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Supplementary Methods  

Details on phenotype curation in UK Biobank 

UK Biobank (UKB) participants provided extensive phenotype data, including surveys on 
baseline characteristics and health outcomes, specific questionnaires and assessments, health 
records, physical measures and biomarkers1. By examining three cognitive phenotypes in the 
UKB, educational attainment (EDU), reaction time (RT) and verbal-numerical reasoning (VNR), 
we aimed at capturing different aspects of cognitive function for a more comprehensive 
discovery and to facilitate a dissection of the genetics of cognitive function. 
 
Educational attainment. The educational attainment survey in UK Biobank (UKB; data field 
6138) is a multiple-choice question with eight choices, including 7 categories of different 
qualifications and an option for “Prefer not to answer”. We mapped the seven categories to 
years-of-schooling using the International Standard Classification of Education (ISCED) scale: 
none of the above (no qualifications) = 7 years of education; CSEs or equivalent = 10 years; O 
levels/GCSEs or equivalent = 10 years; A levels/AS levels or equivalent = 13 years; other 
professional qualification = 15 years; NVQ or HNC or equivalent = 19 years; college or 
university degree = 20 years of education2. Educational attainment for those who selected “Prefer 
not to answer” was treated as missing and excluded from the analysis.  
 
Reaction time. Reaction time is measured by a digital test “Snap” game in UKB. In the “Snap” 
game, the participants were presented with pairs of matched or mismatched cards on the 
computer screen. If the two cards were matched, participants were to push a button box as 
quickly as possible. The game includes first five rounds of practice and then seven rounds of the 
actual tests, among which four rounds present matched pairs of cards. “Mean time to correctly 
identify matches” (data field 20023) is the mean time to correctly identify the four rounds of 
matched cards (in milliseconds). 
 
Verbal-numerical reasoning. Verbal-numerical reasoning is measured by the “fluid 
intelligence” questionnaire, which contains 13 multiple-choice questions that assess verbal and 
numerical problem solving, where 7 questions are on numerical problem solving and 6 questions 
are on verbal problem solving. The participants are allowed 2 minutes to answer the questions. 
The questions not answered in the 2 minutes limit are scored zero. The final score is the total 
number of correctly answered questions in two minutes (UKB data fields 20016 “Fluid 
intelligence score”).  

Details on UK Biobank genetic data processing for population assignment 

We processed and QCed both imputed genotype data in UKB and genotype data from the 1000 
Genomes project3 to perform genetic principal component analysis (PCA)-based population 
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assignment for UKB samples. We first performed quality control on the 1KG genotype data by 
retaining only the SNPs on autosomes with minor allele frequency (MAF) > 1% and removed 
SNPs located in known long-range LD regions (chr6:25-35Mb; chr8:7-13Mb). We also removed 
1 sample from each pair of related samples (greater than second degree) in 1KG. We merged the 
UK biobank imputed genotype data that was filtered to imputation quality INFO > 0.8 and 
MAF > 1% with the 1KG genotype data and performed LD-pruning at R2 = 0.2 with a 500 kb 
window. We then computed principal components (PCs) using the LD-pruned SNPs in 1KG 
sample and derived projected PCs of UK Biobank samples using the SNP-wise PC loadings from 
1KG samples. Using the 5 major population labels of 1KG samples as the reference, we trained a 
random forest model with top 6 PCs to classify UK Biobank samples into 1KG population 
groups. We assigned UK Biobank samples into one of the 5 populations defined with 1KG 
reference based on a predicted probability for a specific population group > 0.8. We identified 
1,609 EAS samples, 458,197 EUR samples, 8,406 AFR samples, 9,224 SAS samples, 1,085 
AMR samples and 8,874 samples without explicit population assignment. Note that the final 
analytical sample sizes for each population are smaller due to the fact that exome sequencing 
was available for only 454,787 UKB samples, while population assignment was done for all 
UKB samples with genome-wide genotyping data.  
 
After initial population assignment, we performed three rounds of within-population PCA for 
AFR, EUR and SAS samples to identify remaining population outliers, each time removing 
samples with any of the top 10 PCs that was more than 5 standard deviations (SD) away from the 
sample average. We used the in-sample PCs derived after outlier removal for each population in 
subsequent analyses. 

Comparison between the findings from gene-based PTV burden tests in the current study and 
previous exome studies in UK Biobank 

We note that some of the gene-based PTV burden findings reported in our study have also been 
observed in a recent cross-phenotype exome study by Backman et al.4, where gene-based burden 
analyses for RT were conducted using different “gene burden masks” (annotations for grouping 
variants to calculate burden) and MAF cut-offs than our analysis. For verbal-numerical reasoning 
(originally termed “fluid intelligence” by UK Biobank), Backman et al. formatted the 
participants’ responses to each verbal-numerical reasoning question into binary traits using one 
of the multiple choices against other choices and examined each question separately in their 
gene-based burden analyses. This is not consistent with how the UKB “fluid intelligence” data 
were analyzed in previous cognitive function GWAS5–7. The total number of correctly answered 
questions as we analyzed in this study is consistent with the phenotype definition used in 
previous cognitive function GWAS and is considered a standard measure of general cognitive 
function5–7.  
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We also note that gene-based PTV burden and kernel-based (SKAT-O8 and SKAT9) association 
analyses for reaction time and verbal-numerical reasoning were included in a recent study by 
Karcewski et al.10, with results available through the Genebass browser 
(https://app.genebass.org/). In that study, gene-based PTV burden, SKAT, and SKAT-O tests 
were performed with a much more liberal MAF filter of 0.01 compared with the current study 
(which used a MAF filter of 0.00001). A direct comparison of PTV-burden, SKAT, and SKAT-
O test results between both studies are presented in Supplementary Table 23. In the results from 
the Genebass browser, we can see that association p-values are comparable between SKAT-O 
and burden tests, while SKAT tests yield less significant p-values. This suggests that, since 
SKAT-O is an optimal unified test of a kernel-based test (i.e., SKAT) and a burden test, most of 
the gene discovery power in SKAT-O test is from the burden test. In this case, SKAT test would 
not provide much additional power in identifying novel genes. This is further supported by 
another publication based on an interim release of the UK Biobank exome sequencing data 20. 
We also note that the effect sizes of identified cognitive function genes are at least 10-folds 
larger in the current study than in the Genebass browser, while the PTV-burden association p-
value is sometimes more significant in the Genebass browser. This is likely due to different MAF 
cut-offs were used in the two studies (MAF<0.01 in Genebass and MAF<0.00001 in current 
study). While we are aiming at identifying genes that could be subject to strong, rare PTV effects 
by restricting to PTV with MAF<0.00001 in UKB, we sometimes lose power for association 
tests due to a smaller number of PTV carriers in the analysis.   

