
Supplementary Material - ‘The arrow-of-time in neuroimaging time series
identifies causal triggers of brain function’

Supplementary Results1

Quality of AoT estimation as a function of sample number2

In the resting state case, each available run contains 1200 time points. AoT strength can thus3

be quantified using many more samples than in our main analyses. To verify whether the detected4

causal effects would be altered in such a setting, we estimated τ at rest using up to 100000 samples5

(Fig. 1).6

As more samples were considered (i.e., moving downward in the top plot), the obtained AoT7

pattern was further strengthened, and the involved brain regions remained identical. This was8

confirmed by a spatial correlation between successively estimated patterns that already exceeded9
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Figure 1: Top - Estimation of τ in the resting state case when from 2000 to 100000 samples are used (top to bottom
in the heatmap), for all brain regions (left to right). Bottom left - Convergence of mean AoT across regions (τ̄)
as more samples are considered. Error bars denote standard error of the mean. Bottom right - Spatial correlation
between the AoT patterns obtained using two successive numbers of samples. The estimates reached using n∗

s = 8000
samples (the value selected for our main analyses) are highlighted by a dashed horizontal line (top panel) or a red
rectangle (bottom panels).



0.95 for n∗s = 8000 samples (bottom right plot). As could be expected given the strengthening of10

the detected causal effects, τ̄ also continued to moderately increase as further samples were added,11

until τ̄ ≈ 0.013 (bottom left plot).12

On task paradigms (Fig. 2), similar observations could be made in terms of pattern strength-13

ening and convergence, regardless of the exact task at hand. Thus, using n∗s = 8000 samples to14

estimate AoT strength appears sufficient, regardless of the investigated paradigm, to detect all the15

brain regions implicated in causal brain mechanisms.16
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Figure 2: For each task (row of plots), estimation of τ when up to 10000 samples are used (top to bottom in the
heatmaps), for all brain regions (left to right), and spatial correlation between the AoT patterns obtained using two
successive numbers of samples. The estimates reached using n∗

s = 8000 samples (the value selected for our main
analyses) are highlighted by a dashed horizontal line (left heatmaps) or a red rectangle (right plots). WM: working
memory.
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Regional AoT patterns across tasks17

Fig. 3 shows the AoT patterns extracted from full task recordings using n∗s = 8000 samples,18

when convergence is already achieved as demonstrated above. Below, drawing from past work1,19

we first briefly summarize the main components of each task. We then discuss the largest AoT20

contributors in terms of how they fit each paradigm’s demands. Since we consider full paradigms,21

for which a given area may transit between acting as a causal source or sink over the course of22

time, we do not take sign into account in what follows.23

The working memory task was an N -back task in which images of faces, tools, places and body24

parts were presented to the subjects. Half of the blocks consisted in a 0-back task, and half in a25

2-back task.26

In terms of AoT strength, the most influential areas were largely confined to the occipital27

cortex. There were also two anterior frontopolar regions from the right hemisphere (R341, R343),28

known to be important in working memory tasks for the manipulation of integrated information2.29

In the relational task, for relational blocks, the subjects were simultaneously shown two pairs30

of objects, with each object a combination of a shape and a texture. They had to determine which31

dimension differed between the top objects, and whether the bottom objects also differed along32

that same dimension. In matching blocks, they were instead shown two objects at the top of the33

screen, one at the bottom, and a word (either ”shape” or ”texture”) in the middle. They had34

to determine whether the bottom object matched any of the top ones in terms of the displayed35

dimension.36

Visual regions were the strongest contributors to the AoT pattern. Of all the tasks, this was37

the one with the broadest array of significant visual contributions. The intraparietal sulcus (IPS)38

was also resolved bilaterally (R73, R75, R282, R286). The IPS plays a role in tracking multiple39

objects3 as well as in short-term memory for multifeature objects4, both of which are specifically40

important for this task. The left rostrolateral prefrontal cortex (R135) was detected as well, and41

contributes to relational integration during reasoning5.42

In the emotion task, in emotional blocks, participants were shown one face at the top of the43

screen, and two at the bottom. They had to determine which of these two matches the top one.44
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Figure 3: Regional AoT patterns for all tasks (except the motor one, already shown in the main results), considering
full time courses and using n∗

s = 8000 samples for estimation. WM: working memory.
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The faces had either an angry or a fearful expression. In the shape blocks, they instead had to45

determine which of two bottom shapes matched the top one.46

AoT strength was overall low in the emotion task, for which the only few notable regions were47

part of the visual system.48

In the social task, participants were shown movie clips of geometrical shapes that either inter-49

acted in a certain way (social blocks), or moved randomly (random blocks). They had to decide50

whether the shapes were socially interacting or moving randomly, with the possibility to state that51

they were unsure.52

As in the above cases, the strongest contributors were visual regions. This task was the one53

with the second broadest set of influential visual areas. Similarly to the relational task, R282 and54

