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Appendix A

Discrete Example

Let Y denote the primary outcome and S denote the surrogate marker. We use potential

outcomes notation where each person has a potential {Y (1), Y (0), S(1), S(0)} where Y (g) and

S(g) are the outcome and surrogate when the patient receives treatment g. Our main quantity

of interest is the treatment effect on the primary outcome quantified as ∆ ≡ E(Y (1)−Y (0)) =

E(Y (1))−E(Y (0)). The earlier treatment effect incorporating S information is defined in the

main text as

∆P =

∫
µp0(s)dF

(1)(s)−
∫
µp0(s)dF

(0)(s) (1)

where µp0(s) ≡ E(Y (0p) = y|S(0p) = s). In this example, we will have heterogeneity in

the utility of the surrogate with respect to gender. Consider our prior study, which we

refer to as Study A in this example, and is shown in Figure A1. The Study A sample

is 50% female and 50% male. For all individuals, (S(1), S(0)) are independent of gender,

and
{
E(S(1)), E(S(0))

}
= (10, 5). For females, E(Y (1) | S(1) = s) = 3 + 5s and E(Y (0) |

S(0) = s) = 1 + 3S. It can be shown that for females, ∆ = 53− 16 = 37 and ∆P = 15. The

proportion of the treatment effect on the primary outcome that is explained by the surrogate

among females is thus 15/37=41%, which would not be considered as a strong surrogacy.

For males, E(Y (1) | S(1) = s) = 15s and E(Y (0) | S(0) = s) = 14.8S. It can be shown that

for males, (∆,∆P ) = (76, 74) and the proportion explained by the surrogate marker is 97%

among males, representing strong surrogacy.

To calculate ∆P for a future study, let’s consider the conditional mean that is central

to this calculation, µp0(s) = E(Y (0p) = y|S(0p) = s) where the superscript p indicates that
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this is referring to the prior study, i.e., study A. In this example, this would be µp0(s) =

0.5 × (1 + 3s) + 0.5 × 14.8s = 8.9s + 0.5. Now assume our current study is Study B shown

in Figure A1 which is 95% female and 5% male. Importantly, the joint distributions of

(Y (1), Y (0), S(1), S(0)) in males and females remain as described above; the only difference is

the distribution of gender. The treatment effect, ∆ in this new study is 0.95×37+0.05×76 =

38.95. If one were to calculate ∆P not accounting for this known heterogeneity in the utility

of the surrogate, the quantity obtained would be ∆P = 8.9× 10 + 0.5− 8.9× 5− 0.5 = 44.5,

recalling that E(S(1)) = 10 and E(S(0)) = 5 for all individuals in both studies. However,

using our proposed approach which does account for heterogeneity, we use ∆H as the earlier

treatment effect, defined in the main text as:

∆H =

∫
µp0(s, w)dF (1)(s, w)−

∫
µp0(s, w)dF (0)(s, w).

Thus, ∆H = 95%×(1+3×10)+5%×(14.8×10)−95%×(1+3×5)−5%×(14.8×5) = 17.95.

Therefore ∆H < ∆ < ∆P and ∆P no longer retains the property of providing a lower bound

on the treatment effect on Y .

Now we consider a study, labeled Study C in Figure A1, which is 95% males and 5%

females. Using similar calculations, we can show that ∆ = 74.05, ∆P = 44.05 and ∆H =

71.05. Thus, in this case, ∆H will provide better lower bound for ∆ and the test based on ∆H

is expected to be more powerful than that based on ∆P . The discrete case, as illustrated in

this example, is relatively straightforward in terms of how to go about calculating the needed

quantities separately by group and appropriately accounting for the different distribution in

the new study. The continuous baseline covariate case, however, is more complex, and our

Appendix C presents an example such that even if the prior and current studies have the

same distribution for covariates, ∆P may still fail to be a valid lower bound for ∆.
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Appendix B

As noted in this text, Assumptions (C1)− (C3) together guarantee that E(Y (1) | W = w) ≥

E(Y (0) | W = w), for all w in the support of W . This result is due to the derivation:

∆(w) =E(Y (1) | W = w)− E(Y (0) | W = w)

=

∫
s

E(Y (1) | S(1) = s,W = w)dF (1)(s | w)−
∫
s

E(Y (0) | S(0) = s,W = w)dF (0)(s | w)

≥
∫
s

E(Y (0) | S(0) = s,W = w)dF1(s | w)−
∫
s

E(Y (0) | S(0) = s,W = w)dF (0)(s | w)

