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1 GASPACHO
The GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity (GASPACHO) is an
analysis framework utilising Gaussian Processes (GP) for dimensional reduction and genetic association
mapping. GASPACHO consists of three different components: (1) Gaussian Process Latent Variable
Model (GPLVM), (2) Gaussian Process mixture model for spatial differential expression anlaysis; and (3)
Gaussian Process regression for genetic association mapping in single cell resolution. The subsequent
sections demonstrate the model derivation and detailed parameter inference in an ordinary maximum
likelihood framework.

1.1 Nomenclature

N : number of cells (samples)
J : number of genes (features)

M : number of inducing points
O : number of fixed variables
P : dimension of design matrix of random effects
Q : number of latent variables

Y 2 R
N⇥J : normalised expression matrix

B 2 R
P⇥J : random effects

F 2 R
N⇥J : sparse GP

U 2 R
M⇥J : inducing variables

X 2 R
N⇥Q : latent variables (N training points)

W 2 R
N⇥O : design matrix for fixed effects

A 2 R
N⇥O : Fixed effect parameter matrix

T 2 R
M⇥Q : inducing points

Z 2 R
N⇥P : design matrix for random effects

z 2 R
P : mean of random effects

D 2 R
P⇥P : covariance matrix of random effects (diagonal)

r 2 R
P : length parameters of kernel

q 2 R
1 : variance parameter of kernel

S 2 R
J⇥J : residual variance matrix for genes (diagonal)

W 2 R
N⇥N : residual variance matrix for cells (diagonal)

qK 2 R
M⇥M : Covariance matrix of M inducing points (kernel is defined later)

qKNM 2 R
N⇥M : Covariance matrix between N training points and M inducing points

qKNN 2 R
N⇥N : Covariance matrix of N training points

1J 2 R
J : J dimensional vector of all 1’s

IN 2 R
N⇥N : N dimensional identity matrix

N (Y|M, U, V) : matrix normal distribution of random variable matrix Y 2 R
N⇥P with mean M 2 R

N⇥P,

row variance matrix U 2 R
N⇥N and column variance matrix V 2 R

P⇥P
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1.2 Kernel
We assume gene expression is affected by cell cycle and other biological and technical effects. Those
effects are not known a priori, and therefore to be inferred from the data. For Q-dimensional latent
vectors x, x0 2 R

Q, the kernel function specifically used is given by the product of the periodic and ARD
SE kernel:

qk(x, x0) = q exp

(
�

2 sin2(|x1 � x01|/2)
r2

1

)
exp

(
�

Q

Â
q=2

(xq � x0q)2

2r2
q

)
,

where the periodic term models the cell cycle effect and the ARD SE kernel for the other effects.
For the N training points X> = (xk 2 R

Q; 1  k  N) and M inducing points T> = (tk 2 R
Q; 1 

k  M), we define the covariance matrices:

K = {k(tk, tl); 1  k, l  M},
KNM = {k(xk, tl); 1  k  N, 1  l  M},
KNN = {k(xk, xl); 1  k, l  N}.

1.3 GPLVM
Our GPLVM is an extension of Titsias and Lawrence [1] with introducing both fixed and random effect
terms that internally adjust the expression matrix Y . The joint probability of the GPLVM is written as a
product of matrix normal distributions:

p(Y ,B,F ,U ,X ) = N (Y|WA+ ZB +F , W, S)N (B|z1>J , D, S)

⇥N (F|KNMK�1
U , qK̃NN , S)N (U|0, qK, S)N (X |0, IN , IQ),

where K̃NN = KNN �KNMK�1
KMN . Because KNN is not tractable for large N, we calculate the lower

bound

log p(Y|B,U ,X ) = log
Z

p(F|U )p(Y|B,F ,U )dF

�

Z
p(F|U ) log p(Y|B,F ,U )dF

= log p(Y|WA+ ZB +KNMK�1
U , W, S)�

J
2

tr(W�1qK̃NN)

⌘ L1.

We then have the marginal probability of Y given X as the Titsias lower bound, such that

p(Y|X )p(X ) � p(X )
Z

exp{L1}p(B)p(U )dBdU

= N (Y|WA+ Zz1>J , W + ZDZ> + qKNMK�1
KMN , S)

⇥N (X |0, IN , IQ) exp{�Jtr(W�1qK̃NN)/2}
⌘ exp{L2}.

We maximise L2 with respect to Q ⌘ {S, W,X , T , r, q, D, z,A} using the quasi Newtom method (L-
BFGS) with the gradient analytically obtained.

After some matrix algebra, the Titsias bound of our model can be written as

L2 = �
NJ
2

log(2p)�
N
2

log |S|�
J
2

log |V|�
J
2

tr(SV�1)�
J
2

tr(W�1qK̃NN),
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where

V = W + Z̃D̃Z̃>,

V�1 = W�1
� W�1Z̃FZ̃>W�1,

S = (Y � W̃Ã)S�1(Y � W̃Ã)>/J

with modified matrix notations

Z̃ = (Z,KNM)

D̃ =

✓
D 0
0 qK�1

◆

W̃ = (W, Zz)

Ã =

✓
A

1>J

◆

F�1 = D̃�1 + Z̃>W�1Z̃

to make the lower bound simpler.
The model parameters are alternatively updated to maximise the lower bound where some of the

model parameters have the analytical solution at each iteration, while others don’t. The following sub-
sections provide either the first derivative of the lower bound (the gradient) or the exact solution of each
model parameters where the gradient to be 0.

1.3.1 The fixed parameters A and z

The fixed parameters have the exact solution at each iteration of optimisation. The maximum of the
lower bound is attained by

ẑ = (Z>V�1Z + lIP)
�1Z>V�1[(1>J S�1

Y
>)> � WAS�11N ]/(1>J S�11J),

Â = (W>V�1W)�1W>V�1(Y � Zz1>J ),

where l > 0 is a ridge parameter to avoid the parameter undetermined, because rank(Z) < P in general.
We set l = 0.01 in the current implementation. Note that, when we optimise L2 with respect to z or A,
all there parameters are fixed constant at each iteration.

1.3.2 Gene specific residual variance S

The matrix derivative of L2 with respect to the precision S�1 (but not variance S) gives

∂S�1L2 =
N
2

tr(S∂S�1)�
1
2

tr


∂S�1(Y � W̃Ã)>V�1(Y � W̃Ã)

�
,

suggesting the diagonal element of (Y � W̃Ã)>V�1(Y � W̃Ã)/N gives the optimum variance parame-
ter. Note that it requires the matrix computation

(Y � W̃Ã)>V�1(Y � W̃Ã) = Y
>W�1

Y � CÃ� Ã
>

C
> + Ã

>(W̃>W�1W̃)Ã

� DFD
> + DFEÃ+ Ã

>
E
>FD

>
� Ã

>
E
>FEÃ

where

C ⌘ Y
>W�1W̃,

D ⌘ Y
>W�1Z̃,

E ⌘ Z̃>W�1W̃
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should be precomputed for a scalable optimisation.
Although the variance parameter in the original model above has the exact solution, the model can

be easily extended when the parameter estimate is unstable because of many 0’s in the expression data.
Then we can assume the precision parameter to be Gamma distributed with the following shape and
rate parameters:

1
s2

j
⌘ tj ⇠ G(n/2, nµj/2)

µj = x>j l

so that E[1/tj] = E[s2
j ] = µj and xj is an arbitrary covariate vector. We normally use the percentage pj

of cells that express each gene j and x>j = (pj, pj � p2
j ). Here the Gamma distribution is the conjugate

prior on L2, we can analytically obtain the posterior probability distribution of tj:

tj|Y ⇠ G

✓
n + N

2
,

nµj + SSEj

2

◆
,

where SSEj is the jth diagonal element of (Y � W̃Ã)>V�1(Y � W̃Ã). The hyperparameter l can be
learned from the data in a standard generalised linear model with Gamma outcome, where the depen-
dent variable tj and its log tj are replaced at each iteration by the posterior means

E[tj|Y ] =
n + N

nµj + SSEj
,

E[log tj|Y ] = y

✓
n + N

2

◆
� log

✓
nµj + SSEj

2

◆
,

wherey(·) is the digamma function.

