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Figure S1. Calculation of 𝐅𝐑𝒑 and 𝐧𝐅𝐑𝒑.  

a. FR" is given by the difference between the alpha diversity of taxon-specific protein biomass 

contributions and the alpha diversity of functional protein abundances. The equation can be 

transformed into the sum of functional similarity (i.e., 1 - functional distance 𝑑#$) between any 

pair of taxa i and j multiplied by the biomass contributions of both taxa (𝑝# and 𝑝$). Calculation of 

functional distance 𝑑#$ is based on the subnetwork of taxa i and j extracted from the sample-

specific PCN. 𝑑#$ is measured by the weighted Jaccard distance between proteomes of taxa i 

and j. b-d. Examples of nFR" values demonstrated by a simple conceptual community. b. When 

the expressed proteomes are totally different between different taxa, the nFR" value equals to 0. 

c. When expressed proteomes are identical between different taxa, the nFR" value equals to 1. 

d. Under other situations, nFR" of a microbial community will have a value of between 0 and 1. 

For example, the conceptual community of (D) has a nFR" value of 0.23. For simplicity, in this 

conceptual community, we assume that all taxa are equal in biomass. Numbers on the edges 

represent relative protein abundances of different functions in each taxon.  

a 

b c d 
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Figure S2. Construction of a reference GCN and difficulty of constructing a reference PCN.  

a. Genomic content in each taxon is the same in different microbiome samples, and therefore we 
can combine different GCNs to form a dataset of multiple GCNs. b. Proteomic content of any 
taxon is sample dependent, and therefore the merged reference PCN is hard to interpret. 

 

a b 
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Figure S3. In silico community demonstrates the sensitivity of the nFRp metrics. a. 
Illustration of experimental workflow. b. Genome-level FR, nFR, TD and FD of different in silico 

communities. c. Proteome-level FR, nFR, TD and FD of different in silico communities. d. 

Proteome-level FR, nFR, TD and FD of different in silico metaproteomes generated using 

proteomes cultured in different media. Source data are provided as a Source Data file. 

a b c 

d 
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Figure S4. Comparison of feature dimensions in GCN and PCN 

Comparison of genus- (a) and function-level (b) identification between methods. Along the x-

axis, MG-GCN group includes GCNs generated with the samples’ matched metagenomic 

sequencing results, and MG-PCN group includes PCNs generated based on search results 

performed using the matched metagenome databases. IGC-PCN group includes PCNs 

generated using IGC database and the “protein-peptide bridge” approach. For (a), number of 

genera that had at least 3 unique functions was counted. This was similar to the strategy of 

using least 3 unique peptides to determine a taxon, as recommended by Jagtap et al. (2015).  

a b 
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Figure S5. Tripartite plot showing taxonomic and functional relationships between GCN 
and PCN for individual microbiome sample HM455. 
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Figure S6. Tripartite plot showing taxonomic and functional relationships between GCN 
and PCN for individual microbiome sample HM466. 
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Figure S7. Tripartite plot showing taxonomic and functional relationships between GCN 
and PCN for individual microbiome sample HM503. 
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Figure S8. More simulations performed by altering byproduct fraction and externally 
supplied nutrient diversity. 
In addition to Figure 2e-g of the main text, more simulations were performed. Byproduct fraction 
𝑙 (a), and fraction of externally supplied nutrients 𝜌 (d) were simulated with consumption 
matrices with the same connectance as the GCN (𝐶%&') or PCN (𝐶(&'). 𝐶(&' is generated via a 
subsampling of the 𝐶%&'. The one pair of simulations (for GCN and PCN) in (a) and (d) are 
shown as (b)-(c) and (e)-(f) respectively. The default set of values is dilution rate 𝐷 = 
0.2	ℎ𝑜𝑢𝑟)*, byproduct fraction 𝑙 = 0.5, and when 20 out of 100 nutrients are externally supplied 
(𝜌 = 0.2). Parameters for all panels are as follows: (a) D = 0.2	ℎ𝑜𝑢𝑟)* and 𝜌 = 0.2; (d) D = 
0.2	ℎ𝑜𝑢𝑟)* and 𝑙 = 0.5; (b)-(c), and (e)-(f) D = 0.2	ℎ𝑜𝑢𝑟)*, 𝑙 = 0.5, and 𝜌 = 0.2. Scattered dots 
and lines linking pairs of dots in (a) and (d) indicate each simulation paired between 𝐶%&'and 
𝐶(&'. Middle white dot in the box plot denotes median, the lower and upper hinges correspond 
to the first and third quartiles, the black line ranges from the 1.5 × (interquartile range) below the 
lower hinge to 1.5 × IQR above the upper hinge, and whiskers represent the maximum and 
minimum, excluding outliers. Statistical analyses were performed using the two-sided Mann-
Whitney-Wilcoxon U Test with Bonferroni correction between genomic capability (GCN) and 
protein functions (PCN). **** indicate statistical significance at the p < 0.0001 level. N numbers 
for (a) and (d): N = 100 times of independent simulations. p values, (a): left to right, p = 1.4×10-