R286 were detected, which makes sense as the social movie clips also involved multiple objects to55

track. In addition, an area in the left angular gyrus (R72) previously linked to action awareness56

representation6 was pinpointed, as well as the left supramarginal gyrus (R95), which enables to57

retain an abstract representation of serial order information7, and the right inferior parietal lobule58

(R332), implicated in the discrimination of direction changes8.59

In the language task, participants were stimulated auditorily instead of visually. In story blocks,60

they were provided with short stories followed by a 2-alternative forced-choice question about the61

topic of the story. In the maths blocks, they were given a mathematical operation and had to select62

the correct answer out of two choices.63

Fittingly given the auditory nature of stimulation, the language task was the one for which the64

fewest visual regions were influential (R24, R221 and R222 only). In addition, several areas linked65

to theory of mind (ToM) were resolved, including the left medial prefrontal cortex (R179, involved66

in several ToM-related functions9) and the bilateral temporal pole (R124, R367 and R368, directly67

linked to ToM in story comprehension10).68

In the gambling task, subjects were asked to guess whether the number (between 1 and 9) on a69

mystery card would be lower or larger than 5. In the win blocks, the outcome would be decided so70

as to favour gains, while in the loss blocks, it would instead favour losses. Participants eventually71

received their total gain as US dollars.72
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Only a restricted set of visual areas were influential in this task.73

In summary, these observations collectively strengthen our main results (Fig. 3 from the74

manuscript) in showing that our AoT-sensitive metric can reveal important brain regions im-75

plicated in low-level and high-level brain functions.76
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Impact of baseline epochs on estimated AoT strength77

When baseline epochs were removed from compatible task paradigms (Fig. 4), convergence78

onto a task-specific AoT pattern was still observed from ≈ 2000 samples. For the motor, emotion79

and social tasks, asymptotic τ̄ values increased in magnitude compared to their respective full run80

counterparts (compare to Fig. 2 from the main results), while for the language task, there was no81

major change, and for the working memory task, there was a switch to negative values.82

The pinpointed regional pattern without baseline epochs remained overall similar for the motor83

Figure 4: For each task, estimation of τ when up to 10000 samples are used (top to bottom in the heatmaps), for
all brain regions (left to right); convergence of mean AoT across regions (τ̄) as more samples are considered (with
error bars reflecting standard error of the mean); and spatial correlation between the AoT patterns obtained using
two successive numbers of samples. The estimates reached using n∗

s = 8000 samples (the value selected for main
analyses) are highlighted by a dashed horizontal line (top heatmaps) or a red rectangle (bottom plots). WM: working
memory.
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and emotion tasks, to the exception of some areas which switched sign (positive to negative τ in84

the former case, and negative to positive τ in the latter case). This may be because their role as85

causal source or sink fluctuates as a function of epoch type.86

A marked transition to negative-valued τ was seen in the working memory and social task87

cases, particularly for visual areas. The working memory task was specifically designed to probe88

visual function on top of working memory. Similarly, the social task involves particularly salient89

visual stimulation in the form of moving geometric shapes. Negative-valued τ when focusing on90

task epochs highlights that during such a condition, visual regions behave as strong causal sources,91

transmitting information to the rest of the brain.92

For the language task, changes upon removing baseline epochs were minimal. Interestingly, as93

this is the only task that does not rely on visual stimulation, the changes observed for other tasks94

are likely largely modulated by the involvement of the visual network.95
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Null AoT distributions are similar across paradigms96

