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Supplementary Results 

 
Comparison of plasma mQTLs to other genetic studies of the circulating metabolome  
 
The 1,296 GWAS of plasma metabolite levels identified 677 regions in 485 GWAS that 

contained at least one significantly associated SNP. A comparison of genetic effect sizes of the 

plasma mQTLs in each of these regions to their effects detected among 3,603 European 

ancestry (EA) and 818 African American (AA) participants of the ARIC study (Supplementary 

Table 4) showed strong correlations (Pearson coefficients 0.98 and 0.86, respectively), which 

remained almost unchanged when restricting to ARIC participants with normal kidney function 

(Extended Data Figure 1). These findings therefore suggested that genetic effects on plasma 

metabolite levels are generally comparable among individuals with and without reduced 

kidney function. Replication rates of plasma mQTLs detected in our study were 94% in the EA 

sample and 27% in the much smaller AA sample (Methods; Supplementary Table 4). 

A comparison of index SNPs reported from seven large genetic studies of the 

plasma/serum metabolome1-7 from EA participants that used the same technology for 

metabolite quantification to the findings from this study highlighted excellent correlation of 

genetic effects (median Spearman coefficient across the seven studies: 0.93; range 0.54-0.95) 

and high validation rates at different levels of statistical significance, as detailed for each study 

in Supplementary Table 5. For example, the median validation rate at a threshold of 

p<0.05/mQTLs detected in the respective study was 0.74 (range 0.31-0.98). Conversely, 

plasma mQTLs detected in this study showed excellent correlation of genetic effects with 

those from the published studies (median Spearman coefficient of 0.92), as shown together 

with high validation rates in Supplementary Figure 1a-g. 
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Comparison of urine mQTLs to genetic studies of the circulating metabolome 
 
A comparison of the genetic effect sizes of the 622 significant urine mQTLs detected in our 

study with their respective counterparts from our own plasma mGWAS as well as the findings 

from seven published studies of the circulating metabolome1-7 showed that the correlation of 

genetic effects was somewhat higher for our own plasma mGWAS as compared to the largest 

published studies (Spearman coefficient GCKD 0.81, range in published studies 0.19-0.77; 

median: 0.74). Validation rates of urine mQTLs in results from plasma mGWAS depended on 

significance level and statistical power, with much larger studies showing higher validation 

rates than GCKD at stringent significance levels, and similar rates at nominal significance 

(Supplementary Figure 2). A published plasma study of similar sample size (N=6,136)5 as the 

GCKD plasma sample (N=5,023) showed lower validation rates of the urine mQTLs at each 

level of significance, which may highlight the value of studying paired metabolomes from the 

same study. 

 

Interaction of genetic effects at the 1,299 mQTLs with sex 
 

Interactions between the index SNP at each mQTL and sex (Methods) yielded 37 significant 

(p<3.8E-05) interactions after correction for multiple testing. The SNPs that showed the 

strongest differences by sex were consistent with the literature: for example, variants at the 

CPS1 locus showed a stronger effect on the levels of plasma glycine8,9, and also other 

associated plasma and urine metabolites, in women compared to men. When an mQTL for a 

given metabolite was detected in both plasma and urine at the CPS1 locus, most significant 

sex differences detected in plasma translated to urine. A stronger genetic effect of variants at 

the SULT2A1 locus on the plasma levels of androgen metabolites in men as compared to 

women is consistent with the gene’s function in catalyzing dehydroepiandrosterone sulfation 
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in the adrenal cortex, and could be explained by higher levels of these metabolites in men 

compared to women. The significantly (p-interaction=8E-11) larger effect of the index SNP at 

the SLC28A2 locus on urine adenosine levels in men as compared to women has not been 

reported previously. The encoded protein operates as a nucleoside transporter in the apical 

membrane of kidney epithelial cells where it mediates nucleoside reabsorption, including 

adenosine.10 GTEx data show higher median expression levels of SLC28A2 in men as compared 

to women, which may explain the observed differences. 

 
 
Differences in explained metabolite variance and effect directions of inter-matrix mQTLs 
 

The explained variance in metabolite levels for shared underlying genetic variants that were 

implicated by inter-matrix mQTLs was often larger in urine than in plasma. Differences of >20% 

were observed for mQTLs that reflect the function of known detoxification enzymes such as 

the ones encoded by AKR7A2, NAT8, and UGT2B11. These enzymes are highly expressed in 

both hepatocytes and tubular epithelial cells,11 and the urine levels of their associated 

metabolites may reflect the cumulative detoxification function of liver and kidney with 

concentration of the metabolites in urine.  

