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Dear Professor Kottgen, 

 

Your Article, "Genetic studies of paired metabolomes reveal enzymatic and transport processes at the 

interface of plasma and urine" has now been seen by 3 referees. You will see from their comments 

below that while they find your work of interest, some important points are raised. We are interested 

in the possibility of publishing your study in Nature Genetics, but would like to consider your response 

to these concerns in the form of a revised manuscript before we make a final decision on publication. 

 

To guide the scope of the revisions, the editors discuss the referee reports in detail within the team 

with a view to identifying key priorities that should be addressed in revision. In this case, we think all 

three referees have provided constructive reviews aimed at strengthening the analyses and improving 

the presentation, and we particularly ask that you address their technical comments as thoroughly as 

possible with appropriate revisions. Please do not hesitate to get in touch if you would like to discuss 

these issues further. 

 

We therefore invite you to revise your manuscript taking into account all reviewer and editor 

comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 

upload a copy of the manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

 

When revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 
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*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Article format instructions, available 

<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-

integrity">guidelines on digital image standards.</a> 

 

Please use the link below to submit your revised manuscript and related files: 

 

[redacted] 

 

<strong>Note:</strong> This URL links to your confidential home page and associated information 

about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 

this email to co-authors, please delete the link to your homepage. 

 

We hope to receive your revised manuscript within three to six months. If you cannot send it within 

this time, please let us know. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit <a 

href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review your 

work. 

 

Sincerely, 

Wei 

 

Wei Li, PhD 

Senior Editor 

Nature Genetics 

New York, NY 10004, USA 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

 

Thank you for the opportunity to the review this paper which presents genome-metabolome-wide 

analyses of plasma and urine in the same individuals, all part of the German Chronic Kidney Disease 

(GCKD) study. 

 

Overall, this is a clearly written paper with sound, standard methodology that raises no major 

concerns. 

 

The paper falls short in that it lacks sufficient novelty. Much larger and more comprehensive analyses 

exist for the plasma metabolome. It is therefore disappointing that a) large parts of the plasma 

elements of this paper are known, and b) the urine part includes a large subset of the same 

participants that were part of the previous urine focused analysis published by the same group. 

Thresholds used for establishing ‘replication’ and novelty appear chosen in favour of this study, rather 

than reflecting the number of comparisons performed and acknowledging the contribution of the body 

of previous work. 

 

The genome-metabolome-wide analysis (of blood and urine) remains rather descriptive and is written 

quite linearly (a bit like a counting exercise), which makes the paper quite long and not the most 

interesting read. 

The authors expand on specific examples, which is a strength of this paper, but possibly more of 

interest to a specialist nephrology audience. 

 

The comparative element of this paper is its main feature but is restricted by the power that comes 

from the number of people with paired samples, which is not necessarily required for these 

comparative genetic analyses. Since the main contribution of this paper lies in the comparative part, it 

is a limitation that this is outdated given larger plasma analysis already underway and unnecessarily 

restricted by the power based on paired samples only. 

 

The fact that a subset of genetic associations is specific or restricted to urine versus plasma is neither 

surprising nor novel but largely reflects known biology/ biochemistry. Specificity of metabolites being 

present and detectable in plasma versus urine, respectively, is a key driver of (groups of related) 

matrix specific metabolites and associated mQTLs, due to the glomerular filtration barrier – something 

the authors acknowledge. Related to this, the large number of observed colocalizations is driven by 

the fact that the authors included markers of kidney and liver function. 

 

The follow-up and examination of shared genetic drivers of urine vs plasma-specific mQTLs is a 

valuable part of this work, and it might be useful to be more focused on relevant diseases only and 

complications of CKD rather than being too explorative without very clear translational gain. 
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The authors are generally very clear and careful in their wording, nevertheless some of the statements 

appear to jump to conclusions too quickly. For example, while the FUT2 section is solid, the suggestion 

of using urine galactosylglycerol and 1,6-anhydroglucose as surrogates of cardiometabolic risk is 

unsubstantiated by the existing evidence. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

A very comprehensive and well-conducted analysis of GWAS of plasma and urine metabolites in 

patients with chronic kidney disease with a series of interesting downstream analyses and exciting 

illustrative case studies. The paper is very well-written but due to inherent complexity of this 

ambitious undertaking certain parts are perhaps not immediately easy to follow and may require 

additional explanations as per information with comments to authors. Overall, a very important 

contribution to our understanding of genetic determinants of plasma and urine metabolites. 

 

1. When intersecting GWAS with QTL-like datasets, the identity of specific genes that mediate the 

association between genetic variants and the phenotype (i.e., plasma level of metabolite or urine level 

of metabolite) is of utmost importance. The authors used different sources of information including 

colocalisation with eQTL input from multiple tissues (GTEx) to prioritise the most “likely” driver genes. 

