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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The paper by Li et al. presents an interesting and innovative novel method to measure functional 

redundancy in microbiome samples based on metaproteomic analysis coupled to network analysis of 

taxon-specific proteome content. This is an important topic, and could potentially help to 

ecologically and functionally interpret differences between microbiome samples. The manuscript is 

well-written and illustrated with beautiful figures, and the method is interesting and novel. Still, I 

have a few major concerns. 

 

First and most importantly, the authors use the COG database to measure functional redundancy. 

This database only contains <5,000 protein families, and many of these families comprise huge 

numbers of distinct biochemical and ecological functions. The fact that even within single bacterial 

genomes, many of these COGs have many different functionally distinct copies speaks to the fact 

that this may be problematic to use as a measure of functional redundancy. Taking cytochrome 

P450s (COG2124) as an example, this family has hundreds of distinct documented biochemical 

functions (see https://www.uniprot.org/uniprotkb?facets=reviewed%3Atrue&query=p450 AND 

(taxonomy_name%3Abacteria)), which are not at all redundant. I believe this is more the rule than 

the exception, which makes me suspect that the current method will lead to a gross overestimation 

of functional redundancy. I am also missing a validation to show that (or quantify to what extent) the 

metric in fact accurately measures true functional redundancy in for example a model system 

(perhaps a small synthetic microbiome)? 

 

Second, I am also puzzled by the claim of the authors that species-level analyses were not possible, 

because many proteins are shared between species (line 380-381). Across species boundaries, 

proteins will hardly ever have the exact same sequence? It would be very interesting and helpful to 

see how results at different taxonomic levels would compare. 

 

A few more notes follow below: 

- Line 48: ‘diversity calculators’ -> ‘taxonomic diversity calculators’? 

- Line 166-170: I wonder whether some of this may be biased by (large) differences in (required) 

protein abundance from different functional categories, which may cause some proteins simply to 

be below the detection limit (especially for rarer microbes). 

 

 

 



Reviewer #2 (Remarks to the Author): 

 

The paper entitled “Revealing Proteome-Level Functional Redundancy in the Human Gut 

Microbiome using Ultra-deep Metaproteomics” by Li and Wang brings an innovative use of 

metaproteomics to assess functional redundancy in the human gut microbiome. They provide an 

approach to do so, demonstrate that it is applicable to metaproteomic datasets from various 

methodologies and show that functional redundancy and subsequent metrics are biologically 

relevant to detect significant microbiome responses to environmental factors. 

It was really interesting to read and I do have few comments or questions for clarification. Those few 

points are summarized below: 

 

First, and as a very broad comment, I wonder if using large unspecific database do not artificially 

increase functional redundancy (Also see later comment on database usage and metagenomics)? 

You have performed a 2-step search but of course, for some closely related species that might not 

be in your sample, you would still have a hit and those species will end up in your second search and 

lead to increased functional redundancy. Would such measurements not be more accurate using a 

more specific database? 

 

In a related comment, in Figure 3C, FDp is higher than FDg for sample HM454. Please correct me if 

I’m wrong, but my understanding is that it should be (in theory) impossible to have a FDp higher 

than a FDg. In practice, it might be possible If things are missed at the metagenomic level or if there 

are false positives at the metaproteomics level. 

Your GCN and PCN are both calculated using matches against the IGC database right? How would 

you explain that situation? 

Since you have metagenomics, why didn’t you use it as a database for your Metaproteomics? I guess 

with that approach you would have not found a FDp higher than FDg. 

 

In the section, Protein-level FR outcompetes diversity indices in detecting microbiome responses to 

environmental factors: 

In lines 256-258, you mentioned that “In patients diagnosed with (IBD), nFRp levels were 

significantly lower than that of the non-IBD individuals”. What was the cause, was it due to a loss of 

taxa or a loss of function? 

 

In the section, Alteration of between-proteome functional distances in diseases and compound-

treated microbiome: 

 



Dij is the functional distance between taxa i and taxa j (considering their proteome content). 

In line 303, you mention that Dij values increased in inflammation. To me, it makes sense that if the 

distance increases, the redundancy decreases. Yet, in line 304, you write that there is a significant 

contribution of between proteome functional distance decrease to the overall decrease of nFRp in 

IBD samples. Either the “proteome functional distance” in that sentence does not correspond to Dij 

and then I’m a bit confused, or the “proteome functional distance” should increase and the sentence 

is wrong. Can you clarify please? 

 

Methodology section: 

In line 609, you mentioned that Jensen-Shannon divergence and Kullback–Leibler divergence were 

calculated using the R package LaplacesDemon. However, in the results only KL was used. I actually 

had initially a random, out of curiosity question: What features of the Dij distributions made you 

choose KL where people usually go for Jensen-Shannon? Were the results the same when using 

Jensen-Shannon? 

 

Supplementary figure section: 

In supplementary figure 3, you mention the UHGP database. I do not find it in the main text/in the 

methodology. Am I missing it? 

In any case, in supplementary figure 3, the numbers of genera found by either UHGP or IGC are very 

different, but they are not for COG. Do you have an idea why? And (going back to my first question) 

what is the effect of the database choice in the assessment of functional redundancy. Do your 

findings hold if you were to use the UHGP catalogue? 