Details on gene set burden calculations 

Gene set burden - ASD, DD, DDG2P exome genes 
We examined the impact of rare coding variants in genes identified in autism spectrum disorder 
(ASD; N gene=102)11 and developmental disorder (DD; N gene=285)12 exome studies, as well as 
in DD genes listed in the Development Disorder Genotype - Phenotype Database (DDG2P; 
https://www.deciphergenomics.org/ddd/ddgenes). DDG2P provides a curated list of genes 
reported to be associated with developmental disorders and curated by clinicians as part of the 
Deciphering Developmental Disorders (DDD) study to facilitate clinical reporting of likely 
causal variants. We included 2,020 confirmed and probable DD genes from DDG2P into our 
analysis. ASD, DD and DDG2P gene set burdens were calculated, and burden association 
analyses were conducted following the analysis procedure described above in unrelated UKB 
EUR samples (N sample=321,843). 
 
Gene set burden - GWAS genes  
Following the same procedure as above, we performed gene set-based burden analysis in genes 
identified in GWAS for educational attainment (N gene=1,140)2, cognitive function (N 
gene=807)7, schizophrenia (N gene=3,542)13, bipolar disorder (N gene=218)14 and depression (N 
gene=269)15. The respective GWAS gene lists were taken either directly from publications or 
from reprocessing the publicly available GWAS summary statistics with FUMA for positional 
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gene mapping16. We also calculated rare coding variant burden for a set of randomly selected 
genes not linked to cognitive function or psychiatric disease (N gene=1,082), which includes 5% 
of all genes excluding cognitive function genes identified in this study, ASD and DD exome 
studies12,17 and cognitive function, educational attainment, schizophrenia, bipolar disorder and 
depression GWAS2,7,13–15. We followed the same procedure in exome-wide burden analysis to 
perform the gene set burden association analysis in unrelated UKB EUR samples. 
 
Gene set burden - MSigDB curated gene sets and pathways 
To identify pathways and gene sets associated with cognitive function, we calculated PTV 
burden for 13,011 gene sets identified in the Molecular Signatures Database (MSigDB v7.2; 
accessed on 11/26/2020; parsed with R v3.6.1 with GSA vl.03.l package ) and performed self-
contained pathway association analysis18. We included all C2 canonical pathways (BioCarta N 
set=292; KEGG N set=186; Pathway Interaction Database [PID] N set=196; Reactome N 
set=1,547; WikiPathways N set=587) and C5 gene ontology (GO) pathways (Biological Process 
N set=7,531; Cellular Component N set=996; Molecular Function N set=1,676). Again, we 
followed the same procedure as above to examine the association between pathway PTV burden 
and cognitive function phenotypes. The significance level was determined by Bonferroni 
correction for the number of pathways and gene sets tested for each phenotype (0.05/13011 = 
3.84x10-6). Note that we performed self-contained pathway analysis where the null hypothesis is 
that there is no association between the gene set PTV burden and the cognitive function 
phenotype (as opposed to competitive pathway analysis)18. 
 
Gene set burden - Genes with brain specific and non-specific expression 
To examine a potential enrichment of rare coding variant burden association among genes with 
brain specific expression in cognitive function, we calculated rare coding variant burdens for 
three gene sets defined by gene expression specificity in the Human Brain Atlas19: genes with 
elevated expression in brain (N gene=2,587); genes with elevated expression in other tissues, but 
also expressed in brain (N gene=5,298); and genes with expression that has low tissue specificity 
(N gene=8,385). The burden association analysis was done in unrelated European UKB samples 
with the same procedure as above. 

The SUPER-Finland study 

The SUPER-Finland study is a cohort of 9,125 psychotic patients in Finland. Subjects with a 
diagnosis of a schizophrenia spectrum psychotic disorder (ICD-10 codes F20, F22-29), bipolar I 
disorder (F31) or major depressive disorder with psychotic features (F32.3 and F33.3) were 
recruited from in- and outpatient psychiatric, general care and housing units and by 
advertisements in local newspapers. DNA samples were genotyped with GWAS arrays, exome 
sequenced and linked to a wide range of phenotypic information ascertained through a structured 
interview, questionnaires, and cognitive testing. After receiving written and verbal information 
on the study and biobank research, all participants gave written informed consent for 
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participating in the study. The sample collection was conducted between 2016 and 2018 and has 
been funded by the Stanley Center for Psychiatric Research at the Broad Institute of MIT and 
Harvard, Boston, USA, and forms one arm of the Stanley Global Neuropsychiatric Genomics 
Initiative.  
 
Whole-exome sequencing data generation and quality control  
Blood samples were collected by venipuncture for DNA extraction (2x Vacutainer EDTA K2 5/4 
ml, BD, serum (Vacutainer STII 10/8 ml gel, BD) and plasma (Vacutainer EDTA K2 10/10 ml, 
BD) analyses. In cases where venipuncture was not possible, a saliva sample (DNA OG-500, 
Oragene) was collected for DNA extraction. DNA extraction from EDTA-blood tubes was 
performed using PerkinElmer Janus chemagic 360i Pro Workstation with the CMG-1074 kit. 
Saliva samples (n= 509) were incubated in +50°C overnight before DNA extraction. Saliva 
samples were processed using Chemagen Chemagic MSM I robot with CMG-1035-1 kit. DNA 
was eluted in 400 µl 10 mM Tris-EDTA elution buffer (PerkinElmer) and DNA-concentration 
measured with Trinean DropSense spectrophotometer. Samples were aliquoted with Tecan 
Genesis/Tecan Freedom Evo and shipped to the Broad institute of MIT and Harvard, Boston, 
USA on dry ice for genetic analyses. 
 