=

∫
s

E(Y (0) | S(0) = s,W = w)d
{
F (1)(s | w)− F (0)(s | w)

}
=

∫
s

{
F (0)(s | w)− F (1)(s | w)

} ∂E(Y (0) | S(0) = s,W = w)

∂s
ds ≥ 0,

where F (g)(s | w) = P (S(g) ≤ s|W = w), g = 0, 1. That is, while treatment effect heterogene-

ity is allowed, the directions of the conditional average treatment effect among subgroups

of patients with W = w need to be consistent. One important implication is that under

the null H0 : ∆ = E {∆(W )} = 0, i.e., no average treatment effect, the conditional average

treatment effect ∆(w) = 0 for all w as well. Furthermore, from the derivation, it is clear

that ∆(w) = 0 if and only if both

1. F (1)(s | w) = F (0)(s | w), i.e., P (S(1) > s|W = w) = P (S(0) > s|W = w) and

2. E(Y (1)|S(1) = s,W = w) = E(Y (0)|S(0) = s,W = w).

Specifically, ∆(w) = 0 implies that there is no treatment effect on the distribution of the

surrogate marker in the subgroup of patients with W = w. In summary, under Assumptions

(C1)-(C3)

∆ = 0⇒ ∆(w) = 0⇒ S(1) | W = w ∼ S(0) | W = w.

This relationship allows us to test the common null H0 : ∆ = 0 via testing a seemingly more
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restrictive null that S(1) | W = w ∼ S(0) | W = w, for all w in the support of W.

For (C2) and (C3), if the primary outcome or surrogate are such that lower values are

“better”, one can simply define the outcome/surrogate as −X where X is the initial value.

Assumptions (C5)− (C6) are not required for the validity of the testing procedure pro-

posed in the next section in that the p-value under the null follows a uniform distribution

even without them, but it allows us to estimate a lower bound of the average treatment

effect, ∆, and construct the corresponding test statistic.

Under the following additional assumptions:

(C7) Y (1) ⊥ S(0)|S(1),W and Y (0) ⊥ S(1)|S(0),W ;

(C8) Y (1p) ⊥ S(0p)|S(1p),W p and Y (0p) ⊥ S(1p)|S(0p),W p,

the treatment effect on the surrogate marker defined in Section ?? and on the primary

outcome can be interpreted within a causal framework: the proposed test statistic is an

estimate of the portion of the treatment effect on the primary outcome attributable to the

treatment effect on the surrogate marker. Otherwise, the proposed treatment effect on the

surrogate marker can always serve as a lower bound for the average treatment effect on Y

and can be used in practice without assuming them.

To summarize, Assumptions (C1) − (C4) are needed for the validity of the proposed

testing procedure, Assumptions (C5)− (C6) allow us to interpret the test statistic based on

he surrogate marker and baseline covariate only as a “conservative” estimator (or a lower

bound) of the average treatment effect on the primary outcome, and causal interpretation

of the lower is possible under additional assumptions (C7)− (C8).
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Appendix C

To estimate ∆ using the primary outcome (gold standard) we use ∆̂ = n−1
1

∑n1

i=1 Y1i −

n−1
0

∑n0

i=1 Y0i and conduct a t-test to test H0 : ∆ = 0.

To estimate ∆̃P , we use the nonparametric estimation approach of Parast et al. (2019)

by estimating µp0(s) as

µ̂p0(s) =

∑np
0
i=1Kh4(S

p
0i − s)Y

p
0i∑np

0
i=1Kh4(S

p
0i − s)

,

and then estimate ∆̃P as

∆̂P = n−1
1

n1∑
i=1

µ̂p0(S1i)− n−1
0

n0∑
i=1

µ̂p0(S0i).

Note that this estimate only uses S data from the current study (no Y data from the current

study) and S, Y data from the previous study in group Z = 0 only. To obtain an estimate

for the standard error of ∆̂P , σP , we simply take the empirical standard deviation of the

transformed surrogate i.e., let Ỹgi = µ̂p0(Sgi), and then σ̂P = v̂ar(Ỹ1i)/n1 + v̂ar(Ỹ0i)/n0 where

v̂ar indicates the empirical variance. This alternative testing procedure would then use the

test statistic ZP = ∆̂P/σ̂P and reject the null hypothesis when |ZP | > Φ−1(1− α/2).