33, p = 1.8×10-34, p = 1.9×10-34, p = 2.6×10-34, p = 7.9×10-32, (d): left to right, p = 2.0×10-34, p = 
2.7×10-34, p = 2.8×10-34, p = 2.1×10-34, p = 2.5×10-34. Source data are provided as a Source 
Data file. 

a 

 

 

b 

 

 

c 

 

 

d 
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f 

 

 



 11 

 

 
 
Figure S9. More simulations performed by altering S:M ratio 
 
Simulations performed with different S:M ratios (i.e. the ratio between initial species abundances 

and initial metabolite/resource concentrations) via drawing initial microbial abundances and 

resource concentrations from the uniform distribution from 0 to 1. Middle white dot in the box plot 

denotes median, the lower and upper hinges correspond to the first and third quartiles, the black 

line ranges from the 1.5 × (interquartile range) below the lower hinge to 1.5 × IQR above the upper 

hinge, and whiskers represent the maximum and minimum, excluding outliers. Statistical analyses 

were performed using the two-sided Mann-Whitney-Wilcoxon U Test with Bonferroni correction 

between genomic capability (GCN) and protein functions (PCN). N = 100 times of independent 

simulations. p values, (left column): left to right, p = 2.0×10-34, p = 2.0×10-34, p = 1.9×10-34, p = 

2.4×10-34, p = 6.5×10-34, (middle column): left to right, p = 1.7×10-34, p = 1.9×10-34, p = 2.0×10-34, 

p = 3.0×10-34, p = 7.7×10-31, (right column): left to right, p = 1.9×10-34, p = 2.1×10-34, p = 2.9×10-

34, p = 2.1×10-34, p = 2.9×10-31.  Source data are provided as a Source Data file.  
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Figure S10. Degree distributions of PCNs and GCNs in the other three microbiomes 

The unweighted degree distribution of functions in PCNs (first row), that of genera in PCNs 

(second row), that of functions in GCNs (third row), and that of genera in GCNs (fourth row) in 

the individual microbiomes HM455, HM466, HM503. 
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Figure S11. Degree distributions of the four PCNs generated with IGC-based search 
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Figure S12. PCNs and corresponding degree distributions in different metaproteomics datasets 

a-d. Taxon-function incidence matrix of the PCN corresponding to each metaproteomics 

dataset. The presences of genus-function connections are shown as yellow dots. e-h. 

Unweighted degree distribution of functions corresponding to each metaproteomics dataset. i-l. 
Unweighted degree distribution of genera corresponding to each metaproteomics dataset. Each 

vertical panel (gray-line box) represents the PCN of the first sample (by alphabet order) in each 

dataset. We also visualized the incidence matrices and degree distributions of all samples here: 

https://shiny2.imetalab.ca/shiny/rstudio/PCN_visualizer/ 

a 
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Figure S13. Functional redundancy, taxonomic and functional diversity comparisons in 
the berberine dataset. 
a. Log2-fold change of	nFR"values in comparison to DMSO control samples of each individual. 

b. Log2-fold change of	TD𝛼values in comparison to DMSO control samples of each individual. c. 
Log2-fold change of	FD𝛼values in comparison to DMSO control samples of each individual. N = 
7 independent microbiomes (exceptions N(DMBRBR) = N(DHBRBR) = N(ACOL) = 6) per compound. 
Significance of differences between-groups were examined by two-sided Wilcoxon rank-sum 
test, * and ** indicate statistical significance at the FDR-adjusted p < 0.05 and 0.01 levels, 
respectively. In the box plots, each individual point represents a metaproteomic sample; lower 
and upper hinges correspond to the first and third quartiles, thick line in the box corresponds to 
the median, and whiskers represent the maximum and minimum, excluding outliers. 