Exome sequencing was performed at the Broad Institute. The sequencing process included 
sample prep (Illumina Nextera, IIlumina TruSeq and Kapa Hyperprep), hybrid capture (Illumina 
Rapid Capture Enrichment (Nextera) - 37Mb target and Twist Custom Capture - 37Mb target) 
and sequencing (Illumina HiSeq4000, Illumina HiSeqX, Illumina NovaSeq6000 - 150bp paired 
reads). Sequencing was performed at a median depth of 85% targeted bases at > 20X. 
Sequencing reads were mapped by BWA-MEM to the hg38 reference using a “functional 
equivalence” pipeline. The mapped reads were then marked for duplicates, and base quality 
scores were recalibrated. They were then converted to CRAMs using Picard and GATK. The 
CRAMs were then further compressed using ref-blocking to generate gVCFs. These CRAMs and 
gVCFs were then used as inputs for joint calling. To perform joint calling, the single-sample 
gVCFs were hierarchically merged (separately for samples using Nextera and Twist exome 
capture).  
 
Quality control (QC) analyses were conducted in Hail 0.2 and the full details are described in the 
SCHEMA manuscript. In brief, we annotated variants as frameshift, inframe deletion, inframe 
insertion, stop lost, stop gained, start lost, splice acceptor, splice donor, splice region, missense, 
or synonymous using the Ensembl Variant Effect Predictor tool. At the genotype level, we first 
split multiallelic sites and retained individual calls if they had a genotype quality (GQ) ≥ 20, 
allelic balance (AB) < 0.1 in homozygous calls, allelic balance (AB) ≥ 0.25 in heterozygous calls 
and depth (DP) ≥ 10. After applying genotype filters, we excluded variants with call rates < 0.9 
or if they resided within low-complexity regions (LCR). We excluded samples that were 4 
median absolute deviations from the mean in any of the following metrics: call rate (callRate), 
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number of heterozygous calls (nHet), number of homozygous alternate calls (nHomVar), number 
of non-reference calls (nNonRef), number of deletions (nDeletion), number of insertions 
(nInsertion), number of singleton calls (nSingleton), number of SNPs (nSNPs), heterozygous-
homozygous call ratio (rHetHomVar), transition-transversion ratio (rTiTv) and insertion-deletion 
(rInsertionDeletion). Using the Hail PC-relate function, we pruned clusters of related individuals 
to ensure that no two samples were second-degree or closer in relations. Individuals with a 
Finnish predicted ancestry (P > 0.7) using a Random Forest model based on PCA using 1000 
Genomes as a basis were retained. 
 
Cognitive function phenotypes for replication analysis  
The SUPER-Finland study protocol included a questionnaire, a structured interview by a 
research nurse, physical measurements, and blood/saliva sampling. The questionnaire and 
interview included questions on educational attainment 
(http://www.julkari.fi/handle/10024/78534), academic performance and learning difficulties at 
school, which were derived from the Finnish Health 2000 and 2011 general population surveys. 
We identified PTV carriers in the cognitive genes in the primary analysis and performed 
association tests between cognitive gene PTV burden and cognitive phenotypes. Association 
tests were done with either linear or logistic regression. We regressed the phenotypes on PTV 
status and corrected for 10 principal components, imputed sex, sequence assay and total number 
of coding variants in the genome. We focused on the following phenotypes: we define a 
developmental disorders/intellectual disability (DD/ID) case as someone with a diagnosis of 
learning difficulty and intellectual disability based on diagnostic codes in HILMO (THL). In the 
interview data, we asked “How did you fare in studies compared to your schoolmates?” with a 
response encoding of 'Below average', 'Moderately', 'Better than average'. Level of education 
completed was a trinarized measure based on definitions in the Health 2000 survey, and is 
encoded as ‘low’, ‘middle’, ‘high’ and correlates with only having completed primary, 
secondary, and tertiary education. 

The Northern Finland Intellectual Disability (NFID) study 

The Northern Finland Intellectual Disability (NFID) study consists of 1,097 intellectual disability 
cases from Northern Finland Intellectual Disability (NFID) study and 11,774 controls from the 
FINRISK 1992-2012 and Health 2000-2011 studies20. The details of the study sample 
recruitment and phenotyping, exome sequencing data generation and quality control and ethical 
permissions were described in Kurki et al. 201920.  
 
The Mass General Brigham Biobank 
The Mass General Brigham Biobank (MGBB) is a hospital-based biobank aiming at collecting 
blood samples, lifestyle and family history survey data, as well as electronic health record 
linkage from consented participants21. The release used for this study (as of November 2021) 
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includes 24,787 samples that were whole-exome sequenced and genome-wide genotyped in two 
batches. All MGBB patients gave informed consent for general biobank research. 
 
Genotype and sample quality control 
We conducted QC of genome-wide genotypes for 24,787 samples following a QC pipeline 
(https://github.com/Annefeng/PBK-QC-pipeline) by using PLINK v1.90, R, and python scripts. 
The following filters were used in sequence: variant call rate>0.95; sample call rate>0.98; second 
round variant filter with call rate>0.98. Variant-level missing rate was computed in each batch 
and variants with missing rate difference > 0.75% were filtered out. After merging two 
genotyping batches, we further removed duplicated variants, monomorphic variants and variants 
not confidently mapped to any chromosomes.  
 