1.3.3 Cell specific residual variance W

Because we introduce the column variance S and the row variance W for Y , there is a parameter un-
certainty. To overcome this issue and guarantee the uniqueness of parameter estimation, we assume an
inverse Gamma distribution with fixed shape and rate parameters (a and b respectively) on each cell
specific residual variance for cell i (the ith diagonal element of W), such that

w�2
i ⇠ G(a, b).

This implies that we maximise L̃2 ⌘ L2 + (a � 1) log |W�1
|� btr(W�1) instead of L2 for W. The first

derivative with respect to W�1 is given by

∂W�1 L̃2 =
J
2

tr{WV�1W(∂W�1)}�
J
2

tr{WV�1SV�1W(∂W�1)}�
J
2

tr{qK̃NN(∂W�1)}

+ (a � 1)tr{W(∂W�1)}� btr{∂W�1
}.

In order to make a scalable computation, we calculate

WV�1SV�1W = (YS�1
Y
>
� YS�1

DFZ̃> + YS�1
Ã
>

F
>

� Z̃FD
>S�1

Y
> + Z̃FD

>S�1
DFZ̃> � Z̃FD

>S�1
Ã
>

F
>

+ FÃS�1
Y
>
� FÃS�1

DFZ̃> + FÃS�1
Ã
>

F
>)/J

with precomputed matrices

D = Y
>W�1Z̃,

E = Z̃>W�1W̃,

F = �W̃ + Z̃FE.
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1.3.4 Variance parameters D̃ for the random effects and GP

There is no closed form for the solution of D̃, therefore the first derivative

∂D̃L2 = �
J
2

tr{V�1(∂D̃V)}+
J
2

tr{V�1SV�1(∂D̃V)}�
J
2

tr{(∂q)W�1(I �KNMK�1
KMN)}

= �Jtr{D̃Z̃>V�1(∂Z̃)}+ Jtr{D̃Z̃>V�1SV�1(∂Z̃)}

�
J
2

tr{Z̃>V�1Z̃(∂D̃)}+
J
2

tr{Z̃>V�1SV�1Z̃(∂D̃)}�
J
2

tr{(∂q)W�1(I �KNMK�1
KMN)}

is used to update D̃ by using L-BFGS algorithm, where

Z̃>V�1 = D̃�1FZ̃>W�1,

Z̃>V�1Z̃ = D̃�1(D̃ � F)D̃�1.

After the matrix manipulation, we obtain

∂D̃L2 = �
J
2

tr{A(∂D̃)}+
J
2

tr{B(∂D̃)}�
J
2

tr{W�1(I �KNMK�1
KMN)}(∂q),

where

A ⌘ Z̃>V�1Z̃ = D̃�1(D̃ � F)D̃�1,

B ⌘ D̃�1FZ̃>W�1SW�1Z̃FD̃�1 = D̃�1
CS�1

C
>D̃�1/J,

C ⌘ F(D>
� EÃ),

D ⌘ Y
>W�1Z̃,

E ⌘ Z̃>W�1W̃

should again be precomputed for a scalable optimisation.

1.3.5 Latent variables X and T

There is also no closed form for the solution of X , we here provide the first derivative

∂XL2 = �
J
2

tr{V�1(∂X V)}+
J
2

tr{V�1SV�1(∂X V)}�
J
2

tr{W�1q∂X (I �KNMK�1
KMN)}

= �Jtr{D̃Z̃>V�1(∂X Z̃)}+ Jtr{D̃Z̃>V�1SV�1(∂X Z̃)}+
J
2

tr{W�1q∂X (KNMK�1
KMN)}

= �Jtr{FZ̃>W�1(0, ∂XKNM)}+ Jtr{FZ̃>W�1SV�1(0, ∂XKNM)}+ Jtr{qK�1
KMNW�1(∂XKNM)}

with

FZ̃>W�1SV�1 = FZ̃>W�1(Y � W̃Ã)S�1(Y>W�1
� DFZ̃>W�1 + Ã

>
F
>W�1)/J

= F(D>
� EÃ)S�1(Y>W�1

� DFZ̃>W�1 + Ã
>

F
>W�1)/J

= F(D>S�1
Y
>
� EH � GDFZ̃> + GÃ

>
F
>)W�1/J,

where the following matrices are precomputed a priori:

D = Y
>W�1Z̃,

E = Z̃>W�1W̃,

F = �W̃ + Z̃FE,

G = (D>
� EÃ)S�1,

H = ÃS�1
Y
>.
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Likewise,

∂T L2 = �Jtr{FZ̃>W�1(0, ∂T KNM)}+ Jtr{FZ̃>W�1SV�1(0, ∂T KNM)}+ Jtr{qK�1
KMNW�1(∂T KNM)}.

1.3.6 The length parameter r in the kernel

Similar calculation is also required for the length parameter of the kernel. The first derivative with
respect to r is then given by

∂rL2 = �Jtr{FZ̃>W�1(0, ∂KNM)}+ Jtr{FZ̃>W�1SV�1(0, ∂KNM)}+ Jtr{qK�1
KMNW�1(∂KNM)}

+
J
2

tr
⇢
(D̃ � F)

✓
0 0
0 q�1∂K

◆�
�

J
2

tr
⇢

FZ̃>W�1SW�1Z̃F
✓

0 0
0 q�1∂K

◆�

�
J
2

tr{qK�1
KMNW�1

KNMK�1(∂K)}

where

FZ̃>W�1SW�1Z̃>F = F(D>
� EÃ)S�1(D>

� EÃ)>F/J,

D = Y
>W�1Z̃,

E = Z̃>W�1W̃.

1.4 GP mixture model for spatial differential expression
Once we fit the GPLVM and obtained the kernel parameters and latent variables, we then split X into
the target cell state X1 and the rest X2 for other technical or unexpected biological variations including
cell cycle variation (likewise T into T1 and T2). Then we compute the kernel matrices

K
(i)
NN = ki(Xi, Ti),

K
(i)
NM = ki(Xi, Ti),

K(i) = ki(Ti, Ti),

for i = 1, 2, where

q̂k1(x, x0) = q̂ exp

(
� Â

q2Q1

(xq � x0q)2

2r2
q

)
,

q̂k2(x, x0) = q̂ exp

(
�

2 sin2(|x1 � x01|/2)
r2

1

)
exp

(
� Â

q2Q2

(xq � x0q)2

2r2
q

)
,

and Q1 denotes the index set of target latent variables and Q2 is the complement set.
Let us denote by ỹj ⌘ (yj �Wâj � Zẑ)/ŝj the normalised expression for gene j. We assume the gene

j belongs to one of the C differential expression categories in the target space, in which fc denotes a GP
capturing the cth spatial expression pattern (c = 1, . . . , C). Specifically, we model

ỹj| fc, f j, dcj, bj ⇠ N (dcj fc + f j + Zbj, Ŵ)

fc ⇠ N (0, q̂K
(1)
NN)

f j ⇠ N (0, q̂K
(2)
NN)

bj ⇠ N (ẑ, D̂)

dcj ⇠ N (0, 1)
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where dcj is a coefficient to allow the direction and magnitude of the cth spatial component varying
across genes. Note that C = 3 in our result.

In reality, K(1)
NN or K(2)

NN are not tractable for large N, we introduce the inducing variables bc and uj,
such that

fc|bc ⇠ N (Xbc, q̂K̃
(1)
NN),

f j|uj ⇠ N (K(2)
NMK(2)�1

uj, q̂K̃
(2)
NN),

bc ⇠ N (0, q̂K(1)),

uj ⇠ N (0, q̂K(2)),

with X = K
(1)
NMK(1)�1

to compute the lower bound

log p(ỹj|bc, uj, dcj, bj) = log
Z

p(ỹj| fc, f j, dcj, bj)p( fc|bc)p( f j|uj)d fcd fj

�

Z
log p(ỹj| fc, f j, djc, bj)p( fc|bc)p( f j|uj)d fcd fj

= logN (ỹj|dcj f̄c + f̄ j + Zbj, Ŵ)�
1
2

tr{Ŵ�1q̂(d2
cjK̃

(1)
NN + K̃

(2)
NN)}

⌘ L
(1)
cj .