The direction and strength of association of almost all 204 “inter-matrix” mQTLs was 

nearly identical in plasma and urine (Extended Data Figure 4). The only exception was 

observed at SLC7A9, where the same index SNP allele was associated with higher urine and 

lower plasma levels of homocitrulline and X – 24736. This observation may be explained by 

the encoded protein’s role as a re-uptake transporter of dibasic amino acids such as lysine, 

cystine, and ornithine at the apical membrane of proximal tubular cells.12 Less efficient 

transport activity could result in higher urine and lower plasma levels of potential substrates, 
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for which SLC7A9 is the major reuptake transporter and for which there is no compensatory 

generation or uptake into plasma.  

 

Colocalization of plasma androsterone sulfate and hypertension 
 

An interesting example of colocalization between an mQTL and a disease was the association 

with the largest absolute effect: the minor allele at a low-frequency (MAF 3%) variant in 

CYP3A7, rs45446698, was associated with lower plasma levels of its substrate androsterone 

sulfate (P-value=2.4×10-149, effect=-2.15; Supplementary Table 3), as well as with other 

androgenic steroids in both plasma and urine. Colocalization supported a shared, positive 

relationship between androsterone sulfate levels and hypertension as well as other 

cardiometabolic traits (Supplementary Table 13). Investigation of potential sex-specific 

effects using individual-level data of unrelated participants of European ancestry in the UK 

Biobank (N=337,111) showed a stronger and nominally significant association of the minor G 

allele at rs45446698 with lower systolic and diastolic blood pressure as well as lower chance 

of hypertension in men as compared to women (Table). For diastolic blood pressure, a 

significant sex-specific effect modification was observed (P-value=5.1×10-3). Our data suggest 

that these sex-specific differences may partly relate to differences in the levels of androgenic 

steroids. 
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Table: Effect estimates of rs45446698 on blood pressure traits and hypertension in UK Biobank 

Trait Men Women Interaction 

effect or OR (95%CI)1 P-value2 
Systolic blood pressure -0.32 (-0.62;-0.02) -0.10 (-0.39;0.19) 4.2E-01 
Diastolic blood pressure -0.20 (-0.38;-0.02) 0.17 (0.01;0.34) 5.1E-03 
Hypertension  0.94 (0.90;0.97) 0.96 (0.93;1.00) 3.4E-01 

1 effect estimate for continuous blood pressure traits and odds ratio (OR) for binary hypertension trait, together with their 
respective 95% confidence intervals (CI); 2 P-value for the association test of interaction between trait and sex; bold: nominally 
significant (p<0.05) association. 

 

Metabolites most strongly related to kidney function 
 
We performed three complementary analyses to examine which metabolites were most 

strongly related to kidney function. First, we inferred, for each plasma and urine metabolite, 

the proportion of metabolite variance explained by eGFR based on linear models in the GCKD 

study. The Extended Data Figure 6 shows results for all investigated metabolites, ordered by 

the maximum of explained variance across plasma and urine. Consistent with expectations, 

the metabolite for which the eGFR explained the largest proportion of variance was plasma 

creatinine.  

Second, we investigated the relationship between 424 index SNPs of a large GWAS 

meta-analysis of eGFR13 with the mQTLs detected in our study, where 414 of these index SNPs 

were present. We identified 25 and 27 eGFR index SNPs that were significantly associated with 

metabolite levels in plasma (P-value <0.05/(424*1296)) and urine (P-value <0.05/(424*1401)), 

respectively. When focused on mQTLs with support for colocalization with eGFR, CPS1, NAT8, 

and SLC6A13 were the loci at which genetic associations were shared with eGFR and at least 

three metabolites.  

Third, we performed MR analyses at loci implicated by positive colocalizations with 

eGFRcrea, eGFRcys, creatinine, or cystatin C shown in Supplementary Table 13. Statistical 

support for altered kidney function (exposure) as a cause of altered metabolite levels 
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(outcome) was assessed. We concentrated on this direction because of the abundance of 

independent genetic instruments for eGFR, which enables checks of MR assumptions as well 

as sensitivity analyses, which is not the case for most metabolites. After thorough filtering of 

genetic instruments for potential pleiotropy (Methods), we identified 11 findings with 

significant support of altered kidney function causing a change in metabolite levels 

(Supplementary Table 14). Many of the implicated metabolites are related to the function of 

a detoxification enzyme almost exclusively expressed in the kidney, NAT8. It is conceivable 

that altered kidney function may lead to changes in the levels of substrates or products of a 

central renal enzyme. As expected, better kidney function was related to higher levels of all 

NAT8 products in plasma and urine. 