It does appear that (i) in many cases different genes came up in eQTL analyses conducted in different 

tissues and (ii) tissues were not prioritised, i.e. input from kidney eQTLs were not treated 

preferentially i.e. when it came to analysis of urine metabolites, (iii) in some cases the input from 

eQTL and pQTL may have been overwritten and a different gene assigned [“In case of a clear 

biological fit to another scored gene (i.e., corresponding monogenic disease or animal model), the 

prioritized gene was reassigned)’], (iv) there were differences in the input between eQTL and blood 

pQTL analysis. It does appear that in most cases, there was one gene “most likely” mediating the 

association with plasma and urine metabolites. Could it be that different genes may be mediating the 

uncovered associations in different tissues (mQTL, eQTL are known to operate in a tissue specific 

manner – see for example PMID: 30467309). This deserves some contemplation in the discussion. 

Should the input from kidney/liver eQTL have a preference in this analysis (or at least in the analysis 

of urine metabolites (kidney)? 

2. I think it is important to provide the list of 282 genes in relation to each metabolite in a dedicated 

table. How many of these genes were non-coding? 

3. Have the authors considered using MR to provide further validation of the identified 282 genes as 

the drivers of the identified GWAS associations? At least for urine, an input from kidney eQTL could be 

used as the source of information on “exposure” (i.e., gene expression)? 

4. Was there an enrichment for kidney-related phenotypes in the analysis of urinary mQTLs and 4,422 

biomarkers and diseases in UK Biobank? 

5. Would it be possible to use this rich dataset to see which blood and urinary metabolites show the 

strongest associations with the biochemical measure of kidney function? Would it be possible to 

comment on the causality of the detected associations? 

6. Suppl Figures 1 and 2 did not display well in the Supplement. 

7. Is mQTL an appropriate abbreviation of metabolite QTLs (eg. vs methylation QTL)? 
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Reviewer #3: 

Remarks to the Author: 

Schlosser et al examine the genetic basis of an important biological phenomenon, glomerular 

filtration, though paired examination of metabolite levels in serum and urine in CKD patients. While 

the incredibly extensive results are very interesting and the dataset has significant potential, the 

current analysis is somewhat limited in terms of broad effects on the genome wide association 

landscape (specifically, using tools that examine effects below genome wide significance). Some 

specific comments below: 

 

Please put the exact N in (5023?) on line 104. 

How does the heritability differ for matched serum and urine metabolites? 

What is the distribution of genetic correlations across metabolites? This would enhance the paragraph 

starting line 162. 

Please clarify on line 130 that this is *across metabolites* (I assume). 

The suggestion behind the statement on line 153 is intriguing, but it is not actually tested in the 

manuscript. Please evaluate this claim or remove it. 

On line 157, were mqtls associated with multiple metabolites more or less likely to fine map to single 

SNPs? And what about by allele frequency? 

In the paragraph starting on line 162, it's unclear how much the starting and specificity are driven by 

global differences in power or the pathways that these substrate specific metabolites belong to. These 

global comparisons would greatly aide interpretation by the reader and should be included. 

 

The paragraph starting on line 195 confuses me. As these highly pleiotropic signals are counted 

multiple times in the list of pairwise colocalizations, then please include the number of distinct mQTLs 

underlying the lines 190-194 as well. Am I understanding your implication correctly that pleiotropy is 

evidence of these genes having key functionality? I would provide additional evidence for this. 

 

Please provide the effect size and p value for both serum and urine on line 234. 

 

Please provide your evidence for SLC10A2 being the causal gene on line 229. 

 

On line 241, is egfrcrea from your analysis of UKBB or from Stanzick et al.? Do these agree? Do they 

differ from using creatinine directly? 

 

The paragraph starting on line 240 takes a nice approach for evaluating shared signals with liver 

function traits, but misses the potential to consider regulatory annotations. Using tools like stratified 

LDSC, do you see evidence of this corresponding serum vs urine enrichments in kidney vs liver? While 

there is some evidence this might be the case, the manuscript and dataset provide a really nice 

opportunity to quantify this phenomenon and support the results here and in SF5. 

 

For line 256, please provide evidence that there is an enrichment in the target traits across your 115 

targets at the mQTLs themselves, not just at the genes they putatively target. 

 

What do the associations look like for non-urine-specific (or even serum specific, and clinical tests) 

metabolites at rs601338? And where is FUT2 expressed? Given the disease outcome associations 

presented, it would be quite interesting if these two metabolites were the only associations. 

 

Similarly, what does the phewas look like at rs62542743? There are previously reported associations 
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at AQP7, though your proposed mechanism seems quite plausible. 

 

The SLC13A3 story is very nice. Do you see experimental evidence of allele specific binding at 

rs6124828 in heterozygous individuals, either in HNF ChIP or ATAC/histone chip? Is there evidence of 

epistasis with variants at HNF genes? 

 

Suggestion to run mendelian randomization to support the (very neat!) results in the paragraph 

starting on line 393. Can you use other associations with these metabolites genome wide to tease out 

which might be causal (or is that what you did on line 398? I was confused)? That would l ikely 

simplify 7d as well, which I had trouble understanding. 

 

I would consider running GWAS for the ratio of urine to serum levels of each metabolite as well, which 

should pinpoint effects on the kidneys even further. 

 

The statement on line 469 only applies to urine; these results should be extended to serum in this 

manuscript (which I, for one, would find useful) or the statement should be clarified. 
 