Importantly, one may also consider simply using the surrogate markers measured in the

current study and define ∆M = E(S(1))−E(S(0)) and conduct a t-test of H0M : ∆M = 0. The

disadvantage of this approach is that there is no way to relate ∆M and ∆ i.e., the estimate

of ∆M does not give any helpful information about the magnitude of ∆. In addition, this

approach does not take advantage of information from the previous study nor does it account

for heterogeneity in the utility of the surrogate marker. For these reasons, we do not compare

our approach to this test.
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Appendix D

Our proposed estimator for ∆̃H is

∆̂H =
1

n

{
n0∑
i=1

[m̂1(W0i; µ̂
p
0)− m̂0(W0i; µ̂

p
0)] +

n1∑
i=1

[m̂1(W1i; µ̂
p
0)− m̂0(W1i; µ̂

p
0)]

}
.

Let µ̃g = E
{
µ̂p0(S

(g),W ) | µ̂p0
}
, g = 0, 1. It is obvious that ∆̃H = µ̃1 − µ̃0. Also, let

mg(w; µ̂p0) = E
{
µ̂p0(S

(g),W ) | W = w
}
.

In this section, we only consider the randomness in the current study, i.e., the probability

measure is conditional on µ̂p0(·, ·). Now consider the centered term

1

n

1∑
g=0

ng∑
j=1

m̂1(Wgj; µ̂
p
0)− µ̃1

=
1

n

1∑
g=0

ng∑
j=1

[
n−1
1

n1∑
i=1

Kh(W1i −Wgj)S̃1i

f̂1(Wgj)

]
− µ̃1,
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which is

1

nn1

n0∑
j=1

n1∑
i=1

Kh(W1i −W0j)S̃1i

f̂1(W0j)
+

1

n

n1∑
i=1

[
1

n1

n1∑
j=1

Kh(W1i −W1j)

f̂1(W1j)

]
S̃1i − µ̃1

=
1

nn1

n0∑
j=1

n1∑
i=1

Kh(W1i −W0j)S̃1i

f̂1(W0j)
+

1

n

n1∑
i=1

[
1

n1

n1∑
j=1

Kh(W1i −W1j)

]
S̃1i

f̂1(W1i)
− µ̃1 +Op(h

2)

=
n0

nn1

n1∑
i=1

f̂0(W1i)

f̂1(W1i)
S̃1i +

1

n

n1∑
i=1

S̃1i − µ̃1 +Op(h
2)

=
1

n1

n1∑
i=1

(S̃1i − µ̃1) +
n0

nn1

n1∑
i=1

f̂0(W1i)− f̂1(W1i)

f̂1(W1i)
S̃1i +Op(h

2)

=
1

n1

n1∑
i=1

(S̃1i − µ̃1) +
n0

nn1

n1∑
i=1

[
1

n0

n0∑
j=1

Kh(W0j −W1i)−
1

n1

n1∑
j=1

Kh(W1j −W1i)

]
S̃1i

f1(W1i)
+Op(h

2)

=
1

n1

n1∑
i=1

(S̃1i − µ̃1) + π0

[
1

n0

n0∑
i=1

m̂1(W0i; µ̂
p
0)−

1

n1

n1∑
i=1

m̂1(W1i; µ̂
p
0)

]
+Op(h

2)

=
1

n1

n1∑
i=1

(S̃1i − µ̃1) + π0

[
1

n0

n0∑
i=1

m1(W0i; µ̂
p
0)−

1

n1

n1∑
i=1

m1(W1i; µ̂
p
0)

]

+ π0

[
1

n0

n0∑
i=1

(m̂1(W0i; µ̂
p
0)−m1(W0i; µ̂

p
0))−

1

n1

n1∑
i=1

(m̂1(W1i; µ̂
p
0)−m1(W1i; µ̂

p
0))

]
+Op(h

2)

where πg = ng/n and f̂1(w) is the nonparametric estimator for the density function of W

based on observations in treatment group 1. Now, consider the expansion

m̂1(w; µ̂p0)−m1(w; µ̂p0) =
1

n1

n1∑
i=1

Kh(W1i − w)
{
S̃1i −m1(W1i; µ̂

p
0)
}

+Op

(
h2 +

log(n1)

n1h

)
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uniform in w. Therefore,

1

n0

n0∑
j=1

{m̂1(W0j; µ̂
p
0)−m1(W0j; µ̂

p
0)}

=
1

n1n0

n0∑
j=1

n1∑
i=1

Kh(W1i −W0j)
{
S̃1i −m1(W1i; µ̂

p
0)
}

+Op

(
h2 +

log(n1)

n1h

)