Then Titsias lower bounds can be obtained by

p0(ỹj) �
Z

exp{L(1)
cj |bc=0,dcj=0}p(uj)p(bj)dujdbj

= N (ỹj|0, Ŵ + ZD̂Z> + q̂K
(2)
NMK(2)�1

K
(2)
NM) exp


�

1
2

tr{Ŵ�1q̂K̃
(2)
NN}

�

⌘ exp{L(2)
j },

p(ỹj|bc, dcj) �
Z

exp{L(1)
cj }p(uj)p(bj)dujdbj

= N (ỹj|dcjXbc, Ŵ + ZD̂Z> + q̂K
(2)
NMK(2)�1

K
(2)
NM) exp


�

1
2

tr{Ŵ�1q̂(d2
cjK̃

(1)
NN + K̃

(2)
NN)}

�

⌘ exp{L(2)
cj }.

The complete log likelihood of the mixture model is then written as

L =
J

Â
j=1

w0jL
(2)
j + w0j log p0 +

C

Â
c=1

J

Â
j=1

[wcjL
(2)
cj + wcj log pc] +

C

Â
c=1

log p(bc) +
C

Â
c=1

J

Â
j=1

log p(dcj).

We use EM-algorithm to maximise the likelihood. The E-step computes

Ebc |Ỹ

h
L
(2)
cj

i
= �

N
2

log(2p)�
1
2

log |V|�
1
2
(ỹj � dcjXbc)

>V�1(ỹj � dcjXbc)

�
1
2

tr
n

Ŵ�1q̂(d2
cjK̃

(1)
NN + K̃

(2)
NN)

o
�

1
2

tr
n

d2
cjX

>V�1XVbc

o
,

Edcj |Ỹ

h
L
(2)
cj

i
= �

N
2

log(2p)�
1
2

log |V|�
1
2
(ỹj � dcjXbc)

>V�1(ỹj � dcjXbc)

�
1
2

tr
h
Ŵ�1q̂

n
E[d2

cj|Ỹ ]K̃(1)
NN + K̃

(2)
NN

oi
�

1
2

Var(dcj|Ỹ)b>c X>V�1Xbc,
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Edcj |Ỹ

h
Ebc |Ỹ

h
L
(2)
cj

ii
= �

N
2

log(2p)�
1
2

log |V|�
1
2
(ỹj � dcjXbc)

>V�1(ỹj � dcjXbc)�
1
2

Var(dcj|Ỹ)b>c X>V�1Xbc

�
1
2

tr
h
Ŵ�1q̂

n
E[d2

cj|Ỹ ]K̃(1)
NN + K̃

(2)
NN

oi
�

1
2

tr
n

E[d2
cj|Ỹ ]X>V�1XVbc

o

⌘ L
(2)
cj ,

E[wcj|Ỹ ] =
pc exp{L(2)

cj }

p0 exp{L(2)
j }+ ÂC

c=1 pc exp{L(2)
cj }

⌘ wcj,

where E[bc|Ỹ ] = bc, Var[bc|Ỹ ] = Vbc , E[dcj|Ỹ ] = dcj, E[d2
cj|Ỹ ] = Var(dcj|Ỹ) + d

2
cj and V = Ŵ+ ZD̂Z> +

q̂K
(2)
NMK(2)�1

K
(2)
NM.

The M-step becomes

pc =
1
J

J

Â
j=1

wcj,

bc|Ỹ ⇠ N (Vbc X>V�1
J

Â
j=1

wcjdcjỹj, Vbc),

dcj|Ỹ ⇠ N (Vdcj wcjb
>
c X>V�1ỹj, Vdcj),

where

Vbc =

"
J

Â
j=1

wcjE[d2
cj|Ỹ ]X>V�1X + (q̂K(1))�1

#�1

,

Vdcj =
1

wcjtr
�

X>V�1X(Vbc + bcb>c )
 
+ wcjtr{Ŵ�1q̂K̃

(1)
NN}+ 1

,

since

∂

∂bc
Edcj |Ỹ

"
J

Â
j=1

wcjL
(2)
cj + log p(bc)

#
=

J

Â
j=1

wcjdcjX>V�1ỹj �

"
J

Â
j=1

wcjE[d2
cj|Ỹ ]X>V�1X + (q̂K(1))�1

#
bc,

∂

∂dcj
Ebc |Ỹ

h
wcjL

(2)
cj + log p(dcj)

i
= wcjb

>
c X>V�1ỹj � dcj

h
wcjtr

n
X>V�1X(Vbc + bcb>c )

o
+ wcjtr{Ŵ�1q̂K̃

(1)
NN}+ 1

i
.

1.4.1 GP mixture for classifying eQTL effect sizes

This model can be readily extended to classify eQTL effect sizes into finite categories. The corresponding
baseline and eQTL models can be given by

p0(ỹj) � N (ỹj|0, Ŵ + ZD̂Z> + q̂KNMK�1
KNM) exp


�

1
2

tr{Ŵ�1q̂K̃NN}

�

⌘ exp{L(2)
j },

p(ỹj|bc, dcj) � N (ỹj|dcjXjbc, Ŵ + ZD̂Z> + q̂KNMK�1
KNM) exp


�

1
2

tr{Ŵ�1q̂(d2
cjGjK̃

(1)
NNGj + K̃NN)}

�

⌘ exp{L(2)
cj }.
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where Xj = Gj(KNM
(1)K(1)�1, 1) and Gj is a diagonal matrix whose diagonal elements are genotype

dosages appropriately normalised by the allele frequency. Here we assume

bc ⇠ N

✓
0,
✓

q̂K(1) 0
0 1

◆◆

for c = 1, . . . , C independently. Then we have

Edcj |Ỹ

h
Ebc |Ỹ

h
L
(2)
cj

ii
= �

N
2

log(2p)�
1
2

log |V|�
1
2
(ỹj � dcjXjbc)

>V�1(ỹj � dcjXjbc)�
1
2

Var(dcj|Ỹ)b>c X>

j V�1Xjbc

�
1
2

tr
h
Ŵ�1q̂

n
E[d2

cj|Ỹ ]GjK̃
(1)
NNGj + K̃

(2)
NN

oi
�

1
2

tr
n

E[d2
cj|Ỹ ]X>

j V�1XjVbc

o

⌘ L
(2)
cj ,

where V = Ŵ + ZD̂Z> + q̂KNMK�1
KNM. The M-step is partly replaced by

bc|Ỹ ⇠ N (Vbc

J

Â
j=1

X>

j V�1wcjdcjỹj, Vbc),

dcj|Ỹ ⇠ N (Vdcj wcjb
>
c X>

j V�1ỹj, Vdcj),

where

Vbc =

"
J

Â
j=1

wcjE[d2
cj|Ỹ ]X>

j V�1Xj + (q̂K(1))�1

#�1

,

Vdcj =
1

wcjtr
n

X>

j V�1Xj(Vbc + bcb>c )
o
+ wcjtr{Ŵ�1q̂GjK̃

(1)
NNGj}+ 1

.

1.5 GP regression for mapping eQTLs and Bayes factor calculation
The genetic association mapping model also uses the estimated model parameter of the GPLVM. Let gl
denotes the vector of genotype dosages, the ith element of which indicates the number of alternative
alleles of the genetic origin of cell i at the biallelic genetic variant l. We model the genetic association as
a gene-environment interaction between the genotype and the GP f jl governed by the kernel q̂K

(1)
NN for

the target cell state:

yj| f jl , f j, bj ⇠ N (vjl gl + f jl � gl + Wâj + f j + Zbj, s2
jlŴ)

vjl ⇠ N (0, d2
gs2

jl)

f jl ⇠ N (0, d2
gs2

jl q̂K
(1)
NN)

f j ⇠ N (0, s2
jl q̂KNN)

bj ⇠ N (ẑ, s2
jlD̂)

where d2
g is an arbitrary genetic variance parameter. For a rigorous association mapping, we the gene-

specific residual sjl as a free parameter.