 

Author Rebuttal to Initial comments   

Point-by-point response 

 
 
 
Editorial comments: 

 
To guide the scope of the revisions, the editors discuss the referee reports in detail within the 

team with a view to identifying key priorities that should be addressed in revision. In this case, 

we think all three referees have provided constructive reviews aimed at strengthening the 

analyses and improving the presentation, and we particularly ask that you address their 

technical comments as thoroughly as possible with appropriate revisions. Please do not 

hesitate to get in touch if you would like to discuss these issues further. 

 

Response: We thank the Editors for their guidance, and agree that all three Reviewers have 

provided constructive reviews. As suggested, we have thoroughly addressed the technical 

comments through the conduct of additional analyses, as outlined below. We believe that the 

results are interesting and significant additions to our work, and we thank the Reviewers and 

the Editorial Board for giving us the opportunity to make these revisions. 

 

 

Reviewer #1: 
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Thank you for the opportunity to the review this paper which presents genome-metabolome- 

wide analyses of plasma and urine in the same individuals, all part of the German Chronic 

Kidney Disease (GCKD) study. 

 

Overall, this is a clearly written paper with sound, standard methodology that raises no major 

concerns. 

1. The paper falls short in that it lacks sufficient novelty. Much larger and more comprehensive 

analyses exist for the plasma metabolome. It is therefore disappointing that a) large parts of the 

plasma elements of this paper are known, and b) the urine part includes a large subset of the 

same participants that were part of the previous urine focused analysis published by the same 

group. Thresholds used for establishing ‘replication’ and novelty appear chosen in favour of this 

study, rather than reflecting the number of comparisons performed and acknowledging the 

contribution of the body of previous work. 

 

Response: The aim of our study was to detect and compare genetic associations with metabolite 

levels across plasma and urine, and to thereby gain insights not only into systemic metabolism, 

but also into functions of the kidney at the interface of plasma and urine. To minimize 

differences introduced by variation in measurement technology, coverage, analytical choices 

including transformations and covariate adjustments, imputation reference panels, as well as 

differences between study samples, we therefore generated such data from paired plasma and 

urine samples, and analyzed it with a consistent workflow. We believe that this is a unique 

feature of our study, such that any differences in genetic associations with metabolites between 

plasma and urine, for example as provided for AQP7, can be interpreted confidently. Moreover, 

even if associations of a metabolite in plasma have been reported previously, its study in paired 

samples permits additional insights. For example, Shin et al1 previously reported associations 

at the SLC7A9 locus and plasma/serum homocitrulline from ~8,000 persons of European 

ancestry. Our study confirms the direction and significance of this association in plasma, but 

also adds a novel, inverse association with urine homocitrulline levels. Since SLC7A9 reabsorbs 

dibasic amino acids from urine at the apical membrane of kidney tubular epithelial cells, the 

observed inverse association is biologically plausible and suggests that homocitrulline may 

represent a new substrate of SLC7A9. This information may be of interest for experimental 

transport studies and in the context of hyperornithinemia-hyperammonemia-homocitrullinemia 

syndrome, an inborn error of metabolism. 

We agree with the Reviewer that a more comprehensive comparison to findings from 

published studies of the plasma/serum metabolome is of interest. We have therefore added a 
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systematic comparison to findings of five large GWAS of participants of European ancestry1-5 

that studied metabolites quantified with the same technique (Shin et al 2014, Long et al 2017, 

Lotta et al 2021, Yin et al 2022, Hysi et al 2022). New Supplementary Table 4 summarizes 

the effects of these published plasma mQTLs on plasma levels of the corresponding metabolite 

in GCKD. The table footnote shows that validation rates are inversely related to the sample size 

of the discovery study for a range of different statistical significance thresholds, and that the 

correlation of genetic effects between our and the other studies is very high (Spearman 

coefficient >0.9 for all Metabolon studies). A description of this new comparison is now 

included on page 6, lines 135-38. Secondly, we have added an investigation of the plasma 

mQTLs detected in the GCKD study in the summary statistics of the published plasma/serum 

mGWAS (Supplementary Table 5). A graphical summary (new Supplementary Figure 2) 

shows that there are plasma mQTLs from the GCKD study that did not reach statistical 

significance in previous studies of the plasma/serum metabolome. Moreover, there were QTLs 

arising from 44 metabolites not reported in these previous studies. We conclude that continued 

studies of the plasma metabolome are informative and are referring to this comparison and its 

related display items on page 6, lines 138-140. 

To more clearly delineate the contribution of investigating a substantially larger sample size 

than in our previous study of the urine metabolome, we quantified the absolute number of 

discoveries in the urine part of this mGWAS in comparison to our earlier publication (page 6f, 

line 150-52): we now detect 195 genes (90 previously), 622 mQTLs (240 previously), and 459 

unique metabolites with at least one urine mQTL (211 previously). 

Lastly, we have followed the Reviewer’s excellent suggestion of investigating the results 

from larger plasma studies in the urine part of this mGWAS and vice versa, the findings of 

which are outlined in response to point 3, below. 

 

2. The genome-metabolome-wide analysis (of blood and urine) remains rather descriptive and is 

written quite linearly (a bit like a counting exercise), which makes the paper quite long and not 

the most interesting read. The authors expand on specific examples, which is a strength of this 

paper, but possibly more of interest to a specialist nephrology audience. 