In Fig. 2 (main results), the distributions of τ values across regions were shown for all paradigms,97

and compared to surrogate values derived from one realization of an amplitude-adjusted phase98

randomization process11. For the sake of conciseness, null data were only shown when generated99

from resting state time courses. Here, we wish to confirm that null distributions are in fact100

extremely similar regardless of the distorted input data (i.e., resting state or any of the task101

paradigms).102

The distribution of τ values across regions following amplitude-adjusted phase randomization103

is shown in Fig. 5, for 15 concatenated null realizations, in the resting state case, for the motor104

task with or without including baseline epochs, and for the other 6 tasks. In all cases, the median105

(horizontal line) and the mean (empty rectangle) both remained almost equal to zero, and the106

range of taken values was similar. This confirms that our main results capture significant causal107

effects in all the investigated paradigms. Note that the range of values is larger here than in Fig. 2108

(main results) because in the latter case, the results were only displayed for one null realization109

instead of 15.110
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Figure 5: For the resting state (blue), motor (green, with/without baseline epochs on the left/right) and other task
paradigms (color coding as in Fig. 2 from our main results), distribution of null τ values across regions and 15 null
realizations. Note that data points are drawn as outliers if they are larger than Q3 + 15 · (Q3 −Q1) or smaller than
Q1 − 15 · (Q3 − Q1), with Q1 and Q3 the 25th and 75th percentiles, respectively. RS: resting state, WM: working
memory.

11



Dynamic evolution of AoT across tasks111

To complement Fig. 4 (main results) in which we focused on the motor task, we provide below112

similar visualizations of causal effects over time for the other compatible task paradigms. Fur-113

thermore, we briefly survey the most involved areas in each case (as quantified from the sum of114

absolute-valued AoT strengths across time), more specifically visualize them (see Fig. 11), and link115

them to the paradigm at hand.116

The most dynamic regions regarding AoT strength for the working memory task were primarily117

visual (17 out of the top 20). There was also a prefrontal region from the default mode network118

(R178), as well as two lateral prefrontal areas (R342 and R345) from the control network. Interest-119

ingly, these two latter areas are spatially close, but nonetheless distinct from the ones pinpointed120

by static analysis. Furthermore, there has been evidence for their involvement not only in the121

context of fluid reasoning12, but also specifically regarding temporal dynamics of visual working122

memory13. It could thus be that some lateral prefrontal regions regulate slow-paced aspects of123

working memory, while others instead control temporally more localized aspects.124

In the relational task, 17 of the top 20 most dynamic areas AoT-wise were from the visual125

network, in line with the large representation of the visual network in static findings. R75 and R282126

from the IPS were two of the remaining three, also squaring well with previous static observations.127

Similarly to the working memory task, R178 was also pinpointed as a highly dynamic area.128

In the emotion task, 14 of the top 20 largest contributors to dynamic fluctuations in AoT129

strength belonged to the visual network. In addition, R165 from the parietal default mode network130

was retrieved; fittingly with the task’s demands, this area’s activity was reported in cases of visual131

perceptual priming14 and of extended decision making15. R342 (also found in the working memory132

task) and R178 (also found in both the working memory and relational tasks) were additionally133

pinpointed regions; their involvement across multiple cognitively demanding tasks may imply that134

they are in charge of dynamically regulating more global functions linked to executive processing,135

fitting with their prefrontal location in the brain. In addition, another found area was R161136

(parietal default mode network), whose dynamic tracking of emotional stimuli was previously137

shown to be disrupted in anxiety and depression16.138
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During the social task, 16 of the main regions belonged to the visual network. The other four139

were from the posterior dorsal attentional network: R81, R84, R282 and R286. The last two were140

also detected upon static investigations, and relate to object tracking. The first two are their left141

hemispheric counterparts.142

During the language task, which did not rely on visual stimulation, only 2 of the 20 top dynamic143

contributors belonged to the visual network. 9 regions belonged to the control network (4 prefrontal,144

3 parietal and 2 within the precuneus), and 7 to the default mode network (3 temporal, 2 parietal145

and 2 prefrontal). There were also one limbic (temporal) area and one salience (prefrontal) region.146

All ToM-related areas unraveled upon static analysis were also seen here. In control regions, R342147