a 

 

 

b 

 

 

c 
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Figure S14. Nestedness metric based on Overlap and Decreasing Fill (NODF) of the 
metaproteomics datasets. 

a. NODF values by individual microbiomes in the SISPROT dataset. b. NODF values by 

individual microbiomes in the RapidAIM dataset. c. NODF values by individual microbiomes in 

the Berberine dataset, N numbers: N(V20) = N(V21) =N(V24) = 17, N(V9) = N(V22) = N(V23) = N(V25) =18 

compound treated or control microbiomes. d. NODF values by diagnosis in the IBD dataset. e. 

NODF fold-change of compound-treated microbiomes in the Berberine dataset, N numbers: 

N(UC) = 52, N(CD) = 61, N(Control) =63 samples. f. NODF values by inflammation and gut region in 

the IBD dataset, N numbers: N(Ascending colon, inflamed) = 23, N(Descending colon, inflamed) = 28, N(Terminal ileum, 

inflamed) = 16, N(Ascending colon, non-inflamed) = 39, N(Descending colon, non-inflamed) = 30, N(Terminal ileum, non-inflamed) = 

40 independent metaproteomic analyses. g. NODF fold-change of compound-treated 

microbiomes in the RapidAIM dataset, N = 5 (with exception N(NBTY) = 4) biologically 

a 
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independent microbiomes. *, **, *** and **** indicate statistical significance at the p < 0.05, 0.01, 

0.001 and 0.0001 levels, respectively, by two-sided Wilcoxon rank-sum test. In the box plots, 

each individual point represents a metaproteomic sample; lower and upper hinges correspond 

to the first and third quartiles, thick line in the box corresponds to the median, and whiskers 

represent the maximum and minimum (excluding outliers). Source data are provided as a 

Source Data file. 
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Figure S15. Comparison of between-genera dij values across all IBD samples. 
a. Heatmap showing dij values between genera across samples in the IBD dataset. b-d. nFRp, 

TD and FD values between cluster 1 and cluster 2. N numbers, N(cluster 1) = 42, N(cluster 2) = 134. 

Lower and upper hinges correspond to the first and third quartiles, thick line in the box 

corresponds to the median, and whiskers represent the maximum and minimum, excluding 

outliers. Wilcoxon rank sum test (two-sided) was performed, **** indicate statistical significance 

at the p < 0.0001 level. p values, (b): p = 2.0×10-16, (c): p = 1.8×10-8, (d): p = 3.1×10-16. Source 

data are provided as a Source Data file. 

 

a 

 

 

b c 

 

 

d 
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Figure S16. Distribution of dij values by compounds in the RapidAIM dataset. 

Each distribution line was plotted using the mean value across individual microbiomes (N=5) 

corresponding to the control (DMSO, red dashed line) or other compounds. Compounds shown 

in dashed lines, i.e. berberine (BRBR), ciprofloxacin (CPRF), fructo-oligosaccharide (FOS), 

ibuprofen (IBPR), isoniazid (ISNZ), metronidazole (MTRN) and rifaximin (RFXM) showed overall 

shifts in the distribution. 
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Figure S17. Between-genera functional distances in the Berberine dataset. 

a. dij distribution by different berberine analogues and by different individual microbiomes. b. J-S 

divergence between the dij distribution in the control (DMSO) and that of the other compounds. 

Lower and upper hinges in the boxplots correspond to the first and third quartiles, thick line in 

the box corresponds to the median, and whiskers represent the maximum and minimum 

(excluding outliers). Kruskal-Wallis test result indicated that overall the compounds had 

heterogeneous levels of J-S divergence with the DMSO. Between-compound comparisons of 

the J-S divergence values were performed by a Pairwise Wilcoxon Rank Sum Tests, * indicates 

statistical significance at the FDR-adjusted p < 0.05 level. N = 7 independent microbiomes 

(exceptions N(DMBRBR) = N(DHBRBR) = N(ACOL) = 6) per compound. The results were based on 

microbial genera of the top 95% overall protein biomass in the dataset. Source data are 

provided as a Source Data file. 

a 

 

 

b 
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Supplementary Note 1 

Generating PCN from MaxQuant and MetaLab search results 

Through the Metapro-IQ workflow, we obtained the ProteinGroups.txt, and peptides.txt tables. 
The Protein groups table (generated by MaxQuant) contains information on the identified 

proteins, and identifiers of peptide sequence associated to each protein group. Through 

MetaLab, we further obtained MetaLab_peptide.xlsx table and function.csv tables. These tables 

are inter-connected through peptide sequences, peptide id numbers, and protein IDs. Therefore, 

we were able to match taxon and function by combining these result tables. 