 

Response: During the revisions, we have addressed the Reviewer’s comment by restructuring 

parts of the manuscript, as well as by including new sections that expand on selected findings 

outside of nephrology. One example are metabolite associations at the SLC10A2 locus 

(described on page 10f, line 246-63), which we now connect to increased risk of gallstone 

disease not only through PheWAS and conditional colocalization, but also through Mendelian 
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Randomization analyses. This example motivates further studies of the implicated bile acids in 

gallstone disease, and highlights a potential adverse effect of SLC10A2 inhibitors. This novel 

class of medications is just gaining market approval and in fact, increased rates of cholelithiasis 

are reported from the first clinical trials. The drug information provided in new Supplementary 

Table 11 can serve as a resource for readers to search for additional examples of target genes 

with approved treatments. Moreover, we have attempted to maximize the usefulness to readers 

outside nephrology by adding several other global analyses, such as heritability estimation, 

power analyses, comparison to published mGWAS studies, and comparison of genetic effect 

sizes on plasma metabolite levels to the ones from a new replication sample of participants from 

the general population, and to the subset with normal kidney function. We recognize that the 

initial part of the results section contains a lot of numeric summaries, but believe that this is 

important context for the interpretation of the more detailed findings in the subsequent parts of 

the manuscript. 

 

 

3. The comparative element of this paper is its main feature but is restricted by the power that 

comes from the number of people with paired samples, which is not necessarily required for 

these comparative genetic analyses. Since the main contribution of this paper lies in the 

comparative part, it is a limitation that this is outdated given larger plasma analysis already 

underway and unnecessarily restricted by the power based on paired samples only. 

 

Response: We appreciate this helpful comment and agree that comparative investigations of 

findings from larger association studies of the plasma metabolome in our urine data are a useful 

and interesting addition. We therefore performed two new analyses: first, we investigated our 

urine mQTLs in available summary statistics from the large studies of the plasma/serum 

metabolome mentioned above. This comparison underscored the additional discovery potential 

of urine and showed that both correlation of genetic effects as well as validation rates were 

higher for the GCKD study than for larger, published GWAS of the circulating metabolome, 

highlighting the value of a paired study design (Supplementary Figure 5, Supplementary 

Table 5). The comparison also highlighted examples of inverse associations in plasma and urine 

that are biologically plausible, such as an association at SLC5A11 with myo-inositol, a tubular 

transporter responsible for the reabsorption of this metabolite6, as well as for other transport 

proteins (Supplementary Figure 5). 

Second, we also investigated the mQTLs from the five large studies of the plasma/serum 

metabolome in the summary statistics of our urine mGWAS (Supplementary Table 4). Again, 
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we observed that correlation and validation are highest for the GCKD study, although there are 

larger plasma mGWAS available. Of note, even when plasma mQTLs are already known, their 

“footprint” across matrices contains interesting biological information: when direction- 

consistent, it can be interpreted as arising from systemic metabolic processes that are captured 

in urine due to the metabolite’s glomerular filtration, whereas inverse associations can reflect 

tubular transport processes. Paired samples allow for interpretation of direction consistency with 

confidence. 

We have added a description of the investigations of published plasma/serum mQTLs in our 

urine mGWAS and our urine mQTLs in summary statistics from published plasma/serum 

mGWAS in the Results (page 7, lines 154-62) and the Methods (page 39, lines 897-918). We 

note that comparisons between different mGWAS studies need to be interpreted in light of 

potential differences in metabolite annotation and analytical decisions such as transformations 

and covariate adjustments (see Supplementary Tables 4 and 5 footnote). 

 

 
4. The fact that a subset of genetic associations is specific or restricted to urine versus plasma is 

neither surprising nor novel but largely reflects known biology/ biochemistry. Specificity of 

metabolites being present and detectable in plasma versus urine, respectively, is a key driver 

of (groups of related) matrix specific metabolites and associated mQTLs, due to the glomerular 

filtration barrier – something the authors acknowledge. Related to this, the large number of 

observed colocalizations is driven by the fact that the authors included markers of kidney and 

liver function. 

 

Response: We agree with the Reviewer that a substantial number of colocalizations with 

markers of kidney and liver function can be expected, as the levels of many metabolites are 

related to the function of these organs. As shown in Reviewer Figure 1, 14.8% (1,044 of all 

7,073) pairwise colocalizations between mQTLs and clinical biomarkers and traits were 

attributable to colocalization with kidney function markers (creatinine, cystatin C, urea, urate, 

eGFRcrea, eGFRcys), and 7.7% (545/7,073) were attributable to colocalizations with liver 

function markers (ALT, AST, GGT, albumin, total and direct bilirubin). Thus, while 

colocalizations between mQTLs and classical markers of liver and kidney function accounted 

for ~22% of the pairwise colocalizations, they did not account for the majority of them. We 

have included these numbers in the manuscript on page 11, line 265-67. 