 

Insights into kidney-specific processes through mQTLs from urine-specific metabolites 
 

There were multiple examples of associations between variants in genes encoding transport 

proteins at the apical membrane of tubular cells and urine levels of the metabolites that they 

reabsorb from the ultrafiltrate, such as SLC36A2 and glycine, SLC5A9 and mannose, as well as 

SLC28A1 and SLC28A2 and several nucleosides. At the SLC36A2 locus, fine-mapping resulted 

in the identification of a missense variant (p.Gly87Val, NP_861441.2) that has been reported 

as a cause of autosomal-dominant hyperglycinuria (MIM #138500).14 This suggests the 

presence of persons with this condition in our study population, highlighting opportunities to 

identify causative alleles for autosomal-dominant monogenic conditions based on semi-

quantitative urine metabolomics studies. 
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mQTL-related genes are enriched in tissues, cell types, pathways, and mouse models, 
reflecting central metabolic functions 
 
The 282 prioritized genes across all mQTLs were significantly over-represented among a large 

number of Gene Ontology (GO) terms and KEGG pathways, as were the genes implicated by 

plasma or urine mQTLs separately (Methods; Supplementary Table 17). In general, the odds 

ratios of enriched terms detected from plasma mQTLs-related genes were of similar 

magnitude to those from urine mQTL-related genes (Extended Data Figure 6a). This indicates 

that, although some of the pathway-assigned genes may only be associated with metabolite 

levels in plasma or in urine, the two matrices capture a lot of shared information about 

metabolism-relevant pathways. When focusing on genes related to matrix-specific mQTLs, 

lipid metabolism-associated terms showed strong enrichment for plasma mQTL-specific 

genes, whereas terms related to carbohydrate, nucleoside, and catecholamine metabolism 

showed strong enrichment for urine mQTL-specific genes (Extended Data Figure 6b). 

The genes implicated by either plasma or urine mQTLs were highly expressed in the 

same human tissues (Methods): liver, kidney cortex and medulla, pancreas, small intestine, 

heart, adrenal gland, and colon (Extended Data Figure 6c; Supplementary Table 18). 

Enrichment at the cellular level using scRNA-seq data from kidney, liver, and intestine as well 

as 11 organs from the Human Protein Atlas was observed for cells of the proximal tubule, 

hepatocytes, and enterocytes (Extended Data Figure 6d; Supplementary Table 19). In 

summary, mQTL-related genes were highly expressed in specific tissues and cell-types, most 

strongly in kidney and liver, confirming that plasma and urine metabolites are important 

readouts of central functions of these two organs. 

 Lastly, we tested whether the 282 prioritized genes were enriched among genes that, 

when manipulated, cause abnormal homeostasis (MP:0001764) or its sub-terms in mice 

(Supplementary Tables 20; Methods). The most significantly enriched mouse phenotypes 
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pointed towards abnormal levels of amino acids, dicarboxylic acids and lipids in plasma and/or 

urine (Figure 4c). The availability of a mouse model with a metabolism-related phenotype 

offers opportunities for targeted experimental follow-up to illuminate the function of the 

respective gene in the generation or transport of the implicated metabolite. 
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Supplementary Methods 

 
Study for replication: The ARIC study 

Replication of plasma metabolites was tested in the ARIC study, a prospective community-

based cohort of 15,792 individuals enrolled between 1987-1989 from four U.S. communities15. 

Blood samples for the measurement of serum metabolite levels were collected at the fifth 

study visit (2011-2013). Institutional review boards at each of the four field centers approved 

of the study, and written informed consent was obtained from participants at baseline and 

follow-up visits. Participants of European ancestry and African American participants with 

available genome-wide genotypes and metabolomic profiling at visit 5 were included (N=3,603 

and 818, respectively). 

 
Causal gene assignment 

Prioritized genes assigned by the automated workflow (see main text) were manually 

reviewed for biological plausibility and for consistency across colocalizing mQTLs and matrices. 