Step-by-step workflow: A detailed step-by-step workflow is described below, as well as 

illustrated in Supplementary Note Figures N1 and N2. 
Step 1. The MetaLab_peptide.xlsx table (or set of tables) contain peptide sequences and the 

taxonomic matching according to the MetaLab pep2taxon database. And the peptide.txt file 

includes a column of unique peptide IDs for each peptide sequence. These two tables were first 

combined to generate a peptide_ID_to_taxon table. 

Step 2. Each protein group in the ProteinGroup.txt table correspond to a series of peptide IDs, 

we are therefore able to link each protein group to the taxonomic information by querying these 

peptide IDs from the peptide_ID_to_taxon table. Protein group intensities were also kept in this 

table. 

Step 3. The genus level information was summarized for each protein group to generate a 

ProteinGroup_genus_intensity table. Here, we approximately consider that the peptides 

corresponding to each protein group are derived from a same genus. We validated that this 

approach has a confidence of 98.4% at the genus level based on the ultra-deep 

metaproteomics dataset (Supplementary Note Table N1). 

Step 4. Next, annotated functions were taken from the top 1 protein in each protein group 

(function_top1 table). We validated that functions of proteins in each protein group have an 

agreement of 97.7% based on the ultra-deep metaproteomics dataset. In addition, top 1 protein 

in each protein group is considered the most confident protein identification, given by its number 

of identified peptides and E values. 

Step 5. The function_top1 table was combined with the protein ProteinGroup_genus_intensity 

table to generate a ProteinGroup_function_taxon_intensity table. 

Step 6. The ProteinGroup_function_taxon_intensity table can then be converted into PCN in the 

form of a bipartite network or an incidence matrix 𝐏  =   [P,-]. 
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Figure N1. Step-by-step workflow for PCN generation, part I. 
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Figure N2. Step-by-step workflow for PCN generation, part II. 
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Table N1. Confidence of protein group-to-taxon matching 

Taxonomic level: Super-
kingdom Phylum Class Order Family Genus Species 

All unique pairs of matches at 
this level 

46,592 44,894 41,269 41,016 29,425 26,748 15,477 

Protein groups matched to 
only one taxon at this level 

46,553 44,491 40,900 40,778 28,855 26,322 15,104 

ProteinGroup% matched to a 
unique taxon at this level 

99.9% 99.1% 99.1% 99.4% 98.1% 98.4% 97.6% 

ProteinGroup% matched to 
more than one taxa at this 
level 

0.1% 0.9% 0.9% 0.6% 1.9% 1.6% 2.4% 

Note: Numbers of matches were calculated using the ultra-deep metaproteomics dataset. 
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Supplementary Note 2 

To determine the best method for functional annotations in the PCNs, we looked into the use of 

four different functional annotations (COG, KEGG, MetaCyc and CAZyme) of proteins identified 

based on the IGC database and the MetaPro-IQ approach. The use of comprehensive functional 

databases COG and KEGG yielded similar results (Supplementary Note Figure N3A-B). In 

particular, those different workflows yield highly similar network topologies and functional 

redundancy comparisons between GCN and PCN. MetaCyc is also a powerful functional 

annotation tool metaproteomic pathway analysis. However, we emphasize that it is not applicable 

in this current study. The reason is simple: in MetaCyc the list of functions annotated to a protein 

ID can be a list of various synonyms without a unified identifier to be used for summarization for 

generating the PCN (Supplementary Note Figure N4). We finally looked into CAZymes as a 

representative of enzymes within specific functional classes. Interestingly, despite that CAZyme-

PCNs contain a much smaller proportion of proteins (~5%) compared to the full PCN, we still 

observed a highly nested network topology. More interestingly, the functional redundancy values 

are close to the values calculated from COG or KEGG (Supplementary Note Figure N3C). 