 

Minor comments/typos: 

Line 248: SISPRORT --> SISPROT 

Line 328: Functionals --> functions 

Line 334: tend to be playing --> tend to play 

Line 514-515: searching against the IGC or database -->What does that mean: OR database? 

Figure 2I- Legend: There are not 4 rows. Maybe upper left panel, lower right panel,etc,.. would be 

clearer. 
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Responses to Reviewer #1 
 
Point 1.0: The paper by Li et al. presents an interesting and innovative novel method to measure 
functional redundancy in microbiome samples based on metaproteomic analysis coupled to 
network analysis of taxon-specific proteome content. This is an important topic, and could 
potentially help to ecologically and functionally interpret differences between microbiome samples. 
The manuscript is well-written and illustrated with beautiful figures, and the method is interesting 
and novel. Still, I have a few major concerns. 
 
Response: We thank Reviewer #1 for reviewing our manuscript and her/his very positive 
assessment on the general interest and novelty of our method. Next, we address each of the 
reviewer comments in order. (Figures associated with the responses are shown in the end of this 
response letter as Figs. R1-17.) 
 
 
Point 1.1: First and most importantly, the authors use the COG database to measure functional 
redundancy. This database only contains <5,000 protein families, and many of these families 
comprise huge numbers of distinct biochemical and ecological functions. The fact that even 
within single bacterial genomes, many of these COGs have many different functionally distinct 
copies speaks to the fact that this may be problematic to use as a measure of functional 
redundancy. Taking cytochrome P450s (COG2124) as an example, this family has hundreds of 
distinct documented biochemical functions 
(see https://www.uniprot.org/uniprotkb?facets=reviewed%3Atrue&query=p450 AND 
(taxonomy_name%3Abacteria)), which are not at all redundant.  
 
Response: We fully agree with Reviewer #1 that some COGs have many distinctly documented 
functions. In a previous study (Tian et al. (2020)), instead of using the COG database, the authors 
used the KO (KEGG Orthology) database to calculate the gene-level functional redundancy. In 
our dataset, while 75.9% of COGs correspond to unique KOs, the remaining 24.1% of COGs were 
matched to multiple KOs (see Fig.R1).  
 
There are two reasons why we chose to use the COG database instead of the KO database in 
the previous version of our manuscript:  
1. A trade-off between functional granularity and annotation coverage. Although COG 

compromises functional granularity, the COG database provides a higher annotation 
coverage than the KEGG (for example, for the deep metaproteomics dataset of the four 
individuals, there were a total of 50,216 protein groups identified. 46,095 (91.7%) of these 
protein groups were successfully annotated with COGs, while only 37,795 (75.3%) of these 
protein groups were annotated with KOs). Although some annotated functions in COG belong 
to the categories of ‘General function prediction only’ and ‘Functions unknown’, they helped 
us increase the annotation coverage and thus can be included in our FR௣  computation. 
Therefore, there was a trade-off between using a functional annotation of a higher coverage 
and using a functional annotation of a higher resolution. 
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2. Lower coverage of functional annotation decreased sensitivity to detect FRp responses. 
To determine whether higher coverage or higher resolution is more advantageous, we 
compared COG vs KEGG in capturing functional distance between different drug treatments, 
along with CAZyme annotations which also had low functional coverage but high resolution. 
We found that COG functional annotation is more sensitive than KEGG in detecting responses 
in microbiome functional networks (more significant differences for the case of COG 
annotation in Fig. R2A-C). Therefore, we chose the COG annotation in the FRp analysis in 
the previous version of our paper. 

Motivated by Reviewer #1’s comment, we took a deeper step into this question and came up with 
a better solution so that we do not have to compromise either coverage or resolution. By 
combining the merit of both KEGG and COG annotations, we can gain a high annotation 
coverage meanwhile maximizing functional granularity. Specifically, we first used KEGG to 
annotate functions to protein groups. Next, for those that could not be annotated with a KO, the 
annotations were complimented with COG when a protein-COG match was present. In this way, 
we achieved a high coverage of annotated proteins (92.7%) without compromising the granularity 
of functions. We thereafter refer to this method as the KEGG-COG annotation. 

In the revised manuscript, we replaced the COG functional annotation with the KEGG-COG 
annotation and re-rerun all the data analyses. We found that the previous findings based on COG 
annotation were well-reproduced by the KEGG-COG annotation (Fig. R2D; Fig. R2E-F; Figs. 2-
5; Supplementary Figs. S10-17; Supplementary Tables S5-10). For example, as show in Fig. 
R2E-F, previous and revised findings in the IBD dataset are consistent. 

To clarify the trade-off between coverage and resolution and introduce the KEGG-COG 
annotation method, in the revised manuscript, we have added the following sentences (see main 
text, page 5, lines 127-146): 

“In terms of functional annotations, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database has been widely used in functional metrics such as the genomic-level 
functional redundancy (Tian et al., 2020). However, it is common in metaproteomic studies 
that a certain proportion of proteins does not have a KEGG annotation. Indeed, in this 
dataset, there were a total of 50,216 protein groups identified, among which, 46,095 (91.7%) 
were successfully annotated with clusters of orthologous groups (COGs), while only 
37,795 (75.3%) were annotated with KEGG Orthologs (KOs). Therefore, we 
complemented the KEGG annotations with COG to achieve a better coverage (denoted as 
KEGG-COG annotation; see Supplementary Note S2 for more comparisons). This 
annotation will be applicable to metaproteomic-based functional redundancy computations 
without the need for the samples’ metagenomes. 