9



In order to make the computation tractable, we assume

f jl |ujl ⇠ N (KNM
(1)K(1)�1

ujl , d2
gs2

jl q̂K̃
(1)
NN)

f j|uj ⇠ N (KNMK�1uj, s2
jl q̂K̃NN)

ujl ⇠ N (0, d2
gs2

jl q̂K(1))

uj ⇠ N (0, s2
jl q̂K)

then a lower bound can be written as

log p(yj|vjl , ujl , uj, bj) = log
Z

p(yj| f jl , f j, bj)p( f jl |bc)p( f j|uj)d fjld fj

�

Z
log p(yj| f jl , f j, djc, bj)p( f jl |bc)p( f j|uj)d fjld fj

= logN (yj|vjl gl + f̄ jl � gl + Wâj + f̄ j + Zbj, s2
jlŴ)�

1
2

tr{Ŵ�1q̂(d2
gGlK̃

(1)
NNGl + K̃NN)}

⌘ L
(1)
jl ,

where Gl = diag(gl). We then arrive at the Titsias bounds:

p0(yj) �
Z

exp{L(1)
jl |vjl=0,ujl=0}p(uj)p(bj)dujdbj

= N

⇣
yj|Wâj, s2

j (Ŵ + ZD̂Z> + q̂KNMK�1
KMN)

⌘
exp


�

1
2

tr{Ŵ�1q̂K̃NN}

�

⌘ exp{L(2)
j },

p(yj) �
Z

exp{L(1)
jl }p(vjl)p(ujl)p(uj)p(bj)dujldujdbj

= N

⇣
yj|Wâj, s2

jl(Ŵ + ZD̂Z> + q̂KNMK�1
KMN + d2

ggl g>l + d2
g q̂GlK

(1)
NMK(1)�1

K
(1)
MNGl)

⌘

⇥ exp

�

1
2

tr{Ŵ�1q̂(d2
gGlK̃

(1)
NNGl + K̃NN)}

�

⌘ exp{L(2)
jl }.

We then performed the inference of s2
j and s2

jl on those bounds and obtained

ŝ2
j =

ỹ>j (Ŵ + ZD̂Z> + q̂KNMK�1
KMN)�1ỹj

N
,

ŝ2
jl =

ỹ>j (Ŵ + ZD̂Z> + q̂KNMK�1
KMN + d2

ggl g>l + d2
g q̂GlK

(1)
NMK(1)�1

K
(1)
MNGl)

�1ỹj

N
.

Therefore the Bayes factor of genetic association is obtained by

log BFjl ⌘ L
(2)
jl � L

(2)
j

= �
N
2

log(ŝ2
jl) +

N
2

log(ŝ2
j )�

1
2

log |D�1
g + Z>l Ŵ�1Zl � Z>l Ŵ�1Z̃FZ̃>Ŵ�1Zl |

�
1
2

log |Dg|�
1
2

tr{Ŵ�1q̂d2
gGlK̃

(1)
NNGl} (1)
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where

Dg = diag(d2
gqK(1), d2

g),

Zl = (GlKNM
(1)K(1)�1

, gl),

Vl = Ŵ + Z̃D̃Z̃> + ZlDgZ>l ,

ŝ2
jl = (yj � Wâj)

>

j V�1
l (yj � Wâj)/N,

and

|Vl | = |diag(D̃, Dg)
�1 + (Z̃, Zl)

>Ŵ(Z̃, Zl)||Ŵ||diag(D̃, Dg)|

= |F�1
||D�1

g + Z>l Ŵ�1Zl � Z>l Ŵ�1Z̃FZ̃>Ŵ�1Zl ||Ŵ||diag(D̃, Dg)|.

1.5.1 Context specific donor effect

In order to fully calibrate the type I error rate in the dynamic eQTL mapping, we further incorporate the
context specific donor effect (donor ⇥ context interaction effect):

fij|uij ⇠ N (KNM
(1)K(1)�1

uij, d2
d⇥cs2

j q̂K̃
(1)
NN)

uij ⇠ N (0, d2
d⇥cs2

j q̂K(1))

for i = 1, . . . , Nd, where Nd is the number of donors used in the model. These GPs are then added to the
null model:

yj| f j, uj, { fij}
Nd
i=1 ⇠ N

 
Wâj + f j + Zbj +

Nd

Â
i=1

fij � zi

����s
2
j Ŵ

!

where zi is an indicator vector whose element is 1 if the corresponding cell came from the donor i;
otherwise 0. Then we obtain the lower bound

p0(yj) � N

⇣
yj|Wâj, s2

j {Ŵ + ZD̂Z> + q̂KNMK�1
KMN + d2

d⇥c q̂(K(1)
NMK(1)�1

K
(1)
MN)� (ZdZ>d )}

⌘

exp

�

1
2

tr{Ŵ�1q̂(K̃NN + d2
d⇥cK̃

(1)
NN)}

�

where Zd = (z1, . . . , zNd).
Likewise, for the alternative model of mapping an eQTL with the variant gl , we introduce a set of

GPs:

fijl |uijl ⇠ N (KNM
(1)K(1)�1

uijl , d2
d⇥cs2

jl q̂K̃
(1)
NN)

uijl ⇠ N (0, d2
d⇥cs2

jl q̂K(1))

for i = 1, . . . , Nd.
We further modified matrix notations

Z̃ = (Z,KNM, diag(z1)K
(1)
NM, . . . , diag(zNd)K

(1)
NM),

D̃ =

0

BBBBBB@

D̂ 0 0 · · · 0
0 q̂K�1 0 · · · 0
0 0 d2

d⇥c q̂K(1)�1
· · · 0

...
...

...
. . .

...
0 0 0 · · · d2

d⇥c q̂K(1)�1

1

CCCCCCA
,
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the same equation 1 above can be applied to obtain the Bayes factor adjusted by the context specific
donor effect.

The additional variance parameter dd⇥c is estimated by maximising the Titsias lower bound of null
model across all genes:

L̃2 = logN (Y|WÂ+ Zẑ1>J , Ŵ + Z̃D̃Z̃>, Ŝ)�
J
2

tr{Ŵ�1q̂(K̃NN + d2
d⇥cK̃

(1)
NN)}

whose first and second derivatives with respect to dd⇥c are given by

∂D̃L̃2 = �
J
2

tr{A(∂D̃)}+
J
2

tr{B(∂D̃)}�
J
2

tr{q̂Ŵ�1(I �KNM
(1)K(1)�1

KMN
(1))}(∂d2

d⇥c),

∂2
D̃L̃2 = �

J
2

tr{A(∂D̃)A(∂D̃)},

where the following matrices should be precomputed for faster implementation:

A ⌘ Z̃>V�1Z̃ = D̃�1(D̃ � F)D̃�1,

B ⌘ D̃�1FZ̃>W�1SW�1Z̃FD̃�1 = D̃�1
CS�1

C
>D̃�1/J,

C ⌘ F(D>
� EÃ),

D ⌘ Y
>W�1Z̃,

E ⌘ Z̃>W�1W̃

1.5.2 Posterior estimate of eQTL effect size

The posterior distribution of ũjl = (u>jl , vjl)
> given yj is obtained by

p(ũjl |yj) µ p(yj|ũjl)p(ũjl)

= N (ỹj|Zlũjl , s2
jlV)N (ũjl |0, s2

jlDg),

where ỹj = yj � Wâj. The posterior mean of ũjl is given by

E[ũjl |yj] = (Z>l V�1Zl + D�1
g )�1ZlV�1ỹj ⌘ ūjl .

Therefore the posterior estimate of eQTL effect size is obtained by

f̄ jl = (KNM
(1)K(1)�1

, 1N)ūjl .