=
1

n1

n0∑
i=1

f̂0(W1i)
{
S̃1i −m1(W1i; µ̂

p
0)
}

+Op

(
h2 +

log(n1)

n1h

)
=

1

n1

n0∑
i=1

f0(W1i)
{
S̃1i −m1(W1i; µ̂

p
0)
}

+Op

(
h2 +

log(n1)

n1h

)
+ op

(
1
√
n1

)

Similarly,

1

n1

n1∑
i=1

(m̂1(W1i; µ̂
p
0)−m1(W1i; µ̂

p
0))

=
1

n1

n0∑
i=1

f0(W1i)
{
S̃1i −m1(W1i; µ̂

p
0)
}

+Op

(
h2 +

log(n1)

n1h

)
+ op

(
1
√
n0

)
,

and

√
n

[
1

n0

n0∑
i=1

(m̂1(W0i; µ̂
p
0)−m1(W0i; µ̂

p
0))−

1

n1

n1∑
i=1

(m̂1(W1i; µ̂
p
0)−m1(W1i; µ̂

p
0))

]
(2)

=Op

(
√
n1h

2 +
log(n1)√
n1h

)
+ op(1). (3)

Therefore, when h = O(n−δ
1 ), δ ∈ (1/4, 1/2), the right hand side of (3) becomes op(1), and

thus

1√
n

1∑
g=0

ng∑
j=1

m̂1(Wgj; µ̂
p
0)− µ̃1

=

√
n

n1

n1∑
i=1

(S̃1i − µ̃1) + π0

[√
n

n0

n0∑
j=1

m1(W0j; µ̂
p
0)−

√
n

n1

n1∑
j=1

m1(W1j; µ̂
p
0)

]
+ op(1).
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Finally, we have

√
n
{

∆̂H − ∆̃H

}
=

√
n

n1

n1∑
i=1

(S̃1i − µ̃1) + π0

[√
n

n0

n0∑
i=1

m1(W0i; µ̂
p
0)−

√
n

n1

n1∑
i=1

m1(W1i; µ̂
p
0)

]

−
√
n

n0

n0∑
i=1

(S̃0i − µ̃0) + π1

[√
n

n1

n1∑
i=1

m0(W1i; µ̂
p
0)−

√
n

n0

n0∑
i=1

m0(W0i; µ̂
p
0)

]
+ op(1)

=

√
n

n1

n1∑
i=1

(
S̃1i − π0m1(W1i; µ̂

p
0)− π1m0(W1i; µ̂

p
0)− π1(µ̃1 − µ̃0)

)
−
√
n

n0

n0∑
i=1

(
S̃0i − π0m1(W0i; µ̂

p
0)− π1m0(W0i; µ̂

p
0)− π0(µ̃1 − µ̃0)

)
+ op(1),

which converges weakly to a mean zero Gaussian distribution with a variance of

1

π1
E
{
S̃1i − π0m1(W1i; µ̂

p
0)− π1m0(W1i; µ̂

p
0)− π1∆̃H

}2

+
1

π0
E
{
S̃0i − π0m1(W0i; µ̂

p
0)− π1m0(W0i; µ̂

p
0)− π0∆̃H

}2

.

Therefore, the variance of ∆̂H can be estimated as

σ̂2
H =

1

n2
1

n1∑
i=1

(
S̃1i − π0m̂1(W1i; µ̂

p
0))− π1m̂0(W1i; µ̂

p
0)− π1∆̂H)

)2

+
1

n2
0

n0∑
i=1

(
S̃0i − π0m̂1(W0i; µ̂

p
0)− π1m̂0(W0i; µ̂

p
0)− π0∆̂H

)2

10



Next, we will derive the asymptotical distribution of
√
n(∆̂AUG

H − ∆̃H). It is clear that

√
n(∆̂AUG

H − ∆̃H)

=

√
n

n1

n1∑
i=1

{
S̃1i − π0m̂1(W1i; µ̂

p
0)− π1m̂0(W1i; µ̂

p
0)− π1∆̃H

}
−
√
n

n0

n1∑
i=1

{
S̃0i − π0m̂1(W0i; µ̂

p
0)− π1m̂0(W0i; µ̂

p
0)− π0∆̃H

}
=

√
n

n1

n1∑
i=1

{
S̃1i − π0m1(W1i; µ̂

p
0)− π1m0(W1i; µ̂

p
0)− π1∆̃H

}
−
√
n

n0

n1∑
i=1

{
S̃0i − π0m1(W0i; µ̂

p
0)− π1m0(W0i; µ̂

p
0)− π0∆̃H

}
−
√
n

[
π0
n0

n0∑
i=1

(m̂1(W0i; µ̂
p
0)−m1(W0i; µ̂

p
0))−

π0
n1

n1∑
i=1

(m̂1(W1i; µ̂
p
0)−m1(W1i; µ̂

p
0))