In addition, to facilitate direct comparisons of redundancy or network metrics between the 
GCN and the PCN, we further used the samples’ paired metagenomes to generate prodigal-
predicted protein sequences as the database to perform another metaproteomic database 
search. An average of 65,541 unique peptides and 29,392 protein groups per sample were 
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obtained from the search. The prodigal sequences were blasted against the UHGP database 
for taxonomic matches. KEGG-COG annotations were performed. GCNs or PCNs were 
then computed by summing read counts or protein intensities at each taxon-function 
incidence (see Methods).” 

 

Point 1.2: I believe this is more the rule than the exception, which makes me suspect that the 
current method will lead to a gross overestimation of functional redundancy.  

Response: We thank Reviewer #1 for this critical comment. We compared the nFR௣  values 
calculated from COG, KEGG, and KEGG-COG annotations (Fig. R3). As Reviewer #1 predicted, 
the COG showed a slight overestimation of nFR௣. However, despite better functional granularity, 
KEGG annotation alone results in even higher nFR௣. Therefore, the lower coverage of proteins 
using KEGG may induce an even high impact on nFR௣ calculation. We found that the new KEGG-
COG annotation decreased nFR௣  by solving the resolution and coverage issues at once. We 
further validated the slight overall decrease of nFR௣  for the KEGG-COG annotation using the IBD 
dataset (Fig. R4).  Note that the overall difference did not affect any conclusion on the comparison 
between groups in our dataset (e.g., Fig. R2). 
 

Point 1.3: I am also missing a validation to show that (or quantify to what extent) the metric in 
fact accurately measures true functional redundancy in for example a model system (perhaps a 
small synthetic microbiome)? 

Response: We thank Reviewer #1 for this excellent suggestion. We further demonstrated the 
sensitivity and strength of FR௣ and nFR௣  using in silico communities generated with genomes and 
proteomes of six single bacterial strains (i.e., Phocaeicola (Bacteroides) vulgatus ATCC 8482, 
Bacteroides ovatus ATCC 8483, Bacteroides uniformis ATCC 8492, Blautia hydrogenotrophica 
DSM 10507, Escherichia coli DSM 101114). Proteomes of these strains cultured in four media 
(basal medium with or without added sugars glucose, sucrose, or kestose) were obtained from 
our previous study (Wang et al., 2022, doi: https://doi.org/10.1101/2022.11.04.515228) (Fig. 
R5A). We first used the genomes and proteomes (in basal media) to generate different three-
member communities in silico (Fig. R5B, C). When all three members belong to the Bacteroides 
genus (or Phocaeicola genus), both genome- and proteome-level functional redundancy were 
higher compared with the other combinations. The redundancies decreased as the community 
becomes more diverse at the genus level. The agreement of changing trends between genome- 
and proteome-level functional redundancy (Fig. R5B vs. R5C) to some extent validates the 
accuracy of FR௣ and nFR௣.  

Furthermore, we argue that despite genome-level functional redundancy FR௚ seems predictive of 
the proteome-level functional redundancy FR௣ here, in principle, FR௚ only responds to the change 
of microbial abundances. The responses of proteomes to the environment cannot be fully 
captured by genomes. However, accurate proteomes cannot be easily derived in-silico. To 
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demonstrate the effect of variable proteomes on FR௣ and nFR௣, we replaced the proteomes of 
strains with the ones cultured in the presence of different sugars (and maintained microbial 
abundances), finding that the levels of FR௣ and nFR௣  showed fluctuations. Note that since the 
microbial compositions were the same among groups, their genome-level functional 
redundancies were equal (Fig. R5D). This suggests that FR௣  and nFR௣  are sensitive to a 
community’s functional responses, even if induced solely by proteome changes. This further 
clearly emphasizes the value of performing proteome-level functional redundancy analysis as an 
important community ecology metric beyond metagenome-based approaches.  

This result has been added to the revised manuscript as Supplementary Figure S3 and the 
corresponding texts have been added (page 7, lines 178-197):  