(implicated in mental travels17), R343 (in advanced mentalizing skills18) and R356 (in emotional148

and cognitive processing of narratives19) were amongst the strongest contributors.149
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Figure 6: Evolution of causal effects during the working memory task. WM: working memory.
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Figure 7: Evolution of causal effects during the relational task.
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Figure 8: Evolution of causal effects during the emotion task.
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Figure 9: Evolution of causal effects during the social task.
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Figure 10: Evolution of causal effects during the language task.
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Figure 11: Fluctuations of AoT strength upon sliding window analysis for the emotion, working memory (WM),
relational, social and language tasks are shown for the top 20 most dynamic brain regions. For each task, a paradigm
time course (convolved with the hemodynamic response function and subsequently averaged in sliding window fashion)
is also provided, with the numbers above it denoting epoch type (control condition versus actual condition for all
except the WM task, in which there were two intermingled factors: 0-back versus 2-back task, and presentation of
faces, tools, places and body parts). Regional time courses are temporally z-scored, and their color depicts network
assignment as summarized at the top of the figure.
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Reproducibility of AoT fluctuations across motor task epochs150

Figure 12: A - Comparison of AoT time courses in left hemispheric regions during the entry in the first (left) or
second (right) tongue movement epoch. B - For the first (top) or second (bottom) epoch of tongue movement,
summed AoT intensity (i.e., sum of absolute-valued AoT strength within the examined temporal interval) across
brain regions. C - Full (left) and zoomed (right) scatter plot representations of the same data, where each data point
stands for one brain region.
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Impacts of run and (pre)processing choices on AoT patterns151

We performed additional analyses, for each of the investigated paradigms, in order to gauge152

the robustness of our findings to adjustments in our (pre)processing pipeline, or to the use of other153

input data. The assessed alternatives were the following:154

1. The use of the right-left phase encoding direction recording as input data (Run variable)155

2. The absence of global signal regression in preprocessing (GSR variable)156

3. Instead of no censoring (case I), scrubbing of the preprocessed time courses (at a threshold of157

0.5 mm framewise displacement20), removing only flagged samples (case II), also one sample158

before and two after each excised time point (case III), or three samples beforehand and six159

afterwards (case IV)160

4. A different sampling scheme for the data points that enter τ computations, where instead of161

retaining all data points for a given subject (case I), n∗
s
S samples were selected per subject162

taking the first available ones (case II), randomly picking them within the full recording (case163

III), or extracting a continuous block (notwithstanding excised volumes, if applicable) from164

a random starting location (case IV)165

5. Another AoT measure, where non-normality is quantified using the Kullback-Leibler diver-166

gence between the error distribution of interest and a standard normal one (Measure variable)167

6. For time-locked task paradigms, we also examined the differences between the use of full168

recordings, or of only task epochs (Epochs variable).169

Stability of the results was quantified by Pearson’s correlation coefficient between the AoT170

regional patterns obtained in each setting. To assess the impact of a given variable, we quantified171

RS MOTOR WM EMOTION SOCIAL LANGUAGE

Epochs n.a. 0.67 ± 0.07 0.38 ± 0.31 0.62 ± 0.11 0.41 ± 0.18 0.8 ± 0.09
GSR 0.37 ± 0.09 0.36 ± 0.09 0.45 ± 0.39 0.24 ± 0.13 0.58 ± 0.29 0.3 ± 0.07
Measure 0.75 ± 0.03 0.81 ± 0.04 0.75 ± 0.08 0.7 ± 0.07 0.81 ± 0.08 0.77 ± 0.05
Run 0.19 ± 0.07 0.19 ± 0.11 0.42 ± 0.29 0.15 ± 0.11 0.5 ± 0.28 0.19 ± 0.06

Table 1: Similarity between cases including the removal of baseline epochs or not, including global signal regression
or not, considering a kurtosis-based or a Kullback-Leibler divergence-based AoT-sensitive metric, and asessing the
left-right or right-left phase encoding run. Results are presented as mean ± standard deviation. RS: resting state,
WM: working memory.
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RS MOTOR WM EMOTION SOCIAL LANGUAGE