1.6 Score-based test statistics
In order to assure that the GP based eQTL mapping test statistic is well calibrated, we also implemented
the score based test employed by CellRegMap [2]. The statistic is defined by

Sjl =
1
ŝ2

j
ỹ>j V�1ZlD0

gZ>l V�1ỹj (2)

where D0
g = diag(q̂K(1), 1), whose distribution is given by a mixture of c2 distributions with scaling fac-

tors obtained by the non-negative eigenvalues of RZ>l V�1Zl R> where D0
g = R>R is given by Cholesky

decomposition. The P-value of the score statistic is computed using the Davies’ exact method imple-
mented in the R package CompQuadForm.
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In addition, the existence of only dynamic eQTL effect is captured by

S
(dynamic�only)
jl =

1
ŝ2

j
ỹ>j V�1

g GlKNM
(1)(K(1))�1

KMN
(1)GlZ>l V�1

g ỹj (3)

whose distribution is given by a mixture of c2 distributions with scaling factors obtained by the non-
negative eigenvalues of R�>

KMN
(1)GlV�1

g GlKNM
(1)R�1 where Vg = Ŵ+ Z̃D̃Z̃> + gl g>l and K(1) = R>R

is given by Cholesky decomposition.
The Score-based test statistic in Eq.2 is also reduced to

S
(static)
jl =

(ỹ>j V�1gl)
2

ŝ2
j (g>l V�1gl)

(4)

for the static eQTL effect, which follows the c2 distribution with one degree of freedom. These score-
based test statistics were used to assess the sensitivity and specificity of mapping eQTLs using synthetic
data (Extended Data Figure 2 and 3).

1.7 Model comparison with CellRegMap
CellRegMap [2] is a state-of-the-art approach to map QTLs using single-cell genomics experiments.
The model has many similar features as we implemented in GASPACHO’s GP regression model. Cell-
RegMap’s regression model is identical with ours, such that

yj| f jl , f j, bj ⇠ N (vjl gl + f jl � gl + Waj + f j + Zbj, s2
jlW).

However, the parametrisation is different:

vjl : fixed effect parameter

f jl ⇠ N (0, d2
gXX

>) (linear GxC effect)

aj : fixed effect parameter (same as GASPACHO)

f j ⇠ N (0, d2
cXX

>) (linear context effect)

bj ⇠ N (0, d2
d⇥c I) (context-dependent donor effect)

W = I (identity matrix for non cell-specific residual variance)

Here GxC effect is linear with respect to the latent factors X in CellRegMap, while it is nonlinear and
modeled by the ARD-SE kernel in GASPACHO’s GP regression model.

The other significant difference is modeling of the donor effect which is context-dependent in Cell-
RegMap, such that

ZZ> = XX
>
� R,

where R is an appropriate relatedness matrix of cells obtained from the kinship matrix of donors. On the
other hand, in the reduced GASPACHO’s GP regression model, we essentially hypothesized ZZ> = R,
thereby the donor effect is independent from the context and constant across cellular states (defined by
X ). We acknowledge that the donor effect could be context specific in reality and a lack of the donor-by-
context interaction effect term will lead to an inflation of Type-I error in GASPACHO. Therefore we’ve
also implemented an alternative model to map eQTLs while taking account of the context-specific donor
effect as in section 1.5.1 in this Supplementary Notes. This model is referred to as the full model in this
manuscript.

The inference approach is also different. CellRegMap uses the Score-based test approach to test
vjl = 0 and d2

g = 0 while estimating the variance parameters d2
c , d2

d⇥c and s2
jl . In addition, the latent
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factors X needs to be pre-estimated with a dimensional reduction approach (e.g., PCA, MOFA). On
the other hand, GASPACHO is a Bayesian approach to compute the Bayes factor described above and
variance parameters and the latent factors were estimated by the GPLVM a priori in the GASPACHO
framework.

1.8 Generating synthetic data
To assess both sensitivity and specificity of the GP regression model, we draw samples from the lower
bound L1 to generate synthetic data under the null hypothesis, such as

Y
(m,s)
null = Z(m,s)B(m,s) + C(s)U(s) + E,

where

B(m,s)
⇠

8
<

:

N (0, D, S), m = 1, s = 1, 2 (static donor effect in GASPACHO)
N (0, D ⌦ IQ, S), m = 2, s = 1 (linear donor by context interaction effect in CellRegMap)
N (0, D ⌦ qK, S), m = 2, s = 2 (nonlinear donor by context interaction effect)

denotes the donor effect size (either static donor effect or donor-by-context interaction effect) with

Z(m,s) =

8
<

:

Z, m = 1, s = 1, 2 (static donor effect in GASPACHO)
(Z ⌦ 1>Q)� (1>P ⌦X ), m = 2, s = 1 (linear donor by context interaction effect in CellRegMap)
(Z ⌦ 1>M)� (1>P ⌦KNMK�1), m = 2, s = 2 (nonlinear donor by context interaction effect)

and
U(s)

⇠

⇢
N (0, IQ, S), s = 1 (linear context effect in CellRegMap)
N (0, qK, S), s = 2 (nonlinear context effect in GASPACHO)

denotes the context effect size with

C(s) =

⇢
X , s = 1 (linear context effect in CellRegMap)
KNMK�1, s = 2 (nonlinear context effect in GASPACHO)

Here E ⇠ N (0, W, S), and X ⇠ N (0, IN , IQ) and T ⇠ N (0, IM, IQ) are also drawn from the independent
matrix normal distributions to construct KNM and K a priori.

Under the alternative hypothesis, we considered the four different genetic effect scenarios s =
1, . . . , 4:

Y
(m,s)
alt =

8
>>>><

>>>>:

Y
(m,1)
null + (XV(1))� GC1, s = 1 (linear GxC interaction effect in CellRegMap)

Y
(m,2)
null + PX (KNMK�1V(2))� GC2, s = 2 (nonlinear GxC interaction effect in GASPACHO)

Y
(m,2)
null + (KNMK�1V(2))� GC3, s = 3 (nonlinear and linear GxC interaction effect in GASPACHO)

Y
(m,2)
null + GC4, s = 4 (static effect)

with
V(s)

⇠

⇢
N (0, IQ, S), s = 1
N (0, qK, S), s = 2, 3

where G 2 R
N⇥J is a matrix of genotype dosages whose column gj is a vector of genotypes at the puta-

tive causal variant for the corresponding gene j. Here the projection matrix PX maps an N-dimensional
vector to the linear space orthogonal to (1,X ), that is, PX = IN � X̃ (X̃>

X̃ )�1
X̃
>, where X̃ = (1N ,X ).

This projection matrix allows us to generate an artificial eQTL effect size whose average across the con-
text space X becomes 0. This means that CellRegMap and pseudo-bulk approaches cannot technically
capture this nonlinear effect. The coefficients Cs 2 R

J⇥J(s = 1, . . . , 4) are diagonal matrices whose J
diagonal elements specify the effect sizes csj (j = 1, . . . , J) of J genetic variants given explained variance
rj for j = 1, . . . , J (see below for the detail).
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We also converted the Gaussian synthetic data into discrete expression data as if it were observed
from single-cell RNA-seq data. We drew read count data from a Poisson distribution whose log mean
parameter is given by Y

(m,s)
null (or Y (m,s)

alt ), such that

Z
(m,s)
null ⇠ Pois(exp{Y (m,s)

null }),

and then transformed back to log normalised expression as Ỹ
(m,s)
null = log(Z (m,s)

null + 1). Note that this
Poisson distribution is, in nature, overdispersed, because we retain the error term E ⇠ N (0, W, S) in the
log mean. This is analogous to Gamma distribution whose mixture with Poisson distribution becomes
a negative bionomial distribution. In fact, we sampled w2

i ⇠ Gamma(10, 10) for i = 1, . . . , N and
s2

j ⇠ Gamma(1, 10) for j = 1, . . . , J, so that the sparsity of single-cell data is well mimicked.

Specifically, we used {Y
(m,s)
null ,Y (m,s)

alt ; m = 1, 2 and s = 1, 2} for the comparison of GASPACHO with

CellRegMap and the pseudo-bulk approach (Extended Data Figure 2), {Y
(1,3)
alt } with various num-

bers of cells and donors for the sensitivity and runtime analyses (Extended Data Figure 3a-d, 3m-n),
{Y

(1,2)
null , Ỹ (1,2)

null } to assess the impact of discretisation under the null hypothesis (Extended Data Figure

3f-i) and {Y
(1,4)
alt , Ỹ (1,4)

alt } to assess the specificity of GxC interaction effect under the alternative hypothe-
sis only with a static genetic effect (Extended Data Figure 3k-l) with the dynamic effect-only Score-based
statistic in Eq.3.