 

 
Figure N3. Comparison of network topology and FRp, nFRp, FDp, TDp computed using 
different functioal annotation databases.  
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Figure N4. Examples and explanations showing why COG/KEGG_KO/CAZyme can be used 
for GCN/PCN computation, but the use of MetaCyc is impossible here. 
 

We also examined the performance of these different functional annotations (COG, KEGG, and 

CAZyme) in quantifying FRp differences in the RapidAIM dataset (Supplementary Note Figure 
N5). We found that both the COG and KEGG workflows showed significant decreased in nFRp 

(drug rifaximin (RFXM) vs dimethyl sulfoxide (DMSO) as an example). CAZyme failed to detect 

the differences. This might be due to the fact that comprehensive databases COG and KEGG 

help better capture the whole community-level functional redundancy profile. 

 

 
Figure N5. Comparison of nFRp changes determined by different workflows in the 
RapidAIM dataset. Comparison between RFXM (rifaximin) treatment and DMSO (control) groups 
are shown. N = 5 independent microbiomes per group. Lower and upper hinges correspond to 
the first and third quartiles, thick line in the box corresponds to the median, and whiskers represent 
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the maximum and minimum. ** indicate statistical significance at the p < 0.01 level by two-sided 
Wilcoxon rank sum test. p values: IGC-COG, p = 0.0075; IGC-KEGG, p = 0.0075. 
 

 

We next studied the response of functional distance dij values using the different functional 

annotations. We performed the same analysis as in Figure 5g of the main text (i.e. IGC-COG 

workflow) using the IGC-KEGG and IGC-CAZyme workflows. J-S divergence of functional 

distances between taxa did not show a significant difference among the drugs in IGC-KEGG and 

IGC-CAZyme results (Supplementary Note Figure N6A-C). Therefore, results suggest that 

KEGG and CAZyme are not as sensitive as COG in comparing differences in microbiome 

functional networks.  

 
Figure N6. Comparison of different functional annotation methods in sensitivity of 
detecting functional distances variations. A. COG annotation showed significant alteration of 
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between-genera dij distributions in response to drug treatments (J-S divergence). B-C. Using 
KEGG and CAZymes, despite the observation of similar patterns in the p-value heatmap, we did 
not observe any significant difference in J-S divergence between drugs (no asterisks shown). D. 
The KEGG-COG annotation method showed significant alteration of between-genera dij 
distributions in response to drug treatments, in agreement with panel (A), COG-based annotations. 
Asterisks indicate statistical significance at the 0.05 level (FDR adjusted p value, Pairwise 
Wilcoxon test). 
 

However, notably, the COG database has a lower functional granularity compared to the KEGG 

database. Using the ultra-metaproteomic dataset as an example, we found that while 75.9% 

COGs correspond to unique KOs, the remaining 24.1% COGs were matched to more than one 

KOs (Supplementary Note Figure N7). Although COG compromises functional granularity, the 

COG provides a higher annotation coverage than the KEGG (for example, for the deep 

metaproteomics dataset of the four individuals, there were a total of 50,216 protein groups 

identified. 46,095 (91.7%) of these protein groups were successfully annotated with COGs, while 

only 37,795 (75.3%) of these protein groups were annotated with KOs). Some functions in COG 

belong to the categories of ‘General function prediction only’ and ‘Functions unknown’ and thus 

can be included in our FRp computation. The higher coverage of proteins with the COG database 

may be the reason that the COG annotation yielded the most sensitive results in FRp comparisons 

compared to other functional annotation methods. 

 

Figure N7. Comparison between KEGG KO and COG matches 

Can we combine the merit of high protein coverage of the COG annotation, and the merit of good 

functional granularity of the KEGG annotation? We found a solution to this question by 

complementing KEGG annotations with COG annotations. In more details, we first used KEGG 

to annotate functions to protein groups. Next, for those that could not be annotated with a KO, the 

annotations were complimented with COG when a protein-COG match presents. We show that 

results obtained with the COG annotation can be well-reproduced by the KEGG-COG annotation 

(Supplementary Note Figure N6D). Therefore, in this manuscript, we selected the KEGG-COG 

annotation strategy for the analysis of results. 
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Supplementary Tables 
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Table S1. Details of the samples used for ultra-deep metaproteomic 
analysis 

Subject Gender Age 
(years) 

Body 
weight 

(kg) 

Height 
(cm) 