The intended purpose of our main Figure 5a and Supplementary Figure 9 was to 

address the question whether the genetic architecture of mQTLs that leave a signature in the 

urine and/or plasma metabolome is shared with the function of the kidney, the liver, or both. 
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Loci containing lipid-metabolism related genes such as FADS1 or LIPC show evidence of 

shared genetic architecture (positive colocalization) between plasma lipid metabolite levels and 

the function of the liver, but not the kidney. Likewise, genetic variants in loci encoding several 

solute transporters with important roles in the kidney such as SLC34A1 or SLC7A9 support a 

shared genetic architecture of the associated metabolites in urine with kidney function. While 

this is not unexpected (now included on page 11f, lines 269-75), the fact that it is observed from 

the systematic, unbiased integration of data supports its biological information content. The 

majority of mQTL-related loci showed a mixed picture, illustrating that the plasma and the urine 

metabolome contain complementary information about genetic effects that are shared with the 

function of an important metabolic organ such as liver or kidney, which we have now attempted 

to clarify by rephrasing on page 11f, lines 265-79. 

 

 

 

 

5. The follow-up and examination of shared genetic drivers of urine vs plasma-specific mQTLs is 

a valuable part of this work, and it might be useful to be more focused on relevant diseases 

only and complications of CKD rather than being too explorative without very clear 

translational gain. 

 

Response: We appreciate the Reviewer’s comment and have added additional information that 

highlights connections between detected mQTLs and kidney diseases and/or complications 
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thereof (page 10, line 242-45). Based on results from colocalization analyses with diseases and 

symptoms assessed in the UK Biobank, this includes GSTM1 and kidney cancer, FMO4 and 

hypertensive CKD, ALPL, SLC34A1, ABCG2, and CYP2D6 and nephrolithiasis, as well as 

ABCC4 and urinary retention. Moreover, in response to point 13 by Reviewer 3, we have now 

investigated the relationship of all exonic index SNPs from our project and diseases, biomarkers 

and symptoms in the UK Biobank based on the genetic information from whole-exome 

sequencing (new Supplementary Table 15). This investigation shows associations between 

index SNPs at ABCG2, APOE, CPS1, DMGDH, DPEP1, FDPS, IDI2, KYAT3, POR, SLC17A1, 

SLC25A45, SLC39A8, SLCO1B1, and SRD5A2 with urinary/renal traits. While p.Gln141Lys in 

ABCG2 and serum urate can be considered an experimentally confirmed positive control,7 other 

missense variants represent interesting new candidates for further experimental studies (now 

mentioned on page 12, lines 283-89). 

In order to enhance the focus, as suggested by the Reviewer, we have reduced the 

number of outcomes investigated for colocalization by not counting redundant endpoints, and 

removing those not clearly related to diseases, such as history of employment. We do believe, 

however, that the exploration across a broad spectrum of diseases and traits, enabled by the 

systematic integration of different comprehensive datasets as performed in our study, can also 

lead to valuable insights. This is, for example, illustrated by the relation of a plasma 

glycodeoxycholate 3-sulfate associated mQTL at SLC10A2 and gallstone disease, for which we 

are now providing additional support through Mendelian Randomization analyses (please 

compare detailed response 10 to Reviewer 3). 

 

 
6. The authors are generally very clear and careful in their wording, nevertheless some of the 

statements appear to jump to conclusions too quickly. For example, while the FUT2 section is 

solid, the suggestion of using urine galactosylglycerol and 1,6- anhydroglucose as surrogates of 

cardiometabolic risk is unsubstantiated by the existing evidence. 

 

Response: We agree with the Reviewer that the investigation of galactosylglycerol and 1,6- 

anhydroglucose as surrogates of cardiometabolic risk is best conducted in a future project, once 

urine metabolite data in very large population-based studies with cardiometabolic outcomes 

become available. We have therefore removed their denomination as potential surrogates of 

cardiometabolic risk, and revised the statement to motivate the investigation of their relationship 

to cardiometabolic diseases in future, larger studies (page 14, lines 330-33). 
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Reviewer #2: 

 
A very comprehensive and well-conducted analysis of GWAS of plasma and urine metabolites 

in patients with chronic kidney disease with a series of interesting downstream analyses and 

exciting illustrative case studies. The paper is very well-written but due to inherent complexity 

of this ambitious undertaking certain parts are perhaps not immediately easy to follow and may 

require additional explanations as per information with comments to authors. Overall, a very 

important contribution to our understanding of genetic determinants of plasma and urine 

metabolites. 

 

Response: Thank you for the positive assessment of our work. 
 

1. When intersecting GWAS with QTL-like datasets, the identity of specific genes that mediate the 

association between genetic variants and the phenotype (i.e., plasma level of metabolite or urine 

level of metabolite) is of utmost importance. The authors used different sources of information 

including colocalisation with eQTL input from multiple tissues (GTEx) to prioritise the most “likely” 

driver genes. It does appear that (i) in many cases different genes came up in eQTL analyses 

conducted in different tissues and (ii) tissues were not prioritised, 

i.e. input from kidney eQTLs were not treated preferentially i.e. when it came to analysis of 

urine metabolites, (iii) in some cases the input from eQTL and pQTL may have been 

overwritten and a different gene assigned [“In case of a clear biological fit to another scored 

gene (i.e., corresponding monogenic disease or animal model), the prioritized gene was 

reassigned)’], (iv) there were differences in the input between eQTL and blood pQTL 

analysis. It does appear that in most cases, there was one gene “most likely” mediating the 

association with plasma and urine metabolites. Could it be that different genes may be 

mediating the uncovered associations in different tissues (mQTL, eQTL are known to 

operate in a tissue specific manner – see for example PMID: 30467309). This deserves 

some contemplation in the discussion. Should the input from kidney/liver eQTL have a 

preference in this analysis (or at least in the analysis of urine metabolites (kidney)? 