1.8.1 Generating genotype matrix G

The genotype vector gj of the genotype matrix G = (g1, . . . , gJ) was generated from Binomial distribu-
tion with the probability parameter pj. The genotype Gij ⇠ B(2, pj) of donor i at the putative causal
variant for the gene j was first drawn. Then the genotype was scaled such as

G
⇤

ij =
Gij � 2pjq
2pj(1 � pj)

and finally expanded according to the donor-cell assignment matrix Z1 2 R
N⇥Nd , so that

gj = Z1G
⇤

j

where G
⇤

j 2 R
Nd is the vector of genotypes across all donors and Nd denotes the number of donors.

1.8.2 Selection of the effect size matrices

The effect sizes C1, . . . , C4 are diagonal matrices to specify the static and dynamic effects of each variant.
The Let us define the projection matrix P = IN � 11>/N to obtain the sample variance of any vector
a 2 R

N so that S(a) = ÂN
i=1(ai � ÂN

k=1 ak/N)2/N = a>Pa/N. For the given explained variance rj
relative to the residual s2

j , such as

rj =
c2

sjS(asj � gj)

c2
sjS(asj � gj) + s2

j
,

we have

csj =

vuut rj

1 � rj

s2
j

S(asj � gj)
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where

asj =

8
>>>><

>>>>:

X v(1)j , s = 1

PXKNMK�1v(2)j , s = 2

KNMK�1v(2)j , s = 3
1N , s = 4

To compute csj, we replaced S(asj � gj) with EG,V [S(asj � gj)], such that

EG,V [S(asj � gj)] = EG,V [S(Gjasj)]

=
1
N

EG,V [tr{GjPGjasja>sj}]

=
1
N

tr{EG[diag(gj � gj)� gjg>j /N]EV [asja>sj]}

=
1
N

tr{(IN � Z1Z>1 /N)EV [asja>sj]}

=

8
>>><

>>>:

s2
j qtr{X>

X �X
>Z1Z>1X/N}/N, s = 1

s2
j qtr{KMN PXKNMK�1

�KMN PX Z1Z>1 PXKNMK�1/N}/N, s = 2
s2

j qtr{KMNKNMK�1
�KMN Z1Z>1KNMK�1/N}/N, s = 3

1 � ÂNd
i=1 n2

i /N2, s = 4

where Gj = diag(gj),

EV [asja>sj] =

8
>>><

>>>:

XX
>, s = 1

qs2
j PXKNMK�1

KMN PX , s = 2
qs2

j KNMK�1
KMN , s = 3

1N1>N , s = 4

and ni is the number of cells for the donor i.

1.8.3 Comparing eQTL mapping approaches in Extended Data Fig. 2

We compared performance of the following four approaches with synthetic data:

1. Pseudo-bulk approach: we took the average expression level from the single cell expression yj as

ỹj = (Z1yj)/(Z11Nd)

which was regressed on Gj.

2. GASPACHO (dynamic genetic effect without DxC): we used the score-based statistic (Eq. 2) to
map dynamic eQTLs (GxC interaction effect) where the context-specific donor effects were omit-
ted.

3. GASPACHO (dynamic genetic effect with DxC): we used the score-based statistic (Eq. 2) to map
dynamic eQTLs (GxC interaction effect) where the context-specific donor effects were incorporated
as in section 1.5.1 in this Supplementary Notes.

4. CellRegMap (dynamic genetic effect): we used CellRegMap’s run_interaction to map dynamic
eQTLs.
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2 Bayesian pairwise hierarchical model
The Bayesian pairwise hierarchical model is a simple extension of the hierarchical model first used in
mapping eQTLs [3] or the pairwise fGWAS model to estimate a shared genetic architecture between
paired GWAS traits [4]. To introduce the model, we begin by constructing the hierarchical model for
mapping eQTLs in a single cell/tissue type. Then we increase the number of cell/tissue types to build
up the pairwise model. The prior probabilities of the model are empirically estimated from the data. We
incorporate a two-stage optimisation which allows us to reduce the computational complexity and to
increase the stability of model fitting process as in [5].

2.1 Hierarchical model for mapping eQTLs in single cell/tissue type
The hierarchical model for mapping eQTLs in single cell/tissue type is equivalent to the Bayesian hi-
erarchical model proposed in [3]. We used genetic associations in cis window Wj of 1Mb centred at
transcription start site (TSS) for each gene j. The association is measured by the Bayes factor BFjl ob-
tained from the GP regression model (described in the previous section) for each genetic variant l 2 Wj.
For GTEx and other eQTL summary statistic data, we used the asymptotic Bayes factor [6] which can be
easily obtained from the estimated effect size b̂ jl and its standard error ŝjl of a variant l on expression of
gene j, such that

BFjl =
q

1 � rjl exp

(
z2

jl

2
rjl

)
,

where

zjl = Z

 
b̂ jl

ŝjl

!

and
rjl =

W
W + ŝ2

jl
.

Here we use Z(·) to convert student t statistic into normal z statistic to deal with small sample sizes (see
Supplementary Note of [5] for details).

The hierarchical model is a mixture of the following two hypotheses:

H0 (null) : there are no genetic variants in Wj that associate with the expression of gene j;

H1 (eQTL) : there is one causal variant in Wj that affects the expression of gene j.
We introduce the prior probability P1 with which a gene j is an eQTL. Assuming that there are J genes
genome-wide and their expression levels are conditionally independent, the likelihood of the hierarchi-
cal model is then written as a product of mixture probability over j = 1, . . . , J, such that

L(P1) =
J

’
j=1

⇥
(1 � P1) + P1RBFj

⇤
, (5)

where RBFj denotes the regional Bayes factor which is the genetic association for gene j averaged over
all variants l 2 Wj, defined as

RBFj =
1

#Wj
Â

l2Wj

BFjl . (6)

Note that #Wj denotes the number of variants in Wj, assuming there is one variant causal to expression
of gene j. The maximum likelihood estimator P̂1 can be obtained by a standard EM algorithm.

We can extend the RBF with variant-level annotations (such as ChIP-seq peaks) in which a variant
is overlapping [3]. Let xl be a indicator vector of the variant l to be overlapping with those annotations
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and b be a coefficient vector, then the variant-level prior probability that the variant l is the causal eQTL
variant for gene j is defined as

pjl =
exp{x>l b}

Âk2Wj
exp{x>k b}

.

Using the prior probability, we can now extend the RBF as

RBFj = Â
l2Wj

pjl BFjl .

The coefficient vector b can be obtained as the maximum likelihood estimator in conjunction with P1
using a standard EM algorithm [5].

The posterior probability that the gene j is an eQTL is given by

Zj =
P̂1RBFj

(1 � P̂1) + P̂1RBFj
.

2.2 Hierarchical model for jointly mapping eQTLs in two cell/tissue types
We then extend the hierarchical model for a pair of two cell/tissue types. Again, we use genetic associ-
ations of variant l 2 Wj that alters expression of gene j for two different cell/tissue types 1 and 2. We
consider the following 5 different hypotheses:

H0 (null) : there are no genetic variants in Wj that associate with expression of gene j
in either cell/tissue types;

H1 (single) : there is one causal variant in Wj that affects expression of gene j of
cell/tissue type 1;

H2 (single) : there is one causal variant in Wj that affects expression of gene j of
cell/tissue type 2;

H3 (linkage) : there are two independent causal variants in Wj, one of which affects ex-
pression of gene j in cell/tissue type 1 and the other one affects expression
of gene j in cell/tissue type 2, independently;

H4 (colocalisation) : there is one causal variant in Wj that affects expression of gene j in both
two cell/tissue types simultaneously.