Colonoscopy 
Location 

HM454 Male 12 56 155.5 Ascending 
colon 

HM455 Female 15 61 156.9 Ascending 
colon 

HM466 Female 17 64.3 160 Ascending 
colon 

HM503 Female 16 63 157.7 Ascending 
colon 
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Table S2. RapidAIM dataset compound information 
# Compound  Abbreviation used 
1 Metformin hydrochloride MTFR 
2 Berberine chloride BRBR 
3 Rifaximin RFXM 
4 Metronidazole MTRN 
5 Isoniazid ISNZ 
6 Ciprofloxacin CPRF 
7 Resveratrol RSVR 
8 Daidzein DDZN 
9 Risperidone RSPR 
10 Olanzapine OLNZ 
11 Methylprednisolone MTHY 
12 Cortisone CRTS 
13 Olsalazine sodium OLSL 
14 Sulfasalazine SLFS 
15 Mesalamine MSLM 
16 Diclofenac sodium DCLF 
17 Indomethacin INDM 
18 Ibuprofen IBPR 
19 Ketoprofen KTPR 
20 Naproxen sodium NPRX 
21 Ranitidine hydrochloride RNTD 
22 Nizatidine NZTD 
23 Cimetidine CMTD 
24 Lovastatin LVST 
25 Simvastatin SMVS 
26 Pravastatin sodium PRVS 
27 Atorvastatin Calcium ATRV 
28 Rosuvastatin RSVS 
29 Azathioprine AZTH 
30 Mercaptopurine MRCP 
31 Cyclophosphamide monohydrate CYCL 
32 Methotrexate hydrate MTHT 
33 Lubiprostone LBPR 
34 Ezetimibe EZTM 
35 Rapamycin RPMY 
36 Omeprazole OMPR 
37 Paracetamol (Acetaminophen) PRCT 
38 Digoxin DGXN 
39 5-Fluorocytosine FLCY 
40 Loperamide oxide monohydrate LPRM 
41 Levodopa LVDP 
42 Na-butyrate NBTY 
43 FOS (Fructooligosaccharide) FOS 
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Table S3. Berberine dataset compound information 
# Compound name Abbreviation used 
1 Tetrahydroepiberberine THEBBR 
2 13-Methylberberine Chloride 13MBBR 
3 Demethyleneberberine DMBBR 
4 Oxyberberin OBBR 
5 Tetrahydroberberine THBBR 
6 Dihydroberberine DHBBR 
7 Columbamine COBA 
8 Jatrorrhizine JATZ 
9 Coptisine CTS 
10 Palmatrubine PMTB 
11 Sanguinarine SANGR 
12 Acetylcorynoline ACORL 
13 Chelerythrine CLTR 
14 6-Ethoxysanguinarine EOSANGR 
15 Chelidonine CLDN 
16 Dihydrosanguinarine DHSNAGR 
17 Berberine Chloride BRBR 
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Table S4. Informations of the four metaproteomics datasets    

Dataset 
name in 

brief 
Sample 

type 
Bacterial cell 

lysis and protein 
extraction 

Fractionation 
method 

Mass 
spectrome
ter (MS) 
model 

MS run 
time per 
sample 
(minute) 

Unique 
peptides 

per sample 
(Mean ± 

SD) 

Protein groups 
per sample 

(Mean ± SD) 

SISPROT Fecal 
sample 

Bacterial cells 
were lysed in 
urea-Tris-HCl 
buffer 
containing 4% 
SDS, proteins 
were 
precipitated and 
washed before 
trypsin digestion 

SISPROT 
workflow 

Orbitrap 
Fusion 

(ThermoFi
sher 

Scientific) 

1,300 44,922 ± 
8,201 20,558 ± 993 

RapidAIM 
Cultured 

fecal 
sample 

Bacterial cells 
were lysed in 
urea-Tris-HCl 
buffer, cell 
lysate were 
directly used for 
trypsin digestion 

No 
fractionation 

Q 
Exactive 

(ThermoFi
sher 

Scientific)  

90 15,017 ± 
3,654  6,684 ± 998 

Berberine 
Cultured 

fecal 
sample 

Bacterial cells 
were lysed in 
urea-Tris-HCl 
buffer, cell 
lysate were 
directly used for 
trypsin digestion 

No 
fractionation 

LTQ-
Orbitrap 

XL 
(Thermo 
Electron) 