First, in cases where the prioritized gene could not be connected to the implicated metabolite 

through review of PubMed (https://pubmed.ncbi.nlm.nih.gov/), OMIM 

(https://www.omim.org/), or the Human Metabolome Database (https://hmdb.ca/), other 

genes in the locus with a lower number of evidence scores assigned by the automated 

algorithm were reviewed. In case one of these genes was plausibly linked to the implicated 

metabolite through a known inborn error of metabolism or experimental evidence, the causal 

gene was reassigned. Second, in few instances where the same index SNP was associated with 

different metabolites and a different most likely causal gene had been automatically assigned, 

the same causal gene was manually reassigned when there was a clear biological fit of one of 

the automatically assigned genes to all of the metabolites and the other assigned gene could 
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not also plausibly be connected to its associated metabolite(s). Unnamed metabolites were 

evaluated for correlation with named metabolites as described in Schlosser et al16,17 and 

treated as their named counterparts when they mapped into the same eigenmetabolite. In 

instances where the index SNP differed, only highly correlated index SNPs (r2>0.5, D’>0.8) 

were evaluated for manual reassignment. Lastly, the most likely causal gene assigned to a 

given metabolite was reviewed across matrices. When the automated assignment differed 

and there was high LD (see above) between the index SNPs, the gene with higher biological 

plausibility across plasma and urine was assigned, taken biological plausibility of 

eigenmetabolite members into consideration in case of unnamed metabolites. 

 

Mendelian Randomization 

Two-sample Mendelian randomization analysis (MR)18 was performed using the R package 

MendelianRandomization (v0.6.0).19 To examine the relationship of kidney function 

(exposure) as a cause of altered levels of metabolites with a positive colocalization with eGFR 

(outcome; 136 plasma and 96 urinary metabolites in Supplementary Table 13), we used GWAS 

summary statistics for creatinine-based eGFR for participants of European ancestry reported 

by Stanzick, et al. 13. Genetic instruments were 869 SNPs with reported association P-value 

<5×10-8 that were independent (r²≤0.2) as identified using Plink software v1.920 and reference 

data from 1000 Genomes (phase 3).21  

For all MR analyses, genetic instruments were investigated in the PhenoScanner 

database22 to identify the potential for horizontal pleiotropy introduced by associations with 

other traits. All genetic instrument with potentially pleiotropic signals were excluded. As the 

main method to estimate causal effects, the inverse-variance weighted method was chosen 

and, if at least three genetic instruments were available in the respective analysis, the 
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weighted median method for sensitivity analysis. Per analysis and matrix, the significance 

threshold was defined as P-value <0.05/# evaluated metabolites. 

 

Testing mQTLs for positive selection by calculating integrated haplotype score (iHS) 

The iHS at all index or their proxy SNPs was calculated to investigate whether genetic variants 

associated with metabolites have experienced selective pressure and showed signals for 

positive selection. The iHS compares the extension of haplotype homozygosity around the 

ancestral and derived allele at a SNP of interest23, for which we used 1,417,184 genotyped 

variants of 5,034 individuals of the GCKD study phased with SHAPEIT (version 2 r790). The 

ancestral allele state was assigned to each genotyped SNP based on the ancestral allele 

information downloaded from Ensembl, ftp://ftp.ensembl.org/pub/release-

71/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e71.tar.bz2. The ancestral 

allele could be assigned for 1,313,870 of the genotyped SNPs (92.7%) based on high probability 

in the assignment procedure of Ensembl. The mapping of genetic position needed for the iHS 

calculation was based on the genetic map of the 1000 Genome Project Phase 3 downloaded 

from https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html. To each SNP the genetic 

position of the reference SNP with minimal physical distance and with smaller or equal 

physical position was assigned. For the index SNPs of the mQTLs that were not present in the 

phased genotype data, we determined proxy SNPs based on maximal LD and minimal distance 

using plink (version 1.90 beta6.20). Selscan version v1.3.024 was used for genome-wide iHS 

calculation. For every SNP with MAF >0.1, the iHS was calculated based on the genetic position 

using the default parameters except for the additional stopping condition for the EHH decay 

curve based on physical distance, so that the EHH decay curve was only truncated for 

integration when the EHH decay cutoff of 0.05 was reached regardless of the physical distance 
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to the tested SNP. Sites with low MAF were kept to construct haplotypes. The genome-wide 

standardization of the iHS was conducted based on frequency bins of the derived allele with a 

step size of 0.05 resulting in 16 frequency bins. Since the genome-wide iHS follows 

approximately a standard normal distribution, we considered the 0.025-quantile and the 

0.975-quantile of the standard normal distribution as critical values and reported all mQTLs 

with |iHS|>1.96 as candidates for targets of positive selection. The extended haplotype 

homozygosity (EHH)25 was plotted using the R package ´rehh´26 to visualize the extension of 

haplotype homozygosity around the ancestral and derived allele at SNPs with extreme iHS. 