I vs II 0.74 ± 0.14 0.89 ± 0.09 0.87 ± 0.13 0.87 ± 0.14 0.92 ± 0.09 0.83 ± 0.12
I vs III 0.74 ± 0.18 0.94 ± 0.06 0.9 ± 0.12 0.93 ± 0.08 0.95 ± 0.07 0.88 ± 0.1
I vs IV 0.75 ± 0.18 0.94 ± 0.06 0.91 ± 0.11 0.93 ± 0.08 0.95 ± 0.08 0.88 ± 0.11
II vs III 0.73 ± 0.15 0.89 ± 0.09 0.88 ± 0.12 0.87 ± 0.14 0.92 ± 0.09 0.84 ± 0.12
II vs IV 0.73 ± 0.15 0.89 ± 0.09 0.88 ± 0.11 0.87 ± 0.14 0.92 ± 0.09 0.83 ± 0.12
III vs IV 0.75 ± 0.18 0.94 ± 0.06 0.91 ± 0.11 0.93 ± 0.08 0.94 ± 0.08 0.89 ± 0.1

Table 2: Similarity between different motion censoring schemes: no scrubbing (I), mild scrubbing (II), moderate
scrubbing (III) and aggressive scrubbing (IV). Results are presented as mean ± standard deviation. RS: resting
state, WM: working memory.

similarity when only this particular factor was varied, while all others were kept fixed. This yielded172

64 values per variable, which we summarize below in terms of mean and standard deviation.173

As can be seen from Table 1, regardless of the paradigm, both our original kurtosis-based174

measure and our alternative revolving around the Kullback-Leibler divergence yielded highly similar175

AoT patterns. The removal of baseline epochs had the largest influence on the social and working176

memory tasks. Whether to include global signal regression or not had a consistently sizeable effect177

in all paradigms, and so did selecting the first or the second available run.178

From Table 2, it can be seen that AoT estimates remain extremely similar regardless of the179

extent of scrubbing applied to the data. This is strong evidence that head motion does not impact180

our results.181

In Table 3, most sampling schemes can be seen to yield highly similar results, to the exception182

of case III (selection of the first time points for a given subject). This may be due to magnetization183

effects, or to physiological variables that would require a certain time to reach a steady state and184

RS MOTOR WM EMOTION SOCIAL LANGUAGE

I vs II 0.59 ± 0.1 0.9 ± 0.07 0.85 ± 0.12 0.9 ± 0.08 0.9 ± 0.11 0.81 ± 0.09
I vs III 0.26 ± 0.11 0.29 ± 0.17 0.29 ± 0.3 0.32 ± 0.18 0.5 ± 0.22 0.29 ± 0.13
I vs IV 0.59 ± 0.11 0.81 ± 0.08 0.82 ± 0.15 0.75 ± 0.1 0.86 ± 0.12 0.75 ± 0.08
II vs III 0.26 ± 0.13 0.27 ± 0.18 0.3 ± 0.32 0.32 ± 0.18 0.51 ± 0.21 0.28 ± 0.14
II vs IV 0.61 ± 0.1 0.81 ± 0.08 0.83 ± 0.14 0.75 ± 0.1 0.85 ± 0.13 0.74 ± 0.08
III vs IV 0.24 ± 0.13 0.16 ± 0.19 0.3 ± 0.32 0.31 ± 0.19 0.44 ± 0.24 0.18 ± 0.13

Table 3: Similarity between different sampling schemes: all data for a subject (I), first samples per subject only (II),
randomly selected samples per subject (III) and continuous block with random start per subject (IV). Results are
presented as mean ± standard deviation. RS: resting state, WM: working memory.
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would initially perturb the fMRI signals (e.g., stronger heart rate fluctuations until one becomes185

at ease in the scanner).186

In addition to the above, we also verified that the results were not affected by the use of a187

coarser (R2 = 219 regions) or finer-grained (R3 = 819 regions) atlas. As can be seen from Fig. 13,188

the extracted AoT patterns in the resting state and motor task cases remained similar regardless189

of atlas granularity.190

23



Figure 13: Regional AoT patterns obtained for the resting state and motor paradigms, using n∗
s = 8000 samples,

when resorting to an atlas with 219, 419 or 819 regions of interest. ROI: region of interest.
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Differences in effects captured by our approach, Granger causality and LiNGAM191

To explore the similarities and differences between the results of LiNGAM, Granger causality192

and our approach, we downscaled the dimensionality of our data from R = 419 regions to 15193

networks (the 7 Yeo networks21 for each hemisphere, plus subcortical regions). We estimated pa-194

rameters for each method using 56000 samples, a high enough number to ensure accurate outcomes,195

and performed bootstrapping over 50 folds that included different subsets of subjects each time.196