To identify MGBB samples of European ancestry, we leveraged 1000 Genomes (1KG) Project 
phase 3 samples as population reference. To do so, we first combined MGBB genotypes with 
1KG genotypes (N sample=2,504)3. We only retained overlapping variants with MAF>0.05 and 
call rate>0.98 and filtered out multi-allelic and strand ambiguous variants. We LD-pruned 
variants at R2 = 0.1 with window size 200 kb to obtain independent variants for principal 
components analysis (PCA), while excluding variants in long-range LD regions (chr6:25-35Mb 
and chr8:7-13Mb). With 1KG super population labels (African [AFR], American [AMR], East 
Asian [EAS], European [EUR], and South Asian [SAS]), we used top 6 PCs to train a random 
forest model and assigned MGBB samples into five populations (prediction probability>0.8). We 
identified 17,287 (69.7%) EUR samples for the subsequent analysis. 
  
We further QCed MGBB EUR samples by filtering out 513 samples, including samples whose 
reported sex was different from genetically imputed sex (F-statistics<0.2 imputed as female; F-
statistics>0.8 as male), samples with outlying heterozygosity rate (>5 standard deviation from 
the mean) and one of each pair of related samples (pi-hat>0.2). After removing variants showing 
significant batch effects (P<1.0x10-4), we performed PCA of QC-ed EUR samples and removed 
73 outlier samples (6 standard deviations away from the mean in top 10 PCs). A total of 16,701 
samples of European ancestry were retained as the final analytical sample. In-sample PCs were 
used to control for population stratification in the replication analysis. 
 
Whole-exome sequencing data generation and quality control  
Whole-exome sequencing was done in 26,421 MGBB samples using Illumina NovaSeq with a 
custom exome panel (TWIST Biosciences). The sequencing coverage was 20X for more than 
85% of exonic target. Variants were joint-called by Genome Analysis ToolKit (GATK) GVCF 
workflow with HaplotypeCaller in gVCF mode. WES data quality control was done with Hail 
v0.2 (https://github.com/hail-is/hail). We first split multi-allelic variants into bi-allelic and 
retained high-quality variants with variant level genotype quality (GQ)>20, call rate>0.9, allele 
count>0, 200>mean depth (DP)>10, allele balance (AB)>0.9. Then, variants were separated into 
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SNPs and indels for hard filtering. For SNPs, we kept SNPs with QualByDepth (QD)≥2, 
FisherStrand (FS)≤60, StrandOddsRatio (SOR)≤3, RMSMappingQuality (MQ)≥40, 
MappingQualityRankSumTest (MQRankSum)≥-12.5 and ReadPosRankSumTest 
(ReadPosRankSum)≥-8. For indels, we kept variants with QD≥2, ReadPosRankSum≥-20, 
FS≤200 and SOR≤10. We retained 10,588,646 high-quality variants after QC. With high-quality 
variants, we then performed sample-level QC by keeping samples with number of singleton 
(n.singleton)<500, sample-level genotype quality (GQ)>40 and sample call rate>0.9.  
 
Statistical analysis 
We performed replication analysis on MGBB samples of European ancestry with genotype, 
whole-exome sequencing and educational attainment data using R v3.6.1 (with packages 
data.table vl.12.8, dplyr vl.0.0, and ggplot2 v3.3.l). The total analytic sample size is 8,389. We 
first extracted variants in the 8 genes identified in UKB gene-based PTV burden analysis from 
the MGBB exome data. We annotated the coding variants with Variant Effect Predictor (VEP) 
v9622 and Loss-Of-Function Transcript Effect Estimator (LOFTEE)23. We identified 28 PTVs in 
the 8 genes and 36 PTVs in 13 genes with MAF ranging from 1.89x10-5 to 7.57x10-5. We 
calculated PTV burden across 8 or 13 cognitive genes in MGBB European samples and 
performed association tests between cognitive gene PTV burden and educational attainment. 
Educational attainment in MGBB was self-reported and converted from categories of educational 
levels to years-of-education following the sample rules used in processing UKB educational 
attainment data. We used linear regression for association testing, adjusted for sex, age, age2, sex 
by age interaction, sex by age2 interaction and top 20 PCs. 
 
Details on Kdm5b mouse behavioral testing 
We applied a battery of behavioral tests as they are commonly applied to study mice for signs of 
perturbed neurodevelopment, including light-dark box, Barnes Maze probe trial, and Novel 
Object Recognition. The details of these behavioral tests are as follows: 
 
Light-dark box 
This test was adapted from Gapp et al.24. Mice were housed in pairs or trios for at least 10 
minutes before performing a grip strength test (BIO-GS3, Bioseb) and subsequently introducing 
them individually into the light-dark box, a plastic box (40 × 42 × 26 cm) divided in two 
compartments. One is smaller, closed, and dark (1/3 of the total surface area) and connected 
through a door (5 cm) to a larger, brightly lit (370 lux with an overhead lamp) compartment (2/3 
of the box). Each mouse was placed in the dark compartment, the door was then opened, and the 
animal was left to explore for 10 min. The time spent in the light compartment was assessed and 
the difference between genotype groups was calculated as z-scores. 
 
Barnes Maze probe trial 
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This assay is a test of visuo-spatial learning and memory on a circular maze (120 cm diameter 
table) with 20 holes around the perimeter25. One of the holes leads to a small dark box (Target) 
where the mice can escape from the brightly lit maze. Mice were trained for three days, 10 trials 
(4 min maximum each), to find the target location. On the probe trial, 72 hours after the last 
training day, the escape box was removed. Each mouse was given 4 minutes to explore the maze. 
The mouse's movements were tracked, and the amount of time spent around each of the holes 
during the first minute of the test was analyzed. Analysis results are expressed as z-scores of 
homozygote or heterozygote relative to wildtype mice. 
 