]

−
√
n

[
π1
n1

n1∑
i=1

(m̂1(W1i; µ̂
p
0)−m1(W1i; µ̂

p
0))−

π1
n0

n0∑
i=1

(m̂0(W0i; µ̂
p
0)−m1(W0i; µ̂

p
0))

]

=

√
n

n1

n1∑
i=1

{
S̃1i − π0m1(W1i; µ̂

p
0)− π1m0(W1i; µ̂

p
0)− π1∆̃H

}
−
√
n

n0

n1∑
i=1

{
S̃0i − π0m1(W0i; µ̂

p
0)− π1m0(W0i; µ̂

p
0)− π0∆̃H

}
+ op(1)

=
√
n(∆̂H − ∆̃H) + op(1).

Therefore, ∆̂AUG
H and ∆̂H are asymptotically equivalent. Furthermore, noting that

S̃1i − π0m1(W1i; µ̂
p
0)− π1m0(W1i; µ̂

p
0)− π1∆̃H

=
{
S̃1i −m1(W1i; µ̂

p
0)
}

+ π1

{
m1(W1i; µ̂

p
0)−m0(W1i; µ̂

p
0)− ∆̃H

}

and

E
[{
S̃1i −m1(W1i; µ̂

p
0)
}{

m1(W1i; µ̂
p
0)−m0(W1i; µ̂

p
0)− ∆̃H

}
| W1i

]
= 0,
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we have

E
[
S̃1i − π0m1(W1i; µ̂

p
0)− π1m0(W1i; µ̂

p
0)− π1∆̃H

]2
=E

[
S̃1i −m1(W1i; µ̂

p
0)
]2

+ π2
1E
[
m1(W1i; µ̂

p
0)−m0(W1i; µ̂

p
0)− ∆̃H

]2
.

Similarly,

E
[
S̃0i − π0m1(W0i; µ̂

p
0)− π1m0(W0i; µ̂

p
0)− π0∆̃H

]2
=E

[
S̃0i −m0(W0i; µ̂

p
0)
]2

+ π2
0E
[
m1(W0i; µ̂

p
0)−m0(W0i; µ̂

p
0)− ∆̃H

]2
.

Therefore, the variance of ∆̂
(AUG)
H can also be consistently estimated by

σ̂2
AUG =

1

n2
1

n1∑
i=1

[
µ̂
(p)
0 (S1i,W1i)− m̂1(W1i; µ̂

p
0)
]2

+
1

n2
0

n0∑
i=1

[
µ̂
(p)
0 (S0i,W0i)− m̂0(W0i; µ̂

p
0)
]2

+
π2
1

n2
1

n1∑
i=1

[
m̂1(W1i; µ̂

p
0)− m̂0(W1i; µ̂

p
0)− ∆̂H

]2
+
π2
0

n2
0

n0∑
i=1

[
m̂1(W0i; µ̂

p
0)− m̂0(W0i; µ̂

p
0)− ∆̂H

]2
,

and ∆̂(AUG)/∆̂H = 1 + op(1).

Appendix E

Here, we provide an example where there is heterogeneity in the utility of the surrogate and

the W is distributed the same in the prior study and current study, but ∆P still fails to

provide a lower bound for ∆. In both the prior study and the current study, we assume

that log(W ) ∼ εW , S(g) = W × exp(δ0g + εS), and Y (g) = S(g)W, g ∈ {0, 1}, where δ0 is a

positive constant, and εW and εS are two independent standard normals. It is obvious that
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µp0(s, w) = sw and

∆ = ∆H =E(S(1)W )− E(S(0)W ) = E
{
WE(S(1) − S(0) | W )

}
=E {W (exp(0.5 + δ0)W − exp(0.5)W )} = exp

(
5

2

)
(exp(δ0)− 1) .

Next, we have

µp0(s) =E(WS(0) | S(0) = s) = sE(W (0) | S(0) = s)

=s× exp

(
1

4

)
s

1
2 = exp

(
1

4

)
s

3
2 ,

and

∆P =E

{(
S(1)

) 3
2 exp

(
1

4

)}
− E

{(
S(0)

) 3
2 exp

(
1

4

)}
= exp

(
5

2

)(
3δ0
2
− 1

)
.

Consequently, in this setting, ∆P > ∆ = ∆H even though the W has the same distribution

in both studies.
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Figure A1: Discrete data example
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