For LiNGAM, we extracted the output set of causal coefficients following estimation and pruning197

(B ∈ RR×R), using a dedicated toolbox22. For Granger causality, we extracted the set of coefficients198

obtained upon fitting a first-order autoregressive model to the forward time courses (having set199

to zero the coefficients denoting the influence of a network onto itself), which we will refer to as200

Ãf ∈ RR×R. Finally, for our method, we computed τ ∈ RR×1 following Eqs. (1)-(2). To compare201

the outputs despite their different dimensionalities, we computed the in-degree and out-degree202

vectors from B and Ãf . For this purpose, for simplicity, we considered absolute-valued causal203

coefficients.204

Median output causal coefficients across folds for LiNGAM are shown in Fig. 14A: while the205

presence of many null coefficients confirms robustness of the approach across folds, the matrix is206

far from being lower triangular, because LiNGAM’s assumption of an acyclic graph does not apply207

to the fMRI data at hand. In Fig. 14B, a similar representation is shown for Granger causality208

coefficients; one can notice strong diagonal patterns reflective of cross-hemispheric interactions209

Figure 14: For LiNGAM (A) and a first-order multivariate autoregressive model reflective of Granger causality
analysis (MAR-1, B), median causal coefficients across 50 folds. C - Relationship between median coefficients across
both approaches.
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Figure 15: Scatter plots and linear fits for relationships between the features extracted from LiNGAM, Granger
causality analysis (based on a first-order multivariate autoregressive model, MAR-1), and our AoT-sensitive metric.

(networks 1 to 7 with networks 8 to 14). Causal coefficients were not correlated across cases210

(Pearson’s correlation: R = 0.127, p = 0.057; see also Fig. 14C).211
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Scatter plots depicting the relationships between in-degree and out-degree vectors for the212

LiNGAM and Granger causality cases, as well as τ extracted with our approach, are displayed213

in Fig. 15. There was a strong negative correlation between the in-degree and out-degree vectors214

for the LiNGAM case (R = −0.62, p = 0.015) and to a milder extent, albeit not significantly,215

for the multivariate autoregressive model case (R = −0.35, p = 0.21). Thus, as seen from both216

methodologies, networks that tend to causally regulate others will not be so strongly modulated217

themselves, and vice versa.218

There were also moderate, but non-significant similarities between the LiNGAM and multivari-219

ate autoregressive approaches: across methods, correlation for in-degree and out-degree vectors220

was R = 0.49, p = 0.066 and R = 0.28, p = 0.31, respectively. When comparing LiNGAM-221

extracted features with the outputs from our approach, correlation also did not reach significance222

(R = −0.07, p = 0.81 for in-degree and R = 0.19, p = 0.49 for out-degree, respectively), and the223

same was seen when comparing Granger causality features to τ (R = −0.37, p = 0.18 for in-degree224

and R = −0.01, p = 0.97 for out-degree, respectively).225

All in all, LiNGAM, Granger causality and our AoT-sensitive metric thus capture different226

facets of fMRI activity, an expected finding given the differences between the three approaches.227

27



References

[1] Barch, D.M., Burgess, G.C., Harms, M.P., Petersen, S.E., Schlaggar, B.L., Corbetta, M., et al. Function in
the human connectome: task-fmri and individual differences in behavior. Neuroimage 2013;80:169–89. doi:10.
1016/j.neuroimage.2013.05.033.

[2] Kim, C., Kroger, J.K., Calhoun, V.D., Clark, V.P.. The role of the frontopolar cortex in manipulation of
integrated information in working memory. Neuroscience letters 2015;595:25–29.

[3] Alnæs, D., Sneve, M.H., Richard, G., Sk̊atun, K.C., Kaufmann, T., Nordvik, J.E., et al. Functional
connectivity indicates differential roles for the intraparietal sulcus and the superior parietal lobule in multiple
object tracking. Neuroimage 2015;123:129–137.

[4] Xu, Y.. The role of the superior intraparietal sulcus in supporting visual short-term memory for multifeature
objects. Journal of Neuroscience 2007;27(43):11676–11686.

[5] Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J.K., Holyoak, K.J., et al. Rostrolateral
prefrontal cortex involvement in relational integration during reasoning. Neuroimage 2001;14(5):1136–1149.