 
Response: We agree with the Reviewer that this point deserves contemplation. Our original 

rationale to assign equal weights to all investigated tissues when testing for colocalization 

between mQTLs and eQTLs was that metabolites in plasma, and – when filtered - also in urine, 

can originate from many tissues and organs and we wanted to maximize the opportunity to 

detect these colocalizations. For instance, many xenobiotic metabolites are detected in urine, 
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although they enter the body via the gastrointestinal tract, the skin, or the lung and their levels 

may be driven by transport or enzymatic processes in these tissues. 

To empirically address the Reviewer’s question, we have performed re-analyses of our 

workflow to assign the most likely causal genes. A new analysis of all 1,299 mQTLs that 

assigned a weight of 1.5 to kidney tissue (as compared to 1 for all other tissues) for urine mQTLs 

and of 1.5 for kidney and liver tissue for plasma mQTLs yielded only five instances in which 

the prioritized gene was no longer among the prioritized ones from our previous workflow. In 

several of these five cases, the biological connection relating the newly assigned gene to the 

metabolites was not as plausible as before (Reviewer Table 1). 

 
Reviewer Table 1: Sensitivity analyses: mQTLs for which a revised scoring algorithm no longer ranked the 

originally assigned gene among the top genes. There were no such changes for the remaining 1294 mQTLs. 

Original 

gene 

Top gene by the 

revised score 

Involved metabolite 

levels 

Potential biological connection between metabolite and 

prioritized gene 

GATM SPATA5L1 plasma homoarginine The enzyme encoded by GATM is involved in homoarginine 

synthesis, whereas no connection to homoarginine is known 

for SPATA5L1, encoding Spermatogenesis Associated 5 
Like 1. 

KYAT1 SPOUT1 plasma 

2-hydroxy- 
phenylacetate 

The associated metabolite is a molecule in the metabolism 

of phenylalanine. KYAT1 encodes a metabolic enzyme in the 

pathway “phenylalanine, tyrosine and tryptophan 

biosynthesis”. SPOUT1 is involved in the association of the 

centrosomes with the poles of the bipolar mitotic spindle 

during metaphase, and has not been connected to amino acid 

metabolism.   Thus,   the   connection   of   2- 
hydroxyphenylacetate to KYAT1 has greater biological 

plausibility. 

PTER C1QL3 urine N-acetyl-beta- 

alanine and N- 

acetyltaurine 

The protein encoded by PTER is reported to enable 

hydrolase activity by enzymes; C1QL3 encodes a protein 

predicted to be part of a collagen trimer with a role in 
synapse organization. 

PYROXD2 HPS1 plasma N- 

methylpipecolate 

The associated metabolite is a molecule in lysine 

metabolism. PYROXD2 encodes a mitochondrial 

oxidoreductase. Many other N-methylated amino acids and 

their derivatives are also associated with this locus. HPS1 

encodes a protein that participates in a complex important 
for the biogenesis of organelles like melanosomes. 

Additional sensitivity analyses that assigned a weight of 1.5 only to kidney but not to liver 

tissue, as well as analyses assigning a weight of 2 to either only kidney or to kidney and liver 

tissue provided very similar results. Based on these new analyses and the rationale laid out 

above, we decided to retain the original approach to the colocalization analyses of mQTLs and 

eQTLs. We have revised the manuscript to include the rationale to assign equal weight to all 

tissues in the Methods (page 42, line 984-88), and are now including a contemplation of the 
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valid points raised by the Reviewer in the Discussion (page 21, lines 500-2). 

 

 

2. I think it is important to provide the list of 282 genes in relation to each metabolite in a 

dedicated table. How many of these genes were non-coding? 

 

Response: Pairwise gene-metabolite relationships are included in Supplementary Tables 3 and 

10. For the readers’ convenience, we have now also generated a table at the level of the 282 

genes, some of which are associated with more than one metabolite (new Supplementary Table 

11). There were no noncoding genes among the prioritized ones, which might be related to the 

fact that it is more difficult for noncoding genes to achieve high evidence scores. Not only do 

they not have a chance to show colocalization at the protein level, but they are also not well 

represented in variant scoring algorithms, nor in databases like OMIM. 

 

3. Have the authors considered using MR to provide further validation of the identified 282 genes 

as the drivers of the identified GWAS associations? At least for urine, an input from kidney eQTL 

could be used as the source of information on “exposure” (i.e., gene expression)? 

