the metric used in beta-diversity analyses, we only 110 

used Bray-Curtis dissimilarity in HMP1 and EMP datasets. We found that correction of 16S 111 

rRNA GCN does not seem to affect the clustering of communities by body sites in the HMP1 112 

PCoA plot. Pairwise PERMANOVA shows that the mean PVE by the body site in HMP1 is 113 

14.9% before 16S rRNA GCN correction and decreases marginally to 14.6% after correction, 114 

and the PVEs using the gene abundance and the corrected cell abundance are also highly 115 
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concordant (R2>0.98). In EMP, within each level-2 environment (EMPO2), the average PVE by 116 

level-3 environment (EMPO3) remains at 7.7% before and after 16S GCN correction and the 117 

PVEs using the gene abundance and the corrected cell abundance are highly concordant 118 

(R2>0.99) as well. On the other hand, pairwise random forest tests yield similar results before 119 

and after 16S rRNA GCN correction, with around 9 out of the top 10 features identified by the 120 

random forest test remaining unchanged before and after correction in HMP1 and around 8 out 121 

of the top 10 unchanged in EMP. In terms of the fold-change of relative cell abundances between 122 

body sites, we found that copy number correction has little impact as the estimated fold-change 123 

before and after correction are highly similar (R2>0.95) in both datasets. 124 

 125 

Predicting 16S rRNA GCNs for SILVA OTUs 126 

Using RasperGade16S, we predicted the 16S rRNA GCN for 592605 bacterial OTUs (99% 127 

identity) in the release 132 of the SILVA database. Overall, the median adjusted NSTD for all 128 

bacterial OTUs is 0.070 substitutions/site, and 34.7% of the predictions have a high confidence 129 

of 95% or greater, and 74.9% of the predictions have a moderate confidence of 50% or greater 130 

(Table S2). This shows that for most OTUs in the SILVA database, the phylogenetic distance to 131 

a reference 16S rRNA is small enough that we can have reasonable confidence in the predictions. 132 

In comparison, randomly guessing has a null confidence of around 6.7% (1 out of 15 possible 133 

GCNs). Among major phyla with more than 10000 OTUs, the proportion of highly confident 134 

predictions varies greatly (Table S2), with Cyanobacteria having the lowest proportion of 19.1% 135 

and Acidobacteria having the highest proportion of 50.4%. Similarly, the proportion of 136 

moderately confident predictions varies from 58.3% to 89.5% among these phyla. Interestingly, 137 
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the proportions of highly confident predictions closely match the proportions of slowly-evolving 138 

OTUs in each phylum (Table S2), suggesting a causal relationship between them.  139 

 140 

Figure S1. The distribution of rate groups along the 16S rRNA reference phylogeny. The 141 

distribution of rate groups is denoted by colors. Red color represents slowly-evolving group and 142 

black color represents regularly-evolving group. The branch lengths displayed in the figure are 143 

not scaled by the GCN evolution rate. 144 

 145 

Figure S2. The impact of 16S GCN variation on NMDS analysis.  Simulated samples from 146 

two hypothetical environments are plotted using the Bray-Curtis dissimilarity (top row), 147 

weighted UniFrac distance (middle row), and the Aitchison distance (bottom row) matrices, and 148 

the true cell abundance (left column), gene abundance (middle column) and corrected abundance 149 

(right column). In each plot, there are 20 simulated samples from two hypothetical environments 150 

with 20 signature OTUs (1%) in each environment and a turnover rate of 20%. 151 

 152 

Table S1. The taxonomic composition of genomes in the reference phylogeny. The count of 153 

reference genomes within a clade is listed at phylum, class, order, and family level. 154 

 155 

Table S2. Summary of SILVA 16S rRNA GCN predictions. Highly confident predictions are 156 

defined as predictions with a confidence of 95% or greater. Moderately confident predictions are 157 

defined as predictions with a confidence of 50% or greater. 158 

 159 
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Table S3. The effect of HMM profiles on model fitting. The AIC and parameters of fitted 160 

Brownian motion (BM) and pulsed evolution (PE) models when the alignment of 16S rRNA 161 

genes uses different HMM profiles are listed. 162 

 163 

Table S4. Fitted parameter of homogeneous and heterogeneous pulsed evolution models. 164 

The jump frequency, jump size and the magnitude of time-independent variation of the fitted 165 

homogeneous and heterogeneous pulsed evolution models are listed. The unit of jump frequency 166 

is jump per unit branch length. 167 

 168 

Table S5. The effect of 16S rRNA GCN correction on beta-diversity analyses. The 169 

performance statistics of random forest tests, PERMANOVA, and abundance comparison before 170 

and after 16S rRNA GCN correction are listed at different signature OTU number and turnover 171 

rate. 172 

 173 

Table S6. Count summary of environmental types in MGnify dataset. The count number of 174 

samples within each biome (environmental type) is listed at the first and second biome level. 175 

 176 
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