Authors/Year of	Level of Evidence (I-VI) *	Subject	Type of Study	Proposed Mechanism of Action	Outcome
Publication		n =			
Wang et al. ⁴ (2019)	N/A **	HUVECs (n= N/A)	In-vitro study	Promoted wound healing via	Combination use of FEP
				stimulation of angiogenesis	gel and exosomes had
				process; FEP gel had	synergistic effect in
		Mouse (n= 48)	Animal study	components promoting sustained	wound healing; skin
				release of ASC-exos, therefore	appendages formation
				further enhanced exosomes'	and less scar tissue
				wound healing effects	
Wu et al. ⁷ (2021)	N/A **	Human keloid	In-vitro study	ASC-exos suppressed keloid	Reduced keloid formation
		fibroblasts (n= N/A)		fibroblast's actions by inhibiting	
				expression of TGF-β1/SMAD	
				pathway	
Yuan et al.8 (2021)	N/A **	Human hypertrophic	In-vitro study	ASC-exos inhibited fibrosis and	Reduced pathological
		scar fibroblasts (n=		scar hyperplasia through its miR-	scar formation
		N/A)		29a-regulated TGF-β2/SMAD 3	
			Animalatudu	pathway	
		Mouse (n= 36)	Animal study		

Duan et al. ⁹ (2020)	N/A **	Human dermal	In-vitro study	EPSC-exos suppressed	Improved wound healing
		fibroblasts (n= N/A)		myofibroblast differentiation via	rate, reduced scar
				miR-425-5p- and miR-142-3p-	formation during wound
		Rat (n= 30)	Animal study	mediated inhibition of TGF-β1	healing
				expression	
Kwon et al. ¹⁰	Level II	Human (n = 25)	Split-face,	ASC-exos induce rapid healing by	Combined use of ASC-
(2020)			double-blinded,	supplying several anti-	exos with resurfacing
			randomized	inflammatory and regenerative	device provided
			control trial	growth factors, as well as	synergistic effects on the
				optimizing the migration,	treatment of atrophic
				proliferation, and collagen	acne scar and provided
				synthesis of fibroblasts. ADSC-	shorter recovery time and
				exos also decreased scarring	fewer side effects
				during wound repair via regulating	
				type III: type I collagen, TGFβ3:	
				TGFβ1, and MMP3:TIMP1	
Wang et al. ¹¹	N/A **	Human dermal	In-vitro study	ASC-exos reduced scar formation	Less scar formation
(2017)		fibroblasts (n= N/A)		by increasing collagen III:	

		Mouse (n= N/A)	Animal study	collagen I and prevented differentiation of myofibroblast by increasing TGF-β3: TGF-β1. ASC-exos promoted ECM remodeling by increasing MMP3:TIMP1 in skin dermal fibroblasts via activating ERK/MAPK pathway	
Fang et al. ¹² (2016)	N/A **	Myofibroblasts (n= N/A) Mouse (n= N/A)	In-vitro study Animal study	 miR-21, -23a, -125b, and -145 suppressed myofibroblast formation by inhibition of TGF- β2/SMAD2 signaling pathway. Collagen I deposition was reduced via inhibiting α-SMA gene expression (UC-exos) 	Prevented scar formation during wound healing
Zhang et al. ²⁶ (2021)	N/A **	Human dermal fibroblasts and epidermal stem cells (n= N/A)	In-vitro study	UC-exos suppressed scar formation by inhibiting myofibroblast differentiation via miR-21-5p- and miR-125b-5p-	Prevented scar formation during wound healing

		Rat (n = 30)	Animal study	mediated TGF-β receptor inhibition	
Hu et al. ²⁷ (2018)		Human dermal fibroblasts and endothelial cells (n= N/A) Mouse (n= 20)	In-vitro study Animal study	UC-exos enhanced wound healing by regulating fibroblasts and angiogenesis via miR-21-3p's effect on PTEN and SPRY1 inhibition	Reduced scar width
Zhou et al. ²⁹ (2021)	N/A **	Mouse (n= N/A)	Animal study	formation	
Hu et al. ³⁰ (2016)	N/A **	Human dermal fibroblasts (n= N/A)	In-vitro study		Decreased healing time and reduced scar

		Mouse (n= N/A)	Animal study	increasing type I and type III collagen distribution. Whereas in the late stages, ASC-exos inhibited collagen synthesis to reduce scar formation	formation
Zhang et al. ³¹ (2015)	N/A **	Human dermal fibroblasts and HUVECs (n= N/A) Rat (n= N/A)	In-vitro study Animal study	Wound healing process was accelerated via hiPSC-MSC-exos stimulation on collagen maturity and neovascularization at wound sites	Promoted granulation tissue formation and angiogenesis, leading to increased healing and reduced scar width
Li et al. ³⁴ (2021)	N/A **	Human hypertrophic scar derived fibroblasts (n= N/A) Mouse (n= 12)	In-vitro study Animal study	ASC-exos suppressed hypertrophic scar fibrosis via its miR-192-5p-targeted IL-17RA to regulate SMAD pathway	Reduced hypertrophic scar formation
Wang et al. ³⁵ (2019)	N/A **	HUVECs (n= N/A) Mouse (n= 48)	In-vitro study Animal study	FHE gel had components promoting sustained release of ASC-exos, therefore further enhanced exosomes' wound	Combination of FHE hydrogel and exosomes had synergistic effect in wound healing and skin

				healing effects	regeneration; skin	
				nealing enects		
					appendages formation	
					and less scar tissue	
*Per American Soc	ciety of Plastic Surgeons Rati	ng Levels of Evidence	and Grading Re	commendations: Evidence Rating	Scale for Therapeutic	
Studies. ⁵ **Animal/laboratory studies are considered not ratable in American Society of Plastic Surgeons Rating Levels of Evidence and Grading						
Recommendations pyramid scheme.						
Abbreviations: adipose-derived stem cell exosomes (ASC-exos), umbilical cord-derived stem cell exosomes (UC-exos), epidermal stem cell-						
derived exosomes (EPSC-exos), human induced pluripotent stem cell-derived mesenchymal stem cells-derived exosomes (hiPSC-MSC-exos),						
tissue growth factor beta (TGF-β), interleukin 17 receptor A (IL-17RA), fractional carbon dioxide laser (FCL), matrix metalloproteinase 3 (MMP3),						
tissue inhibitors of MMPs 1 (TIMP1), Pluronic F127 + oxidative hyaluronic acid + Poly-ε-L-lysine (FHE), Pluronic F127 + PEI + APu (FEP), Sprouty						
RTK signaling antagonist 1 (SPRY1), extracellular matrix (ECM), alpha-smooth muscle actin (a-SMA), human umbilical vein endothelial cells						
(HUVECs)						

Table, Supplementary Digital Content 2. A table that summarizes the mechanism of exosomes in scar revision.