 

Response: We had considered but decided not to perform MR analyses for the purpose of 

assigning the most likely causal genes, for several reasons: first, it is likely that not all mQTLs 

influence metabolite levels through differential gene expression. In fact, there are 249 instances 

in which the SNPs in single or small (5 SNPs) credible sets contain a missense variant, which 

may affect protein processing or function rather than gene expression. Second, the underlying 

assumptions of MR, especially the absence of associations with other traits that may introduce 

horizontal pleiotropy (in this case other transcripts), do not hold for many metabolite-associated 

genetic instruments. Many SNPs are associated with differential transcript expression of more 

than one gene in cis. A third reason complicating systematic MR analyses using gene expression 

as the exposure is that not all transcripts can be comprehensively assessed in each tissue because 

of various reasons (true missingness, low sample size of some GTEx tissues, other). Fourth, as 

opposed to powerful GWAS meta-analyses of complex traits that often identify hundreds of 

associated loci and hence potential instruments, most GWAS of gene expression are only 

conducted in the cis region, which reduces the possibility to perform methodological sensitivity 

analyses to check the underlying assumptions of MR that require the presence of many 

independent instruments. For these reasons, we believe that systematic MR investigations of 

gene expression to assign the most likely causal gene at each locus is out of the scope of this 
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project. To nevertheless include information from eQTL studies of diverse tissues including 

kidney, we had therefore performed systematic colocalization analyses of genetic associations 

with metabolites and with gene expression to identify most likely driver genes. These analyses 

have fewer assumptions and can more easily be applied to all loci. 

We do agree with the Reviewer that MR analyses can be useful to further investigate 

potential causal relationships at the identified mQTLs. We have therefore now performed MR 

analyses to investigate the relationship between selected mQTLs and health outcomes, for 

which we were able to check assumptions. This work is described in more detail in response to 

comment 5 below (for eGFR) and to comment 10 of Reviewer 3. 

 
 

4. Was there an enrichment for kidney-related phenotypes in the analysis of urinary mQTLs and 

4,422 biomarkers and diseases in UK Biobank? 

 

Response: We examined the Reviewer’s question by performing overrepresentation analyses of 

urine versus plasma mQTLs with at least one positive colocalization signal among kidney- 

related phentoypes in the UK Biobank (kidney biomarkers creatinine, cystatin C, urea, urate, 

eGFRcrea, and eGFRcys, as well as all phenotypes containing “kidney” or “renal” (but not 

adrenal) or “nephro” or “calculus” or “urine”). No significant association was identified (odds 

ratio 1.02, p-value 0.90). When interpreting these findings, we recognize that many plasma 

metabolites are filtered to urine, and their associated mQTLs may therefore be detected in both 

plasma and urine. We therefore also examined an overrepresentation among urine-specific 

mQTLs and kidney diseases that originate in the tubule (“calculus of kidney”, “calculus of 

ureter”, or “urinary calculus”). Overrepresentation analysis of urine-specific as compared to 

other mQTLs with a positive colocalization showed a trend for enrichment (odds ratio 1.51), 

but confidence intervals were wide and the association hence not significant (p-value 0.59). 

 
 

5. Would it be possible to use this rich dataset to see which blood and urinary metabolites show 

the strongest associations with the biochemical measure of kidney function? Would it be 

possible to comment on the causality of the detected associations? 

 

Response: We agree with the Reviewer that these are pertinent questions and have performed a 

series of complementary analyses. First, we inferred, for each plasma and urine metabolite, the 

proportion of metabolite variance explained by eGFR based on linear models in the GCKD 

study. The new Supplementary Figure 10 shows results for all investigated metabolites, 
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ordered by the maximum of explained variance across plasma and urine. Consistent with 

expectations, the metabolite for which the eGFR explained the largest proportion of variance 

was plasma creatinine. 

Second, we have investigated the relationship between 424 index SNPs of a large 

GWAS meta-analysis of eGFR (Stanzick, et al. 8) with the mQTLs detected in our study, where 

414 of these index SNPs were present. Reviewer Table 2 (attached .xlsx file) lists the 25 and 

27 eGFR index SNPs from Stanzick et al. that were significantly associated with metabolite 

levels in plasma (p<0.05/(424*1296)) and urine (p<0.05/(424*1401)), respectively, further 

divided into those with support from colocalization. This comparison implicates especially 

mQTLs at CPS1, NAT8, and SLC6A13 as the metabolite loci with the strongest relationship to 

the most common measure of kidney function, the eGFR. 

Third, we have performed MR analyses at loci implicated by positive colocalizations 

with eGFRcrea or eGFRcys. For these mQTLs, we assessed the statistical support for altered 

kidney function (exposure) as a cause of altered metabolite levels (outcome). We concentrated 

on this direction because of the abundance of independent genetic instruments for eGFR, which 

enables checks of MR assumptions as well as sensitivity analyses, which is not the case for most 

metabolites. We thoroughly filtered genetic instruments for potential pleiotropy (see updated 

Methods), and now report 11 findings with significant support of altered kidney function 

causing a change in metabolite levels (Supplementary Table 13). Of note, many of the 

implicated metabolites are related to the function of a detoxification enzyme almost exclusively 

expressed in the kidney, NAT8. It is conceivable that altered kidney function may lead to 

changes in the levels of substrates or products of a central renal enzyme. As expected, better 

kidney function was related to higher levels of all NAT8 products in plasma and urine. We have 

included this new information in the results section of the Supplementary Information, to 

which we are referring in the manuscript on page 12, line 279-82, and in the Methods (page 46, 

lines 1066-79). 

