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Supplementary Fig.. 1: (a) Example of a single realization of the invasion–
percolation algorithm (grain size, λc = 0.2 mm). The colour bar represents the
soil saturation degree (θ̃) when each water cluster was invaded; blue are the
first and yellow are the last invaded clusters. (b) Air (white) and water (blue)
distribution in the soil matrix (soil grains in grey) for θ̃ = 0.4 from the same
run of the invasion–percolation algorithm as in (a). The magnified inset shows
the formation of small water patches, which are held by capillary forces.

Supplementary Table 1: Parameters for the HR Model and Invasion-
Percolation Simulations

Parameter Units Description

Dm m2 s−1 Oxygen diffusion Coefficient

CO2
mol m−3 Oxygen concentration

Cs mol m−3 Substrate (dissolved organic carbon) concentration

Vm mol m−3 s−1 Maximum reaction rate

Km(s) mol m−3 Michaelis constant for dissolved organic carbon

Km(O2) mol m−3 Michaelis constant for dissolved oxygen
ϕ Porosity
λ m Characteristic grain size

Sc Characteristic length of the water patches in the domain
Nc Number of the water patches in the domain



Supplementary Fig.. 2: (a) Number and (b) characteristic size of water
patches from the pore-scale simulations (Fig. 2a) for different grain sizes (leg-
end). The solid lines in a and b represent Eq. 2 and Eq. 3, respectively (see
main text). (c) Experimental measures of drainage in microfluidic chips of dif-
ferent grain sizes (legend) and the comparison with the scaling law of Eq. 3
(dashed lines). The vertical error bars show the standard deviation between
three replicates. (d) A snapshot from the drainage process inside the microflu-
idic chip, at θ̃ = 0.5 (λc = 0.15 mm); water in blue and air in grey. Based on
these images, we extracted the water patch properties (i.e., Sc and Nc).



Supplementary Fig.. 3: Observations (dots) of soil heterotrophic respiration
(HR) as a function of (a) soil saturation [1, 2] and (b) ambient temperature
[3, 4] conditions, and the predictions of our model (solid lines), based on the
reported soil texture, saturation degree and ambient temperature; dissolved
organic carbon concentration was assumed to be at saturated conditions (i.e.,

Cs

Cs+Km(s)
→ 1 in Eq. 5, Methods). (c) A time series of soil heterotrophic

respiration observations in the subtropical forest [5] were compared to model
predictions. The model was parameterized using measured soil temperature,
moisture, and reported soil texture. (d) Model predictions plotted against field
observations of mean soil heterotrophic respiration (SRDB V5, [6]), at different
climatic locations (colour bar indicates the Köppen climate classification of
the different sites). The solid dashed line represents the strongest correlation
(with a slope of 0.7) between the observed data and the model predictions.
This correlation implies that the top layer of soil accounts for approximately
70% of the total heterotrophic respiration from the soil profile.



Supplementary Fig.. 4: (a) Two-dimensional contour surface (colour scale)
based on the model (Methods Eqs. 1 - 3) of log10(β) as a function of the
surface temperature (T ) and soil saturation (θ̃). Note that for this particular
example, the global mean grain size (0.3 mm) was used to parameterize λc,
and dissolved organic carbon concentration was assumed to be at saturated
conditions (i.e., Cs

Cs+Km(s)
→ 1 in Eq. 5, Methods). (b) Global map of the

annual mean β values (year 2021); colour bar on logarithmic scale (log10(β)).
(c) Probability density function of logarithmic β values based on the global
map in b; the overall mean value of β is 120 (dashed red line).



Supplementary Fig.. 5: Model Sensitivity: (a) 2000 Monte Carlo simula-
tions were carried out with daily global soil temperature and moisture datasets
for 2021 [7]. The red dashed line represents the relationship between annual
heterotrophic respiration (HR) and latitude, based on monthly intervals as
reported in the paper. The gray cloud illustrates the range of simulations based
on daily distributions. The Tropical zone exhibits the highest standard devia-
tion of about ±20 gC m−2 yr−1, while the largest relative uncertainty of 5%
is observed around the South Pole. (b) Impact of changes in dissolved organic
carbon concentration on heterotrophic respiration predictions until the end of
the century; blue: a linear decrease of 5%, gray: constant, and red: a linear
increase of 20% [8].