 

Functional genomics from kidney tissue and transcription factor binding 

Kidney samples were obtained from macroscopically dissected cortex and medulla of tumor-

adjacent normal tissue in nephrectomy specimens from three donors and has been described 

previously.27 Briefly, RNA extraction and RNA-seq was performed by GeneWiz. Trimming and 

alignment of paired-end fastq files to human reference genome sequence hg38 was done with 

STAR 2.7.5b28 with parameters --outFilterIntronMotifs 

RemoveNoncanonical --outFilterMismatchNoverReadLmax 0.04. Counting of the number of 

reads aligned to each exon (feature) was performed using featureCounts29. Visualization of 

read-normalized density tracks (.bw) was done with pyGenomeTracks version 3.7.30 

 ATAC-seq was carried out on snap-frozen human kidney samples by ActiveMotif and 

aligned to the hg38 reference genome (BWA default settings). Normalization of read depth 

was carried out by random down sampling to the sample with lowest coverage. Peaks were 

called using MACS 2.1.0 at a cutoff of q-value 0.01, without control file, and with the -nomodel 

option. We removed false ChIP-Seq peaks contained in the ENCODE blacklist during peak 

filtering. 
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 Kidney-expressed transcription factors (TFs) were identified by screening all 675 TFs in 

the JASPAR 2020 core vertebrate motif database31 for expression in our RNA-seq dataset from 

primary human kidney. TFs were considered to be expressed if they showed five unnormalized 

counts in at least two of our six kidney samples (ignoring tissue subtype cortex or medulla). 

For the 517 kidney-expressed TFs, we performed a motif search at the position of rs6124828 

using the position weight matrices provided by JASPAR and the R package motifmatchR 

(p.cutoff = 5x10e-5)32. The motif search sequence lengths were adapted for each motif, 

thereby guaranteeing that each matching motif overlapped the SNP. Differential transcription 

factor binding P-values were computed with the online tool sTRAP.33 The following sequences 

in fasta format were submitted: 

“TAGCCTTGTTTTAGGTCTTAGAAGCTGATCATTAACCAATTCCTGCTCCTC” (major allele) and 

“TAGCCTTGTTTTAGGTCTTAGAAGCAGATCATTAACCAATTCCTGCTCCTC” (minor allele) using 

the JASPAR vertebrates matrix files and human promoters as background.  Subsequently, the 

results for HNF1A and HNF1B were extracted. 

 For the kidney-specific chromatin state maps, histone ChIP seq data (called narrow 

peaks) from primary kidney tissue for H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3 

and H3K27ac was downloaded from the ENCODE data portal34 (two donors, accession 

numbers ENCBS570IQU, ENCBS438CSQ) and the IHEC data portal35 (four donors, accession 

numbers MS002202, MS040102, MS040202, MS040301). The chromatin state annotation was 

created with ChromHMM following previously described steps.36 Briefly, in the binarization 

step, the “-peak” flag was set and the input .bed files were merged for each histone mark 

across all samples. In the annotation step, a pre-trained 18-state model published by the 

ROADMAP consortium37 was used, obtained from 
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https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels

/core_K27ac/jointModel/final/. 

The transcription factor ChIP datasets for HNF1A and HNF1B were downloaded as 

narrow peaks from the ENCODE database (accession numbers ENCFF022QCK, ENCFF767MSS). 

We downloaded publicly available single-nucleus ATAC-seq data from 12,720 human kidney 

cells38 (https://susztaklab.com/human_kidney/igv/) and displayed the open chromatin peaks 

in kidney cell types of interest along with the bulk ATAC-seq and RNA-seq tracks which we 

generated from human kidney cortex and medulla. 
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Supplementary Figure 1: Genetic effects of GCKD plasma mQTLs on levels of the 

corresponding metabolite in published plasma/serum mGWAS. 