Novel Object Recognition 
This assay was conducted as part of an Object Displacement - Novel Object Recognition test on 
a square arena (37 cm side). Mice were first habituated to the arena for 20 min. The following 
day mice were tested during two 10min trials, with an inter-trial-interval of 1 hr. During these 
trials, mice were left to explore two identical objects (either small glass bijou bottles or similarly 
sized halogen light bulbs). 24 hr later, on day 3, mice were given the choice to explore two 
different objects, a familiar one (to which they had been exposed the previous day) and a novel 
one. The movement of each mouse was tracked and the amount of time their nose was in 
proximity to the objects was recorded and used as investigation time. The preference for 
investigating the novel object was calculated as a ratio, Preference Novel= Tnovel/(Tnovel + 
Tfamiliar), where Tnovel and Tfamiliar are the amount of time spent investigating the novel and 
familiar objects. Mice prefer to investigate novel objects over familiar ones, so deviation from 
this bias is interpreted as reduced recognition memory sensitivity or discriminatory ability 26. 
 
Details on Kdm5b mouse whole body radiography 
Fifteen Kdm5b+/+, twelve Kdm5b+/- and nine Kdm5b-/- mice were anesthetized with 
ketamine/xylazine (100mg/10mg per kg of body weight) and then placed in an MX-20 X-ray 
machine (Faxitron X-Ray LLC). Whole body radiographs were taken in dorso-ventral and lateral 
orientations. Images were then analyzed, and morphological abnormalities assessed using Sante 
DICOM Viewer v7.2.1 (Santesoft LTD). To sufficiently power the analysis of transitional 
vertebrae in heterozygous animals, we analyzed a larger number of animals (Kdm5b+/+: 46, 
Kdm5b+/-: 40, Kdm5b-/- :21).  
 
Details on Kdm5b mouse RNA extraction, sequencing, and data processing 
Mouse tissues were homogenized in buffer RLT plus (Qiagen) with β-mercaptoethanol (Sigma, 
M3148; 10µl/ml) using Qiagen TissueLyser LT, with sterile steel beads and operated at 50Hz for 
2 minutes. Samples were passed over gDNA eliminator columns. Then total RNA was extracted 
on RNeasy Plus columns as per manufacturer’s protocol (Qiagen), immediately snap frozen on 
dry ice and stored at -80C. An aliquot of each sample was quantified using 2100 Bioanalyzer 
(Agilent Technologies). RNA sequencing libraries were prepared using established protocols: 
library construction (poly(A) pulldown, fragmentation, 1st and 2nd strand synthesis, end prep 
and ligation) was performed using the NEB Ultra II RNA custom kit (New England Biolabs) on 
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an Agilent Bravo automated system. Indexed multiplexed sequencing was performed on an 
Illumina HiSeq 4000 system, using 75 bp paired-end sequencing reads. The sequencing data 
were de-multiplexed into separate CRAM files for each library in a lane. Adapters that had been 
hard-clipped prior to alignment were reinserted as soft-clipped post alignment, and duplicated 
fragments were marked in the CRAM files. The data pre-processing, including sequence QC and 
STAR alignments were made with a Nextflow pipeline, which is publicly available at 
https://github.com/wtsi-hgi/nextflow-pipelines/blob/rna_seq_mouse/pipelines/rna_seq.nf, 
including the specific aligner parameters. We assessed the sequencing data quality using FastQC 
v0.11.8. Reads were aligned to the GRCm38 mouse reference genome 
(Mus_musculus.GRCm38.dna.primary assembly.fa, Ensembl GTF annotation v99). We used 
STAR version 2.7.3a27 with the --twopassMode Basic parameter. The STAR index was built 
against Mus_musculus GRCm38 v99 Ensembl GTF using the option -sjdbOverhang 75. We then 
used featureCounts version 2.0.028 to obtain a count matrix. Genes with less than 5 counts in 
more than 33% of samples were filtered out. The counts were normalized using DESEQ2’s 
median of ratios method29. Differential gene expression and log2 fold changes were obtained 
using the DESEQ2 package29 with SVA correction30.  The default DESEQ2 adjusted p-value 
threshold of 0.10 was used to identify significant differences between wildtype and mutant 
samples. The number of differentially expressed genes (DEG) in each tissue was considered as 
the union of DEG in both Kdm5b+/- and Kdm5b-/- animals.   
 
For the identification of functionally enriched terms in the differentially expressed genes, Gene 
Ontology (GO) enrichment analysis was performed using the gprofiler R package (gost function, 
ordered_query = FALSE). A threshold of 5% FDR and an enrichment significance threshold of 
P<0.05 (correction_method = "fdr" for multiple testing) was used. In all analyses, the 
background consisted of only the genes considered expressed in the tissue studied (genes that 
passed the minimum count filtering that had adjusted p-value with a numerical value, different to 
NA). GO terms with more than 1,000 genes were excluded from the analysis. The European 
Nucleotide Archive accession numbers for the RNA-seq sequences reported in this paper are as 
listed in Supplementary Table 17. 
 
Temporal expression of cognitive function genes 
We obtained temporal RNA-seq expression data from BrainSpan31, an atlas of the developmental 
human brain. This data was generated from 42 individual donors, across 26 brain regions and in 
31 developmental ages, with 524 samples in total. Gene expression was originally processed as 
reads per kilobase per million (RPKM). We first removed genes that were not expressed 
(RPKM<1) in more than 10% of the total samples, resulting in 11,744 genes with expression 
information available. Then, RPKM was transformed to log2 (RPKM+10-8) (adding 10-8 to avoid 
possible numerical error in logarithm transformation). Thirty-one developmental ages were 
grouped into 8 developmental stages, early prenatal (8-12 pcw), early mid-prenatal (13-18 pcw), 
late mid-prenatal (19-24 pcw), late prenatal (25-38 pcw), infancy (0-18 months), childhood (19 
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months - 11 years), adolescence (12-19 years) and adulthood (20-60+ years). Temporal 
expression of the cognitive function genes across development stages was fitted loess regression. 
We compared prenatal and postnatal expression of the cognitive function genes across the QCed 
dataset with a two-sided two-sample student’s t-test. We also performed one-way ANOVA to 
test if the means of different developmental stages were significantly different. A post-hoc Tukey 
multiple pairwise-comparison between the means of stages was conducted if one-way ANOVA 
showed significant results. 
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Supplementary note  

Brief summary of cognitive function-associated genes identified  

ADGRB2. ADGRB2 (adhesion G protein-coupled receptor B2; also known as BAI2) encodes an 
adhesion G protein coupled receptor (GPCR) that is one of the main mediators of signal 
transduction in the central nervous system. ADGRB2 is considered as an orphan GPCR 
(oGPCR), for which endogenous ligands have not yet been identified32. ADGRB2 is primarily 
expressed in the brain (neurons and astrocytes in hippocampus, amygdala and cerebral 
cortex)33,34. Variants near ADGRB2 have been associated with educational attainment in a 
genome-wide association study2, and also found associated with other traits such as body mass 
index35, smoking, Intraocular pressure36, or parental longevity37. 
 