Supplementary Fig.. 6:
Schematic illustration of the model methodology to derive estimates of het-
erotrophic respiration from climatic and soil data.
(1) Based on the altitude (h) and the ambient temperature (T ), the ambient
pressure is determined via the ideal gas law.
(2) Soil relative saturation degree (θ̃) is calculated using the soil moisture (θ)
at the topsoil layer and the porosity (ϕ), θ̃ = θ/ϕ.
(3): The dissolved oxygen diffusion coefficient (DO2 [cm2 s−1]) in water is
evaluated using an empirical relation with the ambient temperature (T ) [9]:
log10(DO2) = −4.41 + (773.8/T )− (506/T )2.
(4) Dissolved oxygen concentration is calculated using the ambient pressure
(1) and Henry’s law solubility parameter (kH [mol kg−1 bar−1]). [10].

(5) Within the Michaelis–Menten kinetic [11, 12], Vm
Cs

Cs+Km(s)

CO2

CO2
+Km(O2)

,

the value of Cs is evaluated based on a dissolved organic database [13]. The
maximum reaction rate is given by Vm = αs exp(−Ea/(RT )); where R is the
universal gas constant, T is the surface temperature, and αs and Ea are the
pre-exponential factor and activation energy of the enzymatic reaction, respec-
tively. In the model, the value of the pre-exponential factor, αs, is proportional
to the soil surface area (SSA). Therefore, Vm, in the upscaled model, is a func-
tion of the surface temperature and the soil texture (i.e., surface area).
(6) The water patch characteristic properties, namely number (Nc, Eq. 3) and
size (Sc, Eq. 3; main text) are evaluated based on the characteristic grain size
(λc) and the soil saturation degree (θ̃).
(7) By combining the results from (3), (5) and (6), Eq. 1 can be solved (see
main text).
(8) Based on the water patch properties in the system, Eqs. 2 and 3 can be
solved to characterize the spatial distribution of water at different saturation
conditions.
(9) By multiplying the solution of (7), i.e., the heterotrophic respiration rate
for a single water patch, by the number of patches in the domain (8), we can
obtain the heterotrophic respiration rate from the soil matrix (of length scale
L).



Supplementary Fig.. 7: Projected changes in soil heterotrophic respiration
(H̃R, ratio relative to the reference year of 2015) through the 21st century
estimated using climate projections from 10 different climate models. Symbol
colours represent different climate zones.



Supplementary Table 2: Parameters for the two-dimensional pore-
scale simulations of Fig. 2a.
Parameters that depended on temperature (i.e, diffusion coefficients (Di),
Henry’s constant (kH) and maximum reaction rate (Vm)) were calculated based
on 25 ◦C.

Parameter Units Value Description Source

DO2(g) m2 s−1 1.9× 10−5 Atmospheric oxygen diffusion coefficient [14]

DCO2(g) m2 s−1 1.4× 10−5 Atmospheric carbon dioxide diffusion coefficient [14]

DO2(aq) m2 s−1 2.5× 10−9 Dissolved oxygen diffusion coefficient [14]

DCO2(aq) m2 s−1 2.1× 10−9 Dissolved carbon dioxide diffusion coefficient [14]

DDOC(aq) m2 s−1 4.5× 10−10 Dissolved organic carbon diffusion coefficient [15]

kH mol L−1 atm−1 0.0013 Henry’s law constant

C0O2(g) mol m−3 10 Representative atmospheric oxygen concentration

C0DOC mg L−1 30 ±(10) Dissolved organic carbon concentration at the soil grain perimeter [13]

Vm mol m−2 s−1 6× 10−12 Maximum (surface) reaction rate [12, 16]

Km(s) mol m−3 1 ±(0.025) Michaelis constant for dissolved organic carbon [12, 16]

Km(O2) mol m−3 0.1 ±(0.05) Michaelis constant for oxygen [17]
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