Authors/Year of Publication	Level of Evidence (I-VI) *	Subject	Type of Study	Proposed Mechanism of Action	Outcome
		n=			
Hu et al. ¹³ (2020)	N/A**	Mouse (n= 4)	Animal study	DP spheroid-exos promoted development of HFs via miR-218- 5p-mediated β-catenin regulation (downregulated SFRP2, a WNT signaling inhibitor)	Promoted hair regeneration
Zhou et al. ¹⁴ (2018)	N/A**	Human ORSCs (n= N/A) Mouse (n= 12)	In-vitro study Animal study	DPC-exos upregulated β-catenin and Shh levels	Promoted hair follicle growth and development
Kwack et al. ⁴⁰ (2019)	N/A**	Human hair follicles (n= N/A) Mouse (n= N/A)	In-vitro study Animal study	DPC-exos promoted hair growth and regeneration by regulating the activity of follicular dermal and epidermal cells	Promoted hair growth and regeneration, prevention of hair loss

Yan et al.44 (2019)	N/A**	Cashmere	In-vitro study	Overexpression of miR-22-5p in	Regulated hair				
		goat HFSCs		DPC-exos inhibited HFSCs	growth				
		(n= N/A)		proliferation by targeting LEF1					
				gene					
Ogawa et al. ⁴⁵ (2021)	N/A**	Mouse (n= 18)	Animal study	Fistein-treated-HaCaT cell-derived	Promoted hair				
				exos promoted HFSCs activity via	growth				
				activating β-catenin					
Yang et al. ⁴⁶ (2019)	N/A**	Mouse (n=	Animal study	MSC-exos delivered through	Promoted hair				
		N/A)		microneedle-based approach	regeneration and				
				provided a sustained delivery of	pigmentation				
				HFSCs activators, therefore					
				enhancing the exosomes' effects in					
				hair regeneration					
Huh and Kwon ⁴⁷ (2019)	N/A (abstract)	-	In-vitro study	MSC-exos stimulated proliferation	Increased hair				
		Human (n=	Pilot study	of HFs, accelerated telogen-	thickness and				
		20)		anagen progression, and protected	density				
		20)		HFs from ROS and androgen					
*Per American Society of Plastic Surgeons Rating Levels of Evidence and Grading Recommendations: Evidence Rating Scale for Therapeutic									
Studies. ⁵ **Animal/laboratory studies are considered not ratable in American Society of Plastic Surgeons Rating Levels of Evidence and Grading									

Recommendations pyramid scheme.

Abbreviations: human keratinocyte (HaCaT), hair follicle stem cells (HFSCs), dermal papilla-derived exosomes (DPC-exos), dermal papilla spheroid-derived exosomes (DP spheroid-exos), mesenchymal stem cell-derived exosomes (MSC-exos), dermal papilla (DP), dermal papilla cells (DPCs), hair follicles (HFs), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), secreted frizzled-related protein 2 (SFRP2), Wingless-related integration site (WNT), outer root sheath cells (ORSCs), lymphoid enhancer binding factor 1 (LEF1), reactive oxygen species (ROS), sonic hedgehog (Shh)

Table, Supplementary Digital Content 3. A table that summarizes the mechanism of exosomes in hair restoration.