“We demonstrate the sensitivity of FR௣ and nFR௣ using in silico communities generated 
with genomes and proteomes of single bacterial strains (i.e., Phocaeicola (Bacteroides) 
vulgatus ATCC 8482, Bacteroides ovatus ATCC 8483, Bacteroides uniformis ATCC 8492, 
Blautia hydrogenotrophica DSM 10507, Escherichia coli DSM 101114). Proteomes of 
these strains cultured in four different media (basal medium with or without added sugars 
glucose, sucrose or kestose) were obtained from our previous study (Wang et al., 2022) 
(Supplementary Figure S3A). We first used the genomes and proteomes (in basal media) 
to generate different three-member communities in silico (Supplementary Figures S3B 
and S3C). When all three members belong to Bacteroides or Phocaeicola genera, the 
community’s genome- and proteome-level functional redundancy were both higher 
compared with the other combinations. The redundancies decreased as the community 
becomes more diverse at the genus level. In Supplementary Figures S3B and S3C, despite 
genome-level functional redundancy may seem predictive of the proteome-level functional 
redundancy, we emphasize that, in principle, genome-level functional redundancy only 
responds to the change of microbial abundances. When we further replaced the proteomes 
of strains with the ones cultured in the presence of different sugars (and maintained 
microbial abundances), the levels of FR௣ and nFR௣ showed fluctuations (Supplementary 
Figure S3D). This suggests that FR௣ and nFR௣ are sensitive to a community’s functional 
responses, even induced solely by proteome alterations while microbial abundances are 
unchanged.” 

 
Point 1.4: Second, I am also puzzled by the claim of the authors that species-level analyses were 
not possible, because many proteins are shared between species (line 380-381). Across species 
boundaries, proteins will hardly ever have the exact same sequence? 

Response: We apologize for not explaining it more clearly and explicitly. It is true that proteins 
from different species will hardly have the exact same sequence. The reason why LC-MS/MS 
identified protein(Group)s are shared between species is that the metaproteomics approach 
identifies proteins relying on tryptic peptides. As shown in Fig. R6, while LC-MS/MS identified the 
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peptide sequences (highlighted in cyan, green, and yellow), it missed the sequences (highlighted 
in red) that distinguish the two species from the same genus (taken from the four individuals’ 
metaproteomics dataset). Therefore, the current limitation in the metaproteomics techniques 
renders the species-level FR௣ computation infeasible. We hope future advancement in sequence 
coverage and bioinformatics will facilitate the species-level FR௣  calculation. We have mentioned 
this point in the revised manuscript (see Page 15, lines 423-426): 

“This is because many identified protein groups are shared between different species due 
to insufficient coverage of species-unique peptide sequences. Future advancements in 
sequence coverage and bioinformatics are warranted.” 

 

Point 1.5: It would be very interesting and helpful to see how results at different taxonomic levels 
would compare. 

Response: We thank Reviewer #1 for this excellent suggestion. Here, we selected the rifaximin 
(RFXM) treatment vs DMSO groups in the RapidAIM dataset to compare results at different 
taxonomic levels. From the genus level to the phylum level, a gradual increase in nFR௣  was 
observed (Fig. R7). Although the RFXM group showed an overall decline in nFR௣ compared to 
the DMSO group, a significant decrease (one-sided Wilcoxon test, p < 0.05) was only observed 
at the genus level. This suggests that the genus-level nFR௣provides a good sensitivity in detecting 
the community response to environment changes. 
 
Point 1.6: A few more notes follow below: 
- Line 48: ‘diversity calculators’ -> ‘taxonomic diversity calculators’? 
 
Response: We have corrected it to ‘taxonomic diversity calculators’.  
 
Point 1.7: - Line 166-170: I wonder whether some of this may be biased by (large) differences in 
(required) protein abundance from different functional categories, which may cause some proteins 
simply to be below the detection limit (especially for rarer microbes). 
 
Response: We thank Reviewer #1 for this comment. It is possible that proteins below the 
detection limit can be missed in metaproteomics analysis. However, in Fig. 1A, the statement was 
based on a summary of proteins on the phylum-COG category level, meaning that RNA 
processing and modification (A) and mobilome (X) proteins were indeed overall too low to be 
identified from the dataset, suggesting an overall low abundance of their presence in the 
community. 
 
Finally, we thank Reviewer #1 again for reviewing our manuscript and her/his very insightful 
comments that help us significantly improve the quality of our work. We hope our responses above 
have addressed her/his comments in a satisfactory manner.  
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Response to Reviewer #2 
 
Point 2.0: The paper entitled “Revealing Proteome-Level Functional Redundancy in the Human 
Gut Microbiome using Ultra-deep Metaproteomics” by Li and Wang brings an innovative use of 
metaproteomics to assess functional redundancy in the human gut microbiome. They provide an 
approach to do so, demonstrate that it is applicable to metaproteomic datasets from various 
methodologies and show that functional redundancy and subsequent metrics are biologically 
relevant to detect significant microbiome responses to environmental factors. It was really 
interesting to read and I do have few comments or questions for clarification. Those few points 
are summarized below: 
 
Response: We truly appreciate Reviewer #2’s positive assessments of our work. We have 
provided point-by-point responses to Reviewer #2’s comments below, with important figures being 
attached at the end of the response letter as Figs. R1-17. 
 
 
Point 2.1: First, and as a very broad comment, I wonder if using large unspecific database do not 
artificially increase functional redundancy (Also see later comment on database usage and 
metagenomics)? You have performed a 2-step search but of course, for some closely related 
species that might not be in your sample, you would still have a hit and those species will end up 
in your second search and lead to increased functional redundancy. Would such measurements 
not be more accurate using a more specific database? 
 