The likelihood of the model is given by a product of a finite mixture of the 5 different hypotheses,

L(Y12, P12) =
J

’
j=1

"
F0 +

4

Â
h=1

FhRBF[h]
j

#
, (7)

where

Fh =

8
>>>><

>>>>:

(1 � Y12)(1 � P1)(1 � P2) + Y12(1 � P12) h = H0
(1 � Y12)P1(1 � P2) h = H1
(1 � Y12)(1 � P1)P2 h = H2
(1 � Y12)P1P2 h = H3
Y12P12 h = H4

(8)

denotes the prior probability that gene j belongs to one of the hypotheses h = 0, . . . , 4. The prior proba-
bility Fh is a function of the probability Y12 that the gene j is pleiotropic in cell/tissue type 1 and 2 and
the probability P12 that the gene j is an eQTL driven by a same variant in Wj. The probability P1 (or
P2) is the probability that the gene j is an eQTL in cell/tissue type 1 (or cell/tissue type 2), indepen-
dently from the other cell/tissue type. The maximum likelihood estimators, P1 = P̂1 and P2 = P̂2, are
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obtained by maximising Eq.5 for cell/tissue type 1 and 2 independently, and plugged into Eq.8, so that
the likelihood (Eq.7) is a function of {Y12, P12}. The regional Bayes factor for a hypothesis h, RBF[h]

j , is
defined by

RBF[h]
j =

8
>>>>><

>>>>>:

RBF(1)
j h = H1

RBF(2)
j h = H2

RBF(1)
j RBF(2)

j h = H3

RBF(12)
j h = H4

where RBF(1)
j (or RBF(2)

j ) denotes the regional Bayes factor of gene j being an eQTL in cell/tissue type
1 (or cell/tissue type 2) defined in Eq.6, and

RBF(12)
j =

1
#Wj

Â
l2Wj

BF(1)
jl BF(2)

jl (9)

denotes the joint association on gene expression j averaged over l 2 Wj in cell/tissue type 1 and 2
under the conditional independence of gene expression in two cell/tissue types. We use a standard EM
algorithm to maximise Eq.7 with respect to {Y12, P12}.

The posterior probability for each hypothesis was computed from

Z(h)
j =

8
>>>>>><

>>>>>>:

F̂(0)
j

F̂(0)
j + Âi2H1

F̂(i)
j RBF(i)

j

h = H0

F̂(h)
j RBF(h)

j

F̂(0)
j + Âi2H1

F̂(i)
j RBF(i)

j

h 2 H1, . . . , H4

where F̂(h)
j denotes the maximum likelihood estimation of F(h)

j . The posterior probability of colocalisa-
tion under the condition that the gene j is an eQTL in the first cell/tissue type is given by

p(colocalisaiton|gene j is an eQTL in cell type 1) =
Z(4)

j

Z(1)
j + Z(3)

j + Z(4)
j

,

which was used for the enrichment analysis of eQTLs and the 7 differential expression categories under
the condition that the gene j is an eQTL and also colocalised with the GTEx fibroblast eQTL (as the tissue
type 2).

2.3 Colocalisation anlaysis with GWAS traits
We again used the Wakefield approximation [6] to compute the Bayes factor of a GWAS locus (defined
by Wj) from the estimated effect size b̂

(GWAS)
l and its standard error ŝ

(GWAS)
l of a variant l 2 Wj, such

that

BF(GWAS)
l =

p
1 � rl exp

(
z2

l
2

rl

)
,

where

zl =
b̂
(GWAS)
l

ŝ
(GWAS)
l
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and
rl =

W
W + ŝ2

l
.

We then compute the regional Bayes factor for the corresponding gene j as

RBF(2)
j =

1
#Wj

Â
l2Wj

BF(GWAS)
l ,

and the joint Bayes factor as

RBF(12)
j =

1
#Wj

Â
l2Wj

BF(1)
jl BF(GWAS)

l .

Here BF(1)
jl is the eQTL Bayes factor for the first cell/tissue type and the eQTL for the second cell/tissue

was essentially replaced by the GWAS locus within Wj.

To compute the posterior probability of colocalisation Z(4)
j , we used the fixed prior probabilities

{P1, P2, Y12} = {0.2, 0.05, 0.01} to compare different GWAS traits with varying sample sizes.
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3. Benchmarking the GP regression approach for eQTL mapping using synthetic data sets
3.1. Synthetic data generation

We generated synthetic data based on our GP regression model under the null or

alternative hypotheses by varying the number of donors ranging from 5-1000, the

number of cells ranging from 1-1000, the variance explained by a variant ranging

from 0-10% and the minor allele frequency between 0.01-0.5. As with the GPLVM

fitted to the fibroblast data, we stuck to 6 latent variables and one cell cycle latent

variable generated from the standard normal distribution and the uniform

distribution with the support [0-π], respectively. We only introduced the donor as a

random effect (in Z matrix in the GP regression) with the variance parameter of 0.01.

We specifically considered the four different simulation scenarios, which are

combinations of linear/nonlinear context effect and context dependent/independent

donor effect according to the model specifications of GASPACHO and CellRegMap (see

section 1.7 of Supplementary Notes for details in model comparison). We also

generated synthetic data only with a static genetic effect and an additive effect of both

linear and nonlinear dynamic genetic effects. A part of synthetic data was converted

into discrete count data using a Poisson distribution in which simulated logCPM

values were treated as log mean parameters. The generated Poisson random numbers

were then converted back to log normalised expression (see section 1.8 of

Supplementary Notes for more details). Those synthetic data were used for

comparing GASPACHO to other approaches as well as power analysis and runtime

analysis demonstrated in Fig. S1 and S2. See section 1.8 of Supplementary Notes for

more details.

3.2. Score-based test for assessing statistical calibration

We also implemented the Score-based test statistic to obtain P-values in the

frequentist framework to assess statistical calibration of GASPACHO’s GP regression in

contrast with other approaches, such as CellRegMap. Because the score statistic can be

obtained with model parameters inferred under the null hypothesis, it is

straightforward to compute it utilising the maximum a posteriori parameter estimate

from GPLVM. We used the similar score statistic implemented in CellRegMap (version

0.0.3; https://limix.github.io/CellRegMap/) which follows a mixture of Chi-square

distributions. See Section 1.6 of Supplementary Notes for more details.

3.3. Sensitivity and specificity analysis of GASPACHO in comparison to CellRegMap

We performed an intensive analysis of sensitivity and specificity to map eQTLs using

synthetic data under various scenarios. In order to demonstrate that we chose a

sensible approach, we compared our GP regression model with (1) a pseudo-bulk

https://limix.github.io/CellRegMap/


approach, (2) a reduced version of our model that only takes account of static donor

effects, and (3) CellRegMap - a recently developed method for dynamic QTL mapping

using single-cell genomics data, which assumes linear relationship context-specific

genetic effects (Table S1; Fig. S1; Methods in the main text). We specifically

considered the following four different scenarios, where two of them were generated

based on linear dynamic eQTL (genotype-by-context or GxC interaction) effects, as

assumed by CellRegMap, and another two with nonlinear dynamic eQTL effects, as

assumed by GASPACHO. For both linear/nonlinear effects, the donor effect was

assumed to be either dependent on the context or independent of the context. The

results suggest that, in terms of specificity (first column of Fig. S1), the P-values are

well calibrated (i.e., uniformly distributed) both for CellRegMap and GASPACHO,

while less well calibrated for the reduced GASPACHO model when the donor effect is

context-dependent (second and fourth rows of Fig. S1). In terms of sensitivity,

GASPACHO outperforms CellRegMap in cases where the genetic effects are nonlinear

(third and fourth rows of Fig. S1). For both approaches the sensitivity and specificity

performances match the model assumptions used by the methods (i.e. CellRegMap

and GASPACHO assumptions match the second and fourth scenario, respectively, and

the reduced GASPACHO model matches the third scenario in Fig. S1, and their

performances in these scenarios are shown to be the best). As expected, the linear

regression for pseudo-bulk data was statistically calibrated, but there was no power

to detect dynamic eQTLs. In addition, there was also no power to detect nonlinear

dynamic eQTL effects using CellRegMap even with single-cell expression data (third

and fourth rows of Fig. S1).

It is also important to emphasise that, specifically for immune responses, the dynamic

genetic effect is frequently expected to be nonlinear and may also be confounded

with context-dependent environmental and trans genetic effects. Thus, the most

realistic scenario would be the fourth scenario in our simulations (the fourth row of

Fig. S1), and in this case, GASPACHO outperforms CellRegMap.