KDM5B. KDM5B (lysine demethylase 5B; also known as JARID1B or PLU1) encodes a lysine-
specific histone demethylase in the jumonji/ARID domain-containing family of histone 
demethylases. The encoded protein can demethylate tri-, di- and monomethylated lysine 4 of 
histone H3 (H3K4me1/2/3)38–40, which is broadly associated with enhancers and promoters of 
actively transcribed genomic loci. Mutations in KDM5B are the cause for an autosomal-recessive 
intellectual disability syndrome41 (OMIM # 618109) and have further been found associated with 
schizophrenia42 and autism spectrum disorder43,44 in sequencing studies, where disrupted 
neuronal differentiation was suggested as a potential mechanism. A search on GWAS Catalog 
(https://www.ebi.ac.uk/gwas/; accessed on Feb. 6, 2022) did not identify significant associations 
of KDM5B variants in previous GWAS. However, we note that the association of KDM5B with 
RT may be influenced by its association with reduced handgrip strength we observed in UKB, 
which might contribute to the epidemiological observation in UKB that hand grip strength and 
cognitive function share common mechanisms45. 
  
GIGYF1. GIGYF1 (GRB10 interacting GYF protein 1) encodes an adaptor protein (a member of 
the gyf family) that binds growth factor receptor-bound 10 (GRB10), which in turn binds 
activated insulin receptors and insulin-like growth factor-1 (IGF-1) receptors46,47. By influencing 
the insulin and IGF-1 signaling pathway, GIGYF1 plays a role in metabolic diseases and related 
anthropometric traits. For instance, significant associations were identified in previous GWAS 
for hemoglobin48, total cholesterol, low density lipoprotein cholesterol, glucose and 
apolipoprotein B levels49. GIGYF1 was also associated with mosaic loss of chromosome Y 
(LOY)50 and metabolic diseases including glucose and HbA1c levels and type 2 diabetes51 in 
previous exome sequencing studies.  
 
ANKRD12. ANKRD12 (ankyrin repeat domain 12; also known as ANCO-2) encodes a member 
of the ankyrin repeats-containing cofactor (ANCO) family. ANCOs are transcriptional co-
regulators that interact with both co-activators and co-repressors52. ANKRD12 interacts with the 
p160 co-activators (by recruiting HDACs [histone deacetylases]) and the co-activator ADA3 
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(alteration/deficiency in activation 3)52,53. ANKRD12 was found to be associated with 
corpuscular measures in GWAS35,54. 
 
SLC8A1. SLC8A1 (solute carrier family 8 member A1; also known as NCX1) encodes a 
bidirectional calcium transporter, the cardiac sarcolemmal Na(+)-Ca(2+) exchanger, which is the 
primary mechanism for cardiac myocyte returning to its resting state following excitation 
(through extrusion of calcium) and plays a critical role in cardiac contractility55. SLC8A1 
expression is enriched in human heart tissue. SLC8A1 has been shown to be associated with bone 
mineral density56, blood pressure57, blood biomarkers (for example IGF-1 49), 
electrocardiographic traits (PR interval58, QT interval59, etc.) and hand grip strength60 among 
others. 
 
RC3H2. RC3H2 (ring finger and CCCH-type domains 2) encodes roquin-2 that belongs to a 
family of highly conserved RNA-binding proteins (roquins) that regulate their target genes on 
the post-transcriptional level. Roquins contain a RING (Really Interesting New Gene)-type E3 
ubiquitin ligase domain, followed by a ROQ domain and a CCCH-type ZnF domain61–63. 
Roquins play key roles in maintaining peripheral immunological tolerance and autoimmune 
diseases64. It has been shown that RC3H2 (and RC3H1) restricts T-cell activation and 
costimulation via ICOS and OX40 to prevent inappropriate Tfh cell differentiation65. Roquin-2 is 
widely expressed in all human tissues. RC3H2 showed genome-wide significant association with 
insomnia66 and HbA1c35 in GWAS.  
 
CACNA1A. CACNA1A (calcium voltage-gated channel subunit alpha1 A) encodes the alpha-1A 
subunit of the voltage-dependent calcium channels. It is primarily expressed in neuronal tissue. 
Mutations in CACNA1A are a cause for type 2 episodic ataxia (OMIM #108500), spinocerebellar 
ataxia 6 (OMIM #183086), developmental and epileptic encephalopathy 42 (OMIM #617106) 
and familial hemiplegic migraine (OMIM #141500). CACNA1A was implicated in a previous 
educational attainment GWAS2, but the top associated SNP and LD peak do not fall into the 
CACNA1A gene region, but rather located in the intergenic region between CACNA1A and 
RPL12P42. Other GWAS associations for CACNA1A include depressive symptoms67, age at first 
birth68 and brain region volume69. 
 