 
 

6. Suppl Figures 1 and 2 did not display well in the Supplement. 

 
Response: We have generated new figures that should display in a better resolution while 

maintaining a much smaller file size. 

 

 

7. Is mQTL an appropriate abbreviation of metabolite QTLs (eg. vs methylation QTL)? 
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Response: We have decided to use the term “mQTL” for metabolite QTL in order to stay 

consistent with previous literature: our own work (e.g., Schlosser, et al. 9) and work by others 

(e.g., Kraus, et al. 10, Demirkan, et al. 11) that used “mQTL” for metabolite QTLs, the term has 

been coined by one of the very first genetic studies of the metabolome in 2011 (Nicholson, et 

al. 12). Although some studies of the methylome also use “mQTL”, many studies of methylation 

QTLs use the term “meQTL”, for example a recent multi-Omics paper published in Nature 

Genetics (Liu, et al. 13), as well as a recent large-scale genetic screen of DNA methylation 

published in Nature Genetics (Hawe, et al. 14). We would therefore like to retain the use of 

“mQTL” for metabolite QTL. 

 

 

Reviewer #3: 

 

Schlosser et al examine the genetic basis of an important biological phenomenon, glomerular 

filtration, though paired examination of metabolite levels in serum and urine in CKD patients. 

While the incredibly extensive results are very interesting and the dataset has significant 

potential, the current analysis is somewhat limited in terms of broad effects on the genome 

wide association landscape (specifically, using tools that examine effects below genome wide 

significance). Some specific comments below: 

 

1. Please put the exact N in (5023?) on line 104. 

Response: We have included that metabolite levels were measured for 5,023 GCKD 

participants. 

 

 

2. How does the heritability differ for matched serum and urine metabolites? 

 
Response: Thank you for raising this interesting question. We have now computed heritability 

for all metabolites that give rise to any of the 1,299 identified mQTLs as described in the 

expanded Methods on page 40, lines 928-33, and added the estimates to Supplementary Table 

2. The new Supplementary Figure 6 shows the requested comparison of the heritability for 

matched plasma and urine metabolites: there is a high, positive correlation between the 

estimates of heritability for a given metabolite’s plasma and urine levels. Since most metabolites 

that can be quantified in both plasma and urine are filtered by the kidney, this positive 
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correlation is expected. Moreover, there are instances in which the difference in estimated 

heritability for plasma and urine differed by more than 25%. Such differences can contain 

interesting biological information. For example, three metabolites with large differences in 

heritability between urine and plasma are N-acetylated amino acids, all of which have an mQTL 

at NAT8. NAT8 is highly and selectively expressed in the kidney, where the encoded enzyme N-

acetylates molecules to make them water soluble for subsequent excretion. We have added this 

example to the footnote of new Supplementary Figure 6. 

 
 

3. What is the distribution of genetic correlations across metabolites? This would enhance the 

paragraph starting line 162. 

 

Response: To address the Reviewer’s question, we estimated the genetic correlation coefficients 

for all 11,524 pairs of metabolites that share at least one mQTL, as well as for all 779 plasma-

urine pairs of metabolites that were quantified in both matrices, irrespective of shared mQTLs, 

using the recently published SCORE algorithm.15 We found that only one third (33.4%) of the 

analyses converged to genetic correlation coefficients that also included a standard error 

estimate. This in large part relates to statistically very strong associations between genetic 

variants and metabolite levels at many mQTLs. The removal of such loci is recommended 

before estimation of genetic correlations.16 However, many of the metabolites only showed a 

single or two very strong mQTLs, making this infeasible. We note that the estimation of genetic 

correlations is usually applied to results from large meta-GWAS of complex traits, which often 

contain dozens or even hundreds of significantly associated loci, 

i.e. display clear polygenicity. Furthermore, the majority of our converged analyses (64.9%; 

2,670 of 4,110) had standard error estimates greater than 0.5, consistent with the observation 

that very large studies and polygenic architecture are required for precise estimates of genome- 

wide genetic correlations. When repeating these analyses using the LD Score regression 

method,17 we observed similarly low rates of model convergence, and also imprecise estimates. 

We conclude that much larger sample sizes would be required to infer precise and reliable 

genetic correlations of metabolites with each other, and decided not to include their estimation 

in the manuscript. 

4. Please clarify on line 130 that this is *across metabolites* (I assume). 

 
Response: We have now clarified our workflow on lines 132f: we merged, for each metabolite, 

overlapping 1 Mb intervals that showed at least one significant association, and then selected 

the SNP with the lowest p-value in each region as the index SNP. We used colocalization of 
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mQTLs to assess whether associations with different metabolites mapping to the same region 

were likely driven by the same underlying variant. 

 

 

5. The suggestion behind the statement on line 153 is intriguing, but it is not actually tested 

in the manuscript. Please evaluate this claim or remove it. 

 

Response: We agree with the Reviewer and have removed the