Response: We thank Reviewer #2 for this very insightful comment. We interpret it as follows: if 
we use a large unspecific database covering much more species than those in the actual sample, 
we may detect peptides shared among proteins from different species and therefore get an 
overestimated list of possible protein IDs in each proteinGroup. Using a 2-step search, we were 
able to shorten the list of proteins by generating a reduced database from the large unspecific 
database. Reviewer #2 pointed out that such a database may still include species that are absent 
in the samples, and therefore proteins from those absent species may still end up in the identified 
proteinGroups, which may affect the assessment of functional redundancy.  

We addressed Reviewer #2’s concern as follows. First, we fully agree with Reviewer #2 that using 
a dataset-specific metagenomic database can eliminate such a problem. We performed this 
analysis and did not find a big increase in functional redundancy (Figs. R8-9; please also see our 
detailed responses to Point 2.3 raised by Reviewer #2). Second, we developed the ‘protein-
peptide-bridge’ approach which can avoid the above issue. In the ‘protein-peptide-bridge’ 
approach, a taxonomic match is not performed through protein IDs in the proteinGroups. As a 
result, it would not include absent species due to any presence of their protein IDs. Instead, we 
used a peptide-centric approach to link proteinGroups to taxa. Peptides derived from confident 
(FDR = 1%) peptide-spectrum matches were matched to their taxonomically lowest common 
ancestors, and their corresponding proteinGroups were given taxonomic assignments 
accordingly. In this way, interference from absent species in the database would not exist. The 
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main advantage of our ‘protein-peptide-bridge’ approach is that it is applicable when no matched 
metagenomic dataset is available in a metaproteomic study. 
 
 
Point 2.2: In a related comment, in Figure 3C, FDp is higher than FDg for sample HM454. Please 
correct me if I’m wrong, but my understanding is that it should be (in theory) impossible to have a 
FDp higher than a FDg. In practice, it might be possible If things are missed at the metagenomic 
level or if there are false positives at the metaproteomics level. 
Your GCN and PCN are both calculated using matches against the IGC database right? How 
would you explain that situation? 
 

Response: We thank Reviewer #2 for this comment. It is possible that FD௣ is higher than FD௚, at 
least with our FD metric based on Rao’s quadratic entropy. Here, we use in silico communities 
simulated by using proteomic and genomic data of single strains to demonstrate why FD௣ can be 
higher than FD௚ . According to the FD definition: FD = ∑ ∑ ݀௜௝݌௜݌௝ௌ௝ஷ௜ௌ௜ୀଵ , where ݀௜௝ = 1 − ∑ ୫୧୬൫ீ೔ೌ,ீೕೌ൯ೌ∑ ୫ୟ୶൫ீ೔ೌ,ீೕೌ൯ೌ  for GCN, and ݀௜௝ = 1 −  ∑ ୫୧୬൫௉೔ೌ,௉ೕೌ൯ೌ∑ ୫ୟ୶൫௉೔ೌ,௉ೕೌ൯ೌ  for PCN, the FD௣ and FD௚ values are affected by 

multiple factors, i.e., the relative abundance of each taxon, the presence/absence of each function, 
and the abundance of each function. In real natural microbiomes, all these factors impact FD 
values. As shown in Fig. R5 of this response letter (and in Supplementary Figure S3 of the 
revised manuscript), we performed proteomics analysis based on culture results of six single 
bacterial strains, and in silico created different communities using the proteomes and genomes. 
Our results showed that all in silico communities had higher FD௣ than FD௚.  

To create an even simpler example, we eliminated the contribution of proteomic and genomic 
functional abundances by replacing the abundance values with 1 (presence) or 0 (absence). 
Therefore, now we could calculate the unweighted- FD௣  which is solely affected by the 
presence/absence of functions in each taxon. Results still showed higher (unweighted-) FD௣ than 
(unweighted-) FD௚ values in the simulated communities (Fig. R10).  
 
 
Point 2.3: Since you have metagenomics, why didn’t you use it as a database for your 
Metaproteomics? I guess with that approach you would have not found a FDp higher than FDg. 
 
Response: We thank Reviewer #2 for this comment. In the original manuscript, we did not use 
metagenomic data to generate a protein database for the ultra-deep metaproteomic dataset, we 
used the IGC database instead. From the perspective of providing a practical computational 
workflow for researchers, we were aware of that in many metaproteomic studies there may not 
be accompanying metagenomic data available. Therefore, we used the “protein-peptide-bridge” 
approach to generate PCNs from stand-alone metaproteomic datasets. This approach is therefore 
applicable to the four other datasets (SISPROT, RapidAIM, Berberine, and IBD) that didn’t have 
metagenomes sequenced. 
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We fully agree with Reviewer #2 that using metagenomics-based protein databases will facilitate 
a better comparison between a microbiome’s GCN and PCN. Therefore, in the revised manuscript, 
we used metagenomics to generate prodigal-predicted protein sequences and used it as the 
database to search the ultra-deep metaproteomics dataset. We showed that the comparisons of 
FR, nFR, TD and FD between GCNs and PCNs remained similar. The PCNs still preserved a 
high level of FR and nFR from their corresponding GCNs, and we still found FD௣ values higher 
than FD௚ (Fig. R8). 