3.4. Sensitivity analysis of GASPACHO’s GP regression model

We further performed a power analysis of GASPACHO, by varying the numbers of

donors and cells. For common genetic variants (minor allele frequency; MAF=0.2), the

power to detect dynamic eQTLs increased monotonically with the total number of

cells (N x nc). It also increased when more donors were included for the same number

of total cells (Fig. S2a). Although, interestingly, the increase in power quickly reaches

a saturation when the sample size is high enough (compare N=50 and 100 in Fig. S2b).

This tendency was similar when the same amount of variance is explained by a

variant whose MAF is low (MAF=0.05) (Fig. S2c-d). Our analysis suggests that in our

stimulated fibroblast system, with 68 donors and 22,188 cells (an average of ~300 cells

per individual), the power is ~70% for an average 5% variance explained (Fig. S2a).

This suggests that had we used 10 times more cells (~3,000 cells), we would have



increased our power to 85%.

3.5. Assessment of Normality

Our approach assumes a normal distribution of gene expression that may skew the

result of mapping eQTLs, because the readout of single-cell data should typically

follow an overdispersed count distribution such as a negative binomial (NB) or a

zero-inflated NB distribution. Indeed, our in vitro fibroblast data did not follow a

Gaussian distribution, even after logCPM normalisation (Fig. S2e). We therefore

simulated discrete count data from the GPLVM using an overdispersed Poisson

distribution (Section 3.1 of Supplementary Notes) and converted it into logCPM as if

it were observed from scRNA-seq (Fig. S2f-g). We then confirmed that this discrete

data does not inflate the type-I error of mapping eQTLs (Fig. S2h) even when the MAF

of the tested variant is 1% and 99.8% of variants have no alternative homozygote (Fig.

S2i). We note, however, that the power to detect eQTLs significantly declined at the

same specificity, due to the additional Poisson noise and lower detection limit of gene

expression (Fig. S2j). We also note that the detection limit will increase the false

positive rate of dynamic eQTLs when there is a static (persistent) eQTL that is not

detectable under some cellular states with weaker expression (Fig. S2k). This can be

overcome by increasing the sequencing depth and the complexity of single-cell library

preparation (compare two Poisson discretised data sets with different sequencing

coverage in Fig. S2k). It is also important to note that, although there is an inflation of

test statistics to detect dynamic eQTLs under the scenario of static eQTLs existing in

the data, the Gaussian process mixture model implemented (Section 1.4.1 of

Supplementary Notes) overcomes this. This is because the model directly compares

the two different scenarios (static or dynamic eQTLs), and correctly classifies these

eQTLs with false positive rate under 1-2% (Fig. S2l), even when the data is discretised

by a Poisson distribution (Fig. S2m-n).

3.6. Assessment of Scalability

Lastly, we performed runtime analysis of eQTL mapping with various numbers of

cells and donors on a Linux platform (Ubuntu 18.04.6) with AMD EPYC 7713 64-Core

Processors (Fig. S2o). The runtime increases exponentially with the total number of

cells, as expected. We also found that the number of donors would increase the

baseline of computational time in a multiplicative fashion, even if the total numbers

of cells are identical (Fig. S2o). We also note that the runtime of the GP regression for

GASPACHO is ~5 times slower than CellRegMap, because GASPACHO takes account of

nonlinear context-dependent donor effects (Fig. S2p). Here, all model parameters are

inferred by the GPLVM a priori, and the GPLVM itself implemented in GASPACHO is

applicable for rapid analysis of dozens of thousands of cells (approximately 24 hours

for ~20K cells).



Figures of this Supplementary Note section

Figure S1. Comparison of sensitivity and specificity for GASPACHO models (red and

orange for a dynamic eQTL effect with and without context specific donor (DxC)

effect, respectively), CellRegMap (blue) and a pseudo-bulk approach (green), using

synthetic data. There are four different scenarios (different rows): the top two rows



show results under linear dynamic eQTL effects (assumed by CellRegMap) and the

bottom two rows show results from nonlinear dynamic eQTL effects (assumed by

GASPACHO). The first and third rows show results from donor effects that are

independent of the context and the second and fourth rows show results from the

context-dependent donor effects (i.e., donor-context interactions. The leftmost column

shows QQ-plots of P-values (without multiple testing correction) obtained under the

null hypothesis for 5 thousand stimulated genes using the Score-based test which is

boiled down to a one-sided Chi-square test (see Section 1.6 of Supplementary Notes).

The middle column shows sensitivity (power) curves under the alternative hypothesis

where the explained variance of a genetic variant (x-axis) was varied from 0 to 10% of

the total variance. The power is defined at the family-wise error rate of 0.05 across 5

thousand stimulated genes. The rightmost column is ROC curves based on the same

synthetic data shown in the first two columns.



Figure S2. a. Sensitivity of GASPACHO for various numbers of donors (N) and cells

(nc) with MAF=0.2. b. Power curve for MAF=0.2 under the constraint of

. c. Sensitivity of GASPACHO for various numbers of donors and cells𝑁 × 𝑛
𝑐
= 50, 000

with MAF=0.05. d. Power curve for MAF=0.05 under the constraint . e.𝑁 × 𝑛
𝑐
= 50, 000

Distribution of logCPM of the in-vitro Fibroblast data sequenced by SmartSeq2. f.

Distributions of simulated logCPM from the GPVLM (black) and its converted value

with a Poisson distribution (red). See Section 3.1 of Supplementary Notes for more

details for the simulation procedure. g. Scatterplot of logCPM values from the GPLVM

and its converted values with a Poisson distribution. h. QQ-plot of P-values (without

multiple testing correction) under the null hypothesis using the Score-based test

which is boiled down to a one-sided Chi-square test (see Section 1.6 of

Supplementary Notes). Black dots are based on simulated logCPM values and red



dots are based on the logCPM values with Poisson discretisation (see Section 3.1 of

Supplementary Notes). i. QQ-plot of the same P-values as in panel (h) restricted with

MAF=0.01 where 99.8% of variants have no alternative homozygote. The P-values

(without multiple testing correction) were computed using the Score-based test which

is boiled down to a one-sided Chi-square test (see Section 1.6 of Supplementary

Notes). j. Power curve of simulated data under the alternative hypothesis. The black

line indicates Gaussian data and the red line indicates Poisson converted data. k.

QQ-plot of P-values to detect dynamic eQTL effects under the scenario of only static

genetic effects in the data. The P-values (without multiple testing correction) were

computed using the Score-based test which is boiled down to a one-sided Chi-square

test (see Section 1.6 of Supplementary Notes). The black dots indicate P-values of the

Gaussian expression data, the red and blue dots indicate Poisson discretised data with

the expression frequency at ~60% (red) and >90% (blue) on average, where the

Poisson mean is multiplied by 10 to simulate high-coverage data. l. Barplot showing

eQTL classification results obtained from the Gaussian process mixture model (see

Section 1.4.1 of Supplementary Notes) for the simulated logCPM values used in the

panel j. The bottom categories are true scenarios under which logCPM values were

generated, where “Null'' indicates the null hypothesis with no eQTL effects, “Static”

indicates the alternative hypothesis with only static eQTL effects and “Dynamic”

indicates the alternative hypothesis with only dynamic eQTL effects. The colour

codings show the model assignment (grey: Null; blue: Static; red: Dynamic). m.

Barplot showing the eQTL classification result obtained from the Gaussian process

mixture model (see Section 1.4.1 of Supplementary Notes) for the simulated logCPM

values descritised by a Poisson distribution used in the panel j. The colour codings are

the same as the panel l. n. Barplot showing the eQTL classification results obtained

from the Gaussian process mixture model (see Section 1.4.1 of Supplementary Notes)

for the simulated logCPM values descritised by a Poisson distribution with 10 times

larger coverage than panel m. The colour codings are the same as in l. o. Runtimes of

GASPACHO with various numbers of donors (N) and cells (nc). p. Runtime comparison

between GASPACHO and CellRegMap for N=100.
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Table S1: Schematic comparison of a pseudo-bulk approach, a reduced GP regression

model of GASPACHO for mapping static genetic effect, full GASPACHO model and

CellRegMap used in Figure. S1.
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