The effect sizes or z-scores of GCKD plasma mQTLs are shown on the x-axis, whereas the effect 

sizes or z-scores of the corresponding metabolite at the corresponding index SNP or proxy SNP 

in high LD (r2>0.8) in published summary statistics of Shin et al 2014 (a), Long et al 2017 (b), 

Lotta et al 2021 (c), Yin et al 2022 (d), Hysi et al 2022 (e), Surendran et al 2022 (f), and Chen et 

al 2023 (g) are shown on the y-axis. The color indicates the P-value in the corresponding 

published plasma/serum mGWAS summary statistics, and the gray dashed line is the linear 

regression line. The gray crosses represent GCKD plasma index SNPs for which the 

corresponding metabolite, SNP (and proxy SNP respectively), or both were not detected in the 

corresponding plasma/serum mGWAS study. Validation rates at different levels of significance 

only consider direction-consistent effects. Serum mGWAS summary statistics from Long et al 

2017 are only available for associations with P-value <1e-5. 
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Supplementary Figure 2: Genetic effects of GCKD urine mQTLs on levels of the corresponding 

metabolite in published plasma/serum mGWAS. 

The effect sizes or z-scores of GCKD urine mQTLs are shown on the x-axis, whereas the effect 

sizes or z-scores of the corresponding metabolite at the corresponding index SNP or proxy SNP 

in high LD (r2>0.8) in published summary statistics of Shin et al 2014 (a), Long et al 2017 (b), 

Lotta et al 2021 (c), Yin et al 2022 (d), Hysi et al 2022 (e), Surendran et al 2022 (f), Chen et al 

2023 (g), and of our GCKD plasma mGWAS (h) are shown on the y-axis. The color indicates the 

P-value in the corresponding published plasma/serum mGWAS summary statistics, and the 

gray dashed line is the linear regression line. The gray crosses represent GCKD urine mQTLs 

for which the corresponding metabolite, SNP (or, if applicable, proxy SNP), or both were not 

detected in the corresponding plasma/serum mGWAS study. Validation rates at different 

levels of significance consider all effects regardless of their direction consistency, because 

there are several metabolites where an inverse association in urine versus plasma is 

biologically plausible. All mQTLs with an inconsistent effect direction in urine versus 

plasma/serum and a P-value <0.05/#mQTLs in the corresponding published plasma/serum 

study are labeled with the corresponding biochemical name and assigned gene. Serum 

mGWAS summary statistics from Long et al 2017 are only available for associations with P-

value <1e-5. 
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Supplementary Figure 3: Comparison of genetic associations at the DPEP1 locus for one 

exemplary plasma metabolite, cysteinylglycine, and all seven digestive proteins in plasma. 

Association patterns were visualized using LocusCompare39 version 1.0.0 and display 

conditional colocalization statistics between the mQTL for plasma cysteinylglycine, oxidized 

(independent SNP rs139835877) and each of the pQTLs for PNLIPRPI, AMY2A, CTRB2, PNLIP, 

AMY2B, REG3 and CPB1 (Methods). Conditional two-sided P-values are shown for PNLIPRP1 

(independent SNP rs4785606), PNLIP (independent SNP rs4424910) and CPB1 (independent 

SNP rs34141697). Marginal P-values are displayed for AMY2A, CTRB2, AMY2B and REG3. SNPs 

are color-coded to reflect their LD with this SNP (from pairwise R2 values from the HapMap 

CEU). 
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Supplementary Data 1: Regional association plots for mQTLs identified in mGWAS of plasma 
metabolite levels 

For each of the 677 mQTLs, the region for plotting was selected as 1-Mb for regions with a 

single mQTL, and as the outer borders of merged overlapping 1-Mb windows for regions with 

more than one adjacent index variants associated with the same metabolite. The associated 

metabolite is included in the title of each plot. The extended MHC region was treated as one 

region. A measure of linkage disequilibrium with the index SNP (lowest P-value, marked in 

purple), is presented as color-coded r2. P-values were calculated based on linear regression. 

 

See separate file.  
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Supplementary Data 2: Regional association plots for mQTLs identified in mGWAS of urine 
metabolite levels 

For each of the 622 mQTLs, the region for plotting was selected as 1-Mb for regions with a 

single mQTL, and as the outer borders of merged overlapping 1-Mb windows for regions with 

more than one adjacent index variants associated with the same metabolite. The associated 

metabolite is included in the title of each plot. The extended MHC region was treated as one 

region. A measure of linkage disequilibrium with the index SNP (lowest P-value, marked in 

purple), is presented as color-coded r2. P-values were calculated based on linear regression. 

 
See separate file. 