We also successfully reproduced other results based on GCN-PCN networks. These include the 
connectance of new GCNs and PCNs. Previously, we used GCN connectance = 0.220 and PCN 
connectance of 0.049 to perform the simulation of the Consumer-Resource Model (CRM) (Fig. 
2B-G). Using the new search results, we obtained the same values of connectance of GCN 
(0.22 ± 0.02; Mean ± SD, N = 4) and PCN (0.05 ± 0.02; Mean ± SD, N = 4). Therefore, we do not 
need to change the parameters and results of the CRM models.  

We also randomized the new PCNs to generate the four types of null networks. Our new results 
are consistent with our previous findings based on the IGC search, where real PCNs had higher 
levels of FR௣  and nFR௣  than their randomized counterparts (Fig. R9A vs Fig. R9C). The 
comparisons of dij distributions in different groups of networks looked also very similar (Fig. R9B 
vs Fig. R9D). Therefore, the metagenome-based results did not affect our findings and 
conclusions.  

In the revised manuscript, we have added the metagenome-based results (Figure 2H-I, Figure 
3, and Supplementary Figures S4, S10) and added texts (page 7, lines 200-203): 

“The PCNs of metagenome and IGC databases-based search yielded similar depth, both 
achieved reasonable depths compared with each individual’s respective GCNs 
(Supplementary Figure S4)”. 

In addition, we have modified the texts in the revised manuscript (pages 8-9, lines 231-244): 
“By visualizing incidence matrices of these PCNs, we observed highly nested structures 
(Figure 2H and Supplementary Figure S10) and found that the Nestedness metric based 
on Overlap and Decreasing Fill (NODF) were high in the PCNs (NODF = 0.28 ± 0.01; 
Mean ± SD, N = 4, metagenome database-based search), which are close to those of the 
respective GCNs (NODF = 0.36 ± 0.05; Mean ± SD, N = 4). Similarly, the PCNs based on 
IGC database-based search also resulted in high NODF values (0.34 ± 0.01; Mean ± SD, 
N = 4). We then calculated the degree distributions of genera and functions in the PCNs 
and GCNs, respectively. On the functional dimension, similar to previous observations in 
GCNs (Tian et al., 2020), the degree distributions of functions in both the GCN and PCN 
have fat tails, represented by some functions being associated with a high number of taxa 
(Figure 2I and Supplementary Figure S10). Similar nested topology and functional degree 
distributions can be observed in the PCNs generated with the IGC-based search 
(Supplementary Figure S11).” 
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Point 2.4: In the section, Protein-level FR outcompetes diversity indices in detecting microbiome 
responses to environmental factors: In lines 256-258, you mentioned that “In patients diagnosed 
with (IBD), nFRp levels were significantly lower than that of the non-IBD individuals”. What was 
the cause, was it due to a loss of taxa or a loss of function? 
 
Response: We thank Reviewer #2 for this critical comment. We believe that the observed nFR௣ 
differences between IBD and non-IBD individuals is largely due to the loss of redundant functions. 
If we simply compare functional distances between highly abundant taxa, we found that dij 

between these genera were significantly affected. We show in Fig. R11 (and in Fig. 5 of the 
manuscript) that the dij distributions shifted rightwards in UC and CD samples, as well as in 
inflamed regions (Fig. R11A and Fig. R11B). If we perform statistical analysis on dij values 
between inflamed vs non-inflamed regions, we can observe that a great proportion of dij values 
have a significant increase (Fig. R11C). This compelling evidence suggests that redundant 
functions were lost between taxa in IBD inflammations. 
 
Point 2.5: In the section, Alteration of between-proteome functional distances in diseases and 
compound-treated microbiome: Dij is the functional distance between taxa i and taxa j 
(considering their proteome content). In line 303, you mention that Dij values increased in 
inflammation. To me, it makes sense that if the distance increases, the redundancy decreases. 
Yet, in line 304, you write that there is a significant contribution of between proteome functional 
distance decrease to the overall decrease of nFRp in IBD samples. Either the “proteome 
functional distance” in that sentence does not correspond to Dij and then I’m a bit confused, or 
the “proteome functional distance” should increase and the sentence is wrong. Can you clarify 
please? 
 
Response: We are sorry for causing such confusion. Indeed, the functional redundancy 
decreases if the functional distance increases. We apologize for the mistake in the sentence 
“suggesting a significant contribution of between-proteome functional distance decrease to the 
overall decrease of nFR௣ in IBD samples”, where we meant to say “increase”. We have fixed this 
mistake in the revised manuscript (see page 12, line 341). 
 
 
Point 2.6: Methodology section: 
In line 609, you mentioned that Jensen-Shannon divergence and Kullback–Leibler divergence 
were calculated using the R package LaplacesDemon. However, in the results only KL was used. 
I actually had initially a random, out of curiosity question: What features of the Dij distributions 
made you choose KL where people usually go for Jensen-Shannon? Were the results the same 
when using Jensen-Shannon? 
 
Response: We thank Reviwer #2 for this comment. We apologize for our mistake. Taking 
Reviewer #2’s suggestion, we switched to using Jensen-Shannon divergence, which may be 
more broadly used and better accepted. We found that, together with the change of functional 
annotation method (from COG to KEGG-COG), the results are still much more consistent with our 
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previous comparisons (Fig. R12). We have switched the Kullback–Leibler divergence to the 
Jensen-Shannon divergence in the revised main text (page 12, lines 352-356). 