BCAS3. BCAS3 (BCAS3 microtubule associated cell migration factor) encodes a large, highly 
conserved cytoskeletal protein involved in human embryogenesis and tumor angiogenesis70,71. It 
has recently been shown that BCAS3 loss-of-function variants can cause Hengel-Maroofian-
Schols syndrome (HEMARS; OMIM #619641), which is an autosomal recessive 
neurodevelopmental disorder characterized by severe global developmental delay starting from 
infancy or early childhood with facial dysmorphism and brain abnormalities 71. BCAS3 has also 
been associated with glomerular filtration rate72, bone mineral density56, serum creatinine level35, 
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hemoglobin concentration54, serum urate level73, red blood cell count35, ophthalmologic 
measures (e.g. macular thickness74), coronary artery disease75 and additional traits in GWAS. 
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Estimating burden heritability for rare variants with Burden Heritability Regression  

We used a new method, burden heritability regression (BHR)76, to estimate the phenotypic 
variance explained (burden heritability) by the gene-wise burden of rare coding variants. Using 
exome sequencing data in the UK Biobank European samples, we performed single variant 
association tests for educational attainment (EDU), reaction time (RT) and verbal-numerical 
reasoning (VNR) with PTVs and missense variants with a minor allele count greater than 5. The 
association tests were done using two-step whole genome regression implemented in Regenie 
(version 3.0.3) with the same model set up as described in the Method section “Exome-wide 
gene-based PTV burden test”). We estimated burden heritability for PTV and missense variants 
separately following the default settings of BHR with provided baseline model 
(https://github.com/ajaynadig/bhr) for 3 different minor allele frequency categories for the 
burden: [0, 0.0001), [0, 0.001), and [0, 0.01).  
 
The burden heritability estimates are shown in the table below. In our analysis, the burden 
heritability for EDU, RT, and VNR ranged from 0.0025 to 0 for PTV and missense burdens 
separately with MAF cut-off from 0.0001 to 0.01. From Weiner et al., the burden heritability was 
estimated as 0.0191 (SE=0.00283) for VNR and 0.0063 (SE=0.00091) for RT by combining 
PTV and missense variants with MAF<0.001. Compared with the burden heritability estimates 
for RT and VNR presented in the BHR method paper by Weiner et al., our burden heritability 
estimates appear to be lower, albeit the two sets of results (our current study and Weiner et al.) 
are not directly comparable due to different data curation, annotation, and statistical analysis set-
up (e.g., different allele frequency and annotation categories were used). In particular, we 
performed single variant association tests using two-step whole genome regression implemented 
in Regenie and followed the recommendation of the method developer to exclude all variants 
with minor allele count (MAC) less than 5 (approximately MAF<7x10-6) to ensure stable 
estimation for single variant association statistics. On the other hand, Weiner et al. used single 
variant association test statistics obtained from the Genebass Browser 
(https://app.genebass.org/)10, which were generated with a mixed model association test 
implemented in SAIGE-GENE and included all single variants with MAC>0. As shown in 
Weiner et al., most burden heritability is explained by ultra-rare loss-of-function variants with 
MAF between 10-6 to 10-5, which we mostly excluded from our burden heritability regression 
analyses. This may potentially explain lower burden heritability estimates in our analyses. 
Notably, a common theme is that the burden heritability of rare PTVs and missense variants are 
much lower than common variant heritability for cognitive function. The common variant-based 
heritability from previous GWAS were 0.15 for EDU2, 0.07 for RT6, and 0.25 for VNR6. These 
results support the proposed flattening hypothesis77, where it hypothesized that only a limited 
number of genes are critical for most of the human complex phenotypes and negative selection is 
gradually removing such variants with large effects in critical genes from the population (hence 
they are rare) and leaves behind a lot more common variants with small effects in less critical 
genes. This phenomenon may lead to the differences we observe between heritability for 
common variants with small effect versus rare coding variants with large effects. On the other 
hand, this hypothesis also explains why genes identified in rare variant association studies with 
large effect sizes are of higher biological relevance even with a smaller number of people in the 
population affected by genetic variants in these genes. 
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Burden heritability estimates for educational attainment, reaction time and verbal-numerical 
reasoning in UK Biobank European samples 
Phenotype Variant category Burden MAF cut-off (max) Bruden heritability SE 
Educational attainment PTV 0.0001 -0.0002 0.00027 
Educational attainment missense 0.0001 0.0011 0.00024 
Educational attainment PTV 0.001 0.0004 0.00026 
Educational attainment missense 0.001 0.0009 0.00025 
Educational attainment PTV 0.01 0.0008 0.00024 
Educational attainment missense 0.01 0.0025 0.00038 
Reaction time PTV 0.0001 0.0005 0.00035 
Reaction time missense 0.0001 0.0007 0.00031 
Reaction time PTV 0.001 0.0005 0.00038 
Reaction time missense 0.001 0.0011 0.00033 
Reaction time PTV 0.01 0.0004 0.00022 
Reaction time missense 0.01 0.0020 0.00041 
Verbal-numerical reasoning (baseline) PTV 0.0001 -0.0006 0.00075 
Verbal-numerical reasoning (baseline) missense 0.0001 0.0006 0.00082 
Verbal-numerical reasoning (baseline) PTV 0.001 0.0003 0.00068 
Verbal-numerical reasoning (baseline) missense 0.001 0.0025 0.00082 
Verbal-numerical reasoning (baseline) PTV 0.01 0.0021 0.00061 
Verbal-numerical reasoning (baseline) missense 0.01 0.0054 0.00106 
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Supplementary Figures 
 