[6] Farrer, C., Frey, S.H., Van Horn, J.D., Tunik, E., Turk, D., Inati, S., et al. The angular gyrus computes
action awareness representations. Cerebral cortex 2008;18(2):254–261.

[7] Guidali, G., Pisoni, A., Bolognini, N., Papagno, C.. Keeping order in the brain: the supramarginal gyrus
and serial order in short-term memory. Cortex 2019;119:89–99.

[8] Martinez-Trujillo, J.C., Cheyne, D., Gaetz, W., Simine, E., Tsotsos, J.K.. Activation of area mt/v5 and the
right inferior parietal cortex during the discrimination of transient direction changes in translational motion.
Cerebral Cortex 2007;17(7):1733–1739.

[9] Hartwright, C.E., Apperly, I.A., Hansen, P.C.. Representation, control, or reasoning? distinct functions for
theory of mind within the medial prefrontal cortex. Journal of Cognitive Neuroscience 2014;26(4):683–698.

[10] Fletcher, P.C., Happe, F., Frith, U., Baker, S.C., Dolan, R.J., Frackowiak, R.S., et al. Other minds in the
brain: a functional imaging study of “theory of mind” in story comprehension. Cognition 1995;57(2):109–128.

[11] Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.. Testing for nonlinearity in time series:
the method of surrogate data. Physica D: Nonlinear Phenomena 1992;58(1):77–94.

[12] Yuan, Z., Qin, W., Wang, D., Jiang, T., Zhang, Y., Yu, C.. The salience network contributes to an
individual’s fluid reasoning capacity. Behavioural brain research 2012;229(2):384–390.

[13] Sobczak-Edmans, M., Ng, T., Chan, Y., Chew, E., Chuang, K.H., Chen, S.H.A.. Temporal dynamics of
visual working memory. NeuroImage 2016;124:1021–1030.

[14] Blondin, F., Lepage, M.. Decrease and increase in brain activity during visual perceptual priming: An fmri
study on similar but perceptually different complex visual scenes. Neuropsychologia 2005;43(13):1887–1900.

[15] Yarkoni, T., Gray, J.R., Chrastil, E.R., Barch, D.M., Green, L., Braver, T.S.. Sustained neural activ-
ity associated with cognitive control during temporally extended decision making. Cognitive brain research
2005;23(1):71–84.

[16] Carlson, J.M., Rubin, D., Mujica-Parodi, L.R.. Lost emotion: disrupted brain-based tracking of dynamic
affective episodes in anxiety and depression. Psychiatry Research: Neuroimaging 2017;260:37–48.

[17] Gauthier, B., van Wassenhove, V.. Time is not space: core computations and domain-specific networks for
mental travels. Journal of Neuroscience 2016;36(47):11891–11903.

[18] Hooker, C.I., Verosky, S.C., Germine, L.T., Knight, R.T., D’Esposito, M.. Mentalizing about emotion and
its relationship to empathy. Social cognitive and affective neuroscience 2008;3(3):204–217.

[19] Benelli, E., Mergenthaler, E., Walter, S., Messina, I., Sambin, M., Buchheim, A., et al. Emotional and
cognitive processing of narratives and individual appraisal styles: recruitment of cognitive control networks vs.
modulation of deactivations. Frontiers in Human Neuroscience 2012;6:239.

[20] Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.. Spurious but systematic correlations
in functional connectivity mri networks arise from subject motion. Neuroimage 2012;59(3):2142–2154.

[21] Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., et al. The organi-
zation of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of neurophysiology
2011;106:1125–1165. doi:10.1152/jn.00338.2011.

[22] Shimizu, S., Hoyer, P.O., Hyvarinen, A., Kerminen, A.. A linear non-gaussian acyclic model for causal
discovery. Journal of Machine Learning Research 2006;7(72):2003–2030. URL: http://jmlr.org/papers/v7/
shimizu06a.html.

28

http://dx.doi.org/10.1016/j.neuroimage.2013.05.033
http://dx.doi.org/10.1016/j.neuroimage.2013.05.033
http://dx.doi.org/10.1152/jn.00338.2011
http://jmlr.org/papers/v7/shimizu06a.html
http://jmlr.org/papers/v7/shimizu06a.html