 
 
Point 2.7: Supplementary figure section: In supplementary figure 3, you mention the UHGP 
database. I do not find it in the main text/in the methodology. Am I missing it? 

Response: We thank Reviewer #2 for carefully examining the details of our manuscript. We 
previously also assessed the approach using the UHGP database with an LCA approach (Figure 
R13), and the findings agreed with the IGC-based approach. Considering that our computation of FR௣ is robust and would not be affected by metaproteomics sample analysis or bioinformatic 
pipelines, other possible workflows leading to the successful construction of PCNs should also 
lead to same conclusions in terms of community ecology comparisons. As we have already 
conducted a thorough comparison of (1) GCN vs PCN (Fig. 2I, 3A, S10, and S11), (2) 
metagenome-based and IGC-based database search (e.g. Fig. R8 & Fig. R9), (3) three different 
functional annotation methods (Supplementary Note 2), and (4) four different metaproteomic 
strategies (Supplementary Fig. S12), we initially decided not to include the UHGP-based search 
to avoid unnecessary complexity. But we forgot to remove the UHGP-based search from 
Supplementary Figure 3. We thank Reviewer #2 for pointing this out. Considering Reviewer #2’s 
next comment (Point 2.8), we present the UHGP-based workflow that we previously tested and 
compare its findings to that of the IGC-based workflow (Figs. R13-17). More details can be found 
in the responses to the following UHGP-related comments from Reviewer #2 (Points 2.8 and 2.9). 

 
Point 2.8: In any case, in supplementary figure 3, the numbers of genera found by either UHGP 
or IGC are very different, but they are not for COG. Do you have an idea why?  

Response: Yes, we believe it is related to the nature of UHGP database, we have added the 
details of the UHGP-based workflow below to help understand the reason: 

The UHGP-based workflow: we searched the datasets using the UHGP V1.0 catalog (Almeida 
et al., Nat Biotech, 39:105-114, 2021). In contrast to the IGC database, the UHGP database is 
based on more than four thousand reference genomes of the human gut microbiome. This catalog 
does not remove redundant proteins and therefore the proteinGroups may contain multiple 
proteins from different taxa sharing certain groups of tryptic peptides. The protein ID of the UHGP 
V1.0 catalog has a genome identifier in the middle, which can be matched to the taxa directly 
from their provided taxonomic annotation generated by Genome Taxonomy Database Toolkit 
(GTDB-Tk).  

For just a simple example, protein ‘GUT_GENOME001575_00044’ corresponds to 
GENOME001575, which is matched to s__Faecalicatena faecis. We therefore used a within-
proteinGroup LCA approach to determine the taxonomic information across proteins in each of 
the proteinGroups (Figure R13). A special feature of the UHGP V1.0 database is that in its 
taxonomic lineage information, many bigger genera were sub-divided into different sub-genera 
(for example, Bacteroides proteins obtained from IGC results may correspond to g__Bacteroides, 
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g__Bacteroides_A, g__Bacteroides_B or g__Bacteroides_C proteins in the UGHP results), and 
due to this reason, the results showed a higher number of genus matches in the previous 
Supplementary Figure 3 in both GCN and PCN. 
 
 
Point 2.9: And (going back to my first question) what is the effect of the database choice in the 
assessment of functional redundancy. Do your findings hold if you were to use the UHGP 
catalogue? 

Response: In the previously submitted manuscript, we used the IGC-COG workflow which 
determines the taxonomic origination of proteins using the “protein-peptide bridge” method. This 
was based on a careful comparison of six different strategies (i.e., two bioinformatic workflows X 
three functional annotation approaches). We summarized what we previously did using a flow 
chart as Figure R14.  

Since we’ve already stated the differences in functional annotation approaches and reasons in 
Supplementary Note 2, here we focus on comparing IGC-COC and UHGP-COG workflows. 
Although the UHGP-COG workflow is quite different from the IGC-COG workflow, we found that 
the two workflows yield highly similar network topologies (Fig. R15), consistent FRp, and robust 
functional distance responses to environmental changes (Fig. R16 and Fig. R17).  
 
Note that although here in this response letter we presented our previous test results based on 
IGC-COC and UHGP-COG workflows, in the revised manuscript, we have changed the functional 
annotation to using KEGG KO complemented by COG annotations (i.e. KEGG-COG) after 
considering Reviewer #1’s comments. Also, we have switched to using Jensen-Shannon 
divergence instead of Kullback–Leibler divergence in Fig. R18. The fact that all these findings 
were not affected (as shown in Fig. R2 and R12) clearly demonstrated that our metric of the 
protein-level function redundancy FRp is quite robust and generally applicable to database 
search workflows based on different protein or gene catalogs. 
 
Point 2.10: Minor comments/typos: 
Line 248: SISPRORT --> SISPROT 
Response: We have corrected this typo (see main text, page 10, line 292). 
 
 
Point 2.11: Line 328: Functionals  functions 
Response: We have corrected this typo (see main text, page 13, line 371). 
 