 
Supplementary Fig. 1. Impact of exome-wide burden of rare protein coding variants on 
educational attainment (EDU), reaction time (RT) and verbal-numerical reasoning (VNR) 
in unrelated South Asian (SAS) samples in the UK Biobank (N=6,604 for EDU, 6,483 for 
RT, and 3,589 for VNR). 
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Supplementary Fig. 2. Impact of exome-wide burden of rare protein coding variants on 
educational attainment (EDU), reaction time (RT) and verbal-numerical reasoning (VNR) 
in African samples (AFR) in the UK Biobank (N=6,065 for EDU, 5,931 for RT, and 3,149 
for VNR). 
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Supplementary Fig. 3. Phenome-wide association analysis (3,150 phenotypes) for ADGRB2, 
GIGYF1, ANKRD12, SLC8A1, RC3H2, CACNA1A and BCAS3 in unrelated European 
samples in the UK Biobank.  
The full PheWAS results can be found in Supplementary Table 9.   
a. PheWAS association p-values were plotted for each phenotype. Orange dashed line represents 
the Bonferroni corrected phenome-wide significance p-value (two-sided t-test) threshold 
(0.05/3150=1.59x10-5). Phenotypes were grouped and color-coded from left to right in the 
following categories: biomarker; composite phenotypes; family history; ICD-10 cause of death, 
ICD-10 congenital malformations; deformations and chromosomal abnormalities; ICD-10 
diseases of the circulatory system; ICD-10 diseases of the digestive system; ICD-10 diseases of 
the eye and adnexa; ICD-10 diseases of the genitourinary system; ICD-10 diseases of the 
musculoskeletal system and connective tissue; ICD-10 diseases of the nervous system; ICD-10 
diseases of the respiratory system; ICD-10 diseases of the skin and subcutaneous tissue; ICD-10 
endocrine, nutritional and metabolic diseases; ICD-10 mental, behavioral and 
neurodevelopmental disorders; ICD-10 neoplasms; ICD-10 pregnancy, childbirth and the 
puerperium; ICD-10 symptoms, signs and abnormal clinical and laboratory findings, not 
elsewhere classified; operation code; self-reported illness: cancer; self-reported illness: 
non−cancer; self-reported medication. 
b. PheWAS association effect sizes (β) were plotted for disease phenotypes with association p-
value less than 0.0001. Phenotypes with phenome-wide significant association p-values were 
labeled. Other phenotypes were represented by the phenotype categories on x-axis. Triangles 
represent phenome-wide significant associations. 
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Supplementary Fig. 4. Cognitive function gene expression in brain tissue at different 
developmental stages. RNA-seq data obtained from BrainSpan31.  
The blue line represents fitted loess regression on KDM5B expression cross development stages. 
The gray band represents 95% confidence intervals for the fitted loess regression. 
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Supplementary Fig. 5. GO term enrichment for differentially expressed genes in Kdm5b 
mutant mice.  
Differentially expressed genes (DEGs) from E18.5 and adult brain tissues of Kdm5b+/- and 
Kdm5b-/- mice were subject to Gene ontology (GO) pathway enrichment analysis using the 
gprofiler R package, with a threshold of 5% FDR and an enrichment significance threshold of 
P<0.05 (hypergeometric test with FDR correction for multiple testing). For the E18.5 sample, we 
only showed results with enrichment p-value<0.0001 (for display purposes). Full results are 
provided in Supplementary Table 16. The European Nucleotide Archive accession numbers for 
the RNA-seq sequences reported are provided in Supplementary Table 17. Background 
comprised only expressed genes in each tissue of interest. 
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Supplementary Fig. 6. Rare coding variant burden in genes identified in GWAS for 
cognitive function, educational attainment, schizophrenia, bipolar disorder and depression 
and non-cognitive function related genes on educational attainment (EDU).  
Unrelated UKB EUR samples were included for this analysis (N=318,844). The impact of rare 
coding variant burden in genes identified through common variant association in GWAS for 
cognitive function (COG), educational attainment (EDU), schizophrenia (SCZ), bipolar disorder 
(BIP) and depression (DEP) and in non-cognitive function/non-psychiatric disorder-related (non-
cog/psych) genes on EDU. Missense variants were classified by deleteriousness (MPC) into 3 
tiers: MPC>3; 3≥MPC>2; and all missense variants not in the previous two tiers. The number of 
genes included in each burden was labeled in each panel. Data are presented in effect size 
estimates (β) with 95% confidence intervals. 
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Supplementary Fig. 7. Rare coding variant burden in genes identified in GWAS for 
cognitive function, educational attainment, schizophrenia, bipolar disorder and depression 
and non-cognitive function related genes on reaction time (RT).  
Unrelated UKB EUR samples were included for this analysis (N=319,536). The impact of rare 
coding variant burden in genes identified through common variant association in GWAS for 
cognitive function (COG), educational attainment (EDU), schizophrenia (SCZ), bipolar disorder 
(BIP) and depression (DEP) and in non-cognitive function/non-psychiatric disorder-related (non-
cog/psych) genes on EDU. Missense variants were classified by deleteriousness (MPC) into 3 
tiers: MPC>3; 3≥MPC>2; and all missense variants not in the previous two tiers. The number of 
genes included in each burden was labeled in each panel in Supplementary Fig. 6. Data are 
presented in effect size estimates (β) with 95% confidence intervals. 
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Supplementary Fig. 8. The impact of rare coding variant burdens in genes identified in 
GWAS for cognitive function, educational attainment, schizophrenia, bipolar disorder and 
depression and non-cognitive function related genes on verbal-numerical reasoning (VNR).  
Unrelated UKB EUR samples were included for this analysis (N=128,812). The impact of rare 
coding variant burden in genes identified through common variant association in GWAS for 
cognitive function (COG), educational attainment (EDU), schizophrenia (SCZ), bipolar disorder 
(BIP) and depression (DEP) and in non-cognitive function/non-psychiatric disorder-related (non-
cog/psych) genes on EDU. Missense variants were classified by deleteriousness (MPC) into 3 
tiers: MPC>3; 3≥MPC>2; and all missense variants not in the previous two tiers. The number of 
genes included in each burden was labeled in each panel in Supplementary Fig. 6. Data are 
presented in effect size estimates (β) with 95% confidence intervals. 
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Supplementary Fig. 9. Gene set-based PTV burden analysis in European samples in the UK 
Biobank for educational attainment, Reaction time and verbal-numerical reasoning.  
Top 30 gene sets were labeled in the figure. A total of 13,011 gene set from MSigDB v7.2 were 
identified, including C2 canonical pathways (N=2,808) and C5 Gene Ontology biological 
process (N=7,531), cellular component (N = 996), and molecular function (N=1,676). The gray 
band represents the 95% confidence interval. The gene set association p-values were based on 
two-sided t-tests from linear regression, adjusted for sex, age, age2, sex by age interaction, sex 
by age2 interaction, top 20 PCs, and recruitment centers (as categorical variables). 
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