240 4,345 ± 
1,368 5,612 ± 956 

IBD 
Intestinal 
aspirate 
sample 

Bacterial cells 
were lysed in 
urea-Tris-HCl 
buffer 
containing 4% 
SDS, proteins 
were 
precipitated and 
washed before 
trypsin digestion 

No 
fractionation 

Q 
Exactive 

(ThermoFi
sher 

Scientific) 

240 32,882 ± 8,
836 14,603 ± 3,328  
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Table S5. Analysis of nFR variance contributed by region,diagnosis and inflammation in the 
IBD dataset 
one-way ANOVA test, aov(nFR ~ region+region:Inflammed+Diagnosis, data = data)  
  Df Sum Sq Mean Sq F value Pr(>F) Signif. 
Region 2 0.00684 0.003422 2.053 0.13153   
Diagnosis 2 0.03215 0.016077 9.648 0.000108 *** 
Region:Inflammed 3 0.01462 0.004874 2.925 0.035447 * 
Residuals 168 0.27996 0.001666       
---       
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Table S6. Analysis of nFR variance contributed by individuals and compounds 
in the RapidAIM dataset 

one-way ANOVA test, aov(nFR ~ Individual + Drug, data = data)   
  Df Sum Sq Mean Sq F value Pr(>F) Signif. 
Individual 4 0.019238 0.00481 85.403 <2.00E-16 *** 
Drug 43 0.007827 0.000182 3.232 3.27E-08 *** 
Residuals 171 0.00963 0.000056       
---       
       
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S7. Analysis of nFR variance contributed by individuals and compounds in 
the Berberine dataset 

one-way ANOVA test, aov(nFR ~ Individual + Drug, data = 
data)   
  Df Sum Sq Mean Sq F value Pr(>F) Signif. 
Individual 6 0.02443 0.004072 12.886 1.03E-10 *** 
Drug 17 0.00866 0.000509 1.612 0.0752 . 
Residuals 99 0.03129 0.000316       
---       
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

  



 37 

Table S8. Analysis of dij variance contributed by region, diagnosis and inflammation in 
the IBD dataset 

       
Permutation test for adonis under reduced model    
Terms added sequentially (first to last)    
Permutation: free       
Number of permutations: 999      
 

      
Permutational Multivariate Analysis of Variance Using Bray-Curtis 
Distance Matrix, adonis2(formula = data.dist ~ Region + Diagnosis + 
Diagnosis:Inflammed, data = data.meta, permutations = 999) 

  Df SumOfSqs R2 F Pr(>F) Signif. 
Region 2 0.000306 0.01337 1.3252 0.186   
Diagnosis 2 0.002217 0.09692 9.6039 0.001 *** 
Diagnosis:Inflammed 2 0.000845 0.03693 3.6594 0.002 ** 
Residual 169 0.019503 0.85277       
Total 175 0.02287 1       
---       
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Table S9. Analysis of dij variance contributed by individual and compounds in 
the RapidAIM dataset 

       
Permutation test for adonis under reduced model   
Terms added sequentially (first to last)   
Permutation: 
free      
Number of permutations: 999     
 

      
Permutational Multivariate Analysis of Variance Using Bray-
Curtis Distance Matrix, adonis2(formula = data.dist ~ Individual 
+ Drug, data = data.meta, permutations = 999) 

  Df SumOfSqs R2 F Pr(>F) Signif. 
Individual 4 0.012101 0.38472 35.4164 0.001 *** 
Drug 43 0.004746 0.1509 1.2922 0.001 *** 
Residual 171 0.014607 0.46438       
Total 218 0.031454 1       
---       
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S10. Analysis of dij variance contributed by individuals and compounds in the Berberine 
dataset 

        
Permutation test for adonis under reduced model    
Terms added sequentially (first to last)    
Permutation: free       
Number of permutations: 999      
 

       

Permutational Multivariate Analysis of Variance Using Bray-Curtis 
Distance Matrix, adonis2(formula = data.dist ~ Individual + Drug, data = 
data.meta, permutations = 999) 

 
  Df SumOfSqs R2 F Pr(>F) Signif.  
Individual 6 0.011612 0.22117 5.6832 0.001 ***  
Drug 17 0.007176 0.13669 1.2396 0.069 .  
Residual 99 0.033714 0.64214        
Total 122 0.052503 1        
---        
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 