 
Point 2.12: Line 334: tend to be playing --> tend to play 
Response: We have revised that sentence accordingly (see main text, page 13, lines 376-377). 
 
 
Point 2.13: Line 514-515: searching against the IGC or database -->What does that mean: OR 
database? 
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Response: We have removed ‘or’ (see main text, page 18, line 532). 
 
 
Point 2.14: Figure 2I- Legend: There are not 4 rows. Maybe upper left panel, lower right 
panel,etc,.. would be clearer. 
Response: We have revised the legend to use “upper left panel, lower right panel, etc” to point 
to the figures (see main text, page 30, lines 880-883). 
 
 
Finally, we thank Reviewer #2 again for reviewing our manuscript and her/his very insightful 
comments that help us significantly improve the quality of our work. We hope our responses above 
have addressed her/his comments in a satisfactory manner.  
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Figures 
 

 
 

Figure R1. Histogram of matching all COGs to KEGG KOs. 
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Figure R2. Comparisons between different functional annotation strategies. A-D. 
Comparison of different functional annotation methods in sensitivity of detecting 
functional distances variations: A. COG annotation showed significant alteration of between-
genera dij distributions in response to drug treatments (J-S divergence). B-C. Using KEGG and 
CAZymes, despite the observation of similar patterns in the p-value heatmap, we did not observe 
any significant difference in J-S divergence between drugs (no asterisks shown). D. The KEGG-
COG annotation method showed significant alteration of between-genera dij distributions in 
response to drug treatments, in agreement with panel (A), COG-based annotations. Asterisks 
indicate statistical significance at the 0.05 level (FDR adjusted p value, Pairwise Wilcoxon test). 
E-F. Comparison of functional redundancy and related metrics with the IBD dataset showed 
agreements between the COG and KEGG-COG based annotations. 
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Figure R3. Comparison of nFRp values among different functional annotation methods. 
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Figure R4. KEGG-COG annotation induced slight decreases of nFRp in the IBD dataset. 
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Figure R5. In silico community demonstrates the sensitivity of the nFRp metrics. A. 
Illustration of experimental workflow. B. Genome-level FR, nFR, TD and FD of different in silico 
communities. C. Proteome-level FR, nFR, TD and FD of different in silico communities. D. 
Proteome-level FR, nFR, TD and FD of different in silico metaproteomes generated using 
proteomes cultured in different media. 
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Figure R6. An illustration showing why it is difficult to construct a species-level FR based 
on current metaproteomic techniques. Cyan, green and yellow-highlighted peptide sequences 
were identified by LC-MS/MS and those sequences could not be used to distinguish between the 
two species. 
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Figure R7. Comparison of nFRp between rifaximin (RFXM) treatment vs DMSO groups in 
the RapidAIM dataset. 
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Figure R8. Comparison of FR, nFR, TD and FD between GCNs and PCNs generated using 
different bioinformatic workflows. 
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Figure R9. Network randomizations performed using the metagenomic database-based 
PCNs highly reproduced the findings from IGC database-based PCNs. 
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Figure R10. FR, nFR, TD and FD in GCN and PCN of simulated communities. Here, dij was 
calculated based on 1 (presence) or 0 (absence) of each function. 
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Figure R11. Between-proteome functional distances in IBD microbiomes. A. Distribution of 
dij values by diagnosis. B. Distribution of dij values by inflammation. C. Volcano plot showing 
altered dij values between inflamed and non-inflamed sampling sites. The results were based on 
microbial genera of the top 95% of overall protein biomass in the dataset. 
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Figure R12. Switching from K-L divergence to J-S divergence showed highly similar findings. 
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Figure R13. Alternative approaches can be used to construct the PCN. Here we show the 
workflow of constructing a pipeline based on the UHGP database. 
 

 



 27 

 
Figure R14. Flow chart showing the comparison of different workflows and functional 
annotations for the PCN and FR analyses. 
Acronyms in the figure:  
PCN  Protein content network 
FR  Functional redundancy 
nFR  normalized Functional redundancy 
UHGP  Unified Human Gastrointestinal Protein catalog 
LCA  Lowest Common Ancestor approach 
IGC  Integrated Gene Catalog 
COG  Cluster of Orthologous Groups of proteins 
KEGG  Kyoto Encyclopedia of Genes and Genomes 
CAZyme Carbohydrate-Active enZYmes 
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Figure R15. Comparison of network topology and FRp, nFRp, FDp, TDp computed using IGC-
COC and UHGP-COG workflows. 
  

 



 29 

 
Figure R16. Comparison of nFRp changes determined by different workflows in the 
RapidAIM dataset. Comparison between RFXM (rifaximin) treatment and DMSO (control) 
groups are shown. 
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Figure R17. K-L divergence between dij distributions in the control (DMSO) and that of the 
other compounds based on (A) the IGC-COG workflow, and (B) the UHGP-COG workflow. 
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Reviewer #1 (Remarks to the Author): 

 

The authors did a thorough job revising the paper, which looks much better now. 

 

 

Reviewer #2 (Remarks to the Author): 

 

I would like to thank the authors for the extra work they put in the manuscript. All my comments 

and questions have been thoroughly addressed and the manuscript was properly edited. I do not 

have further comments or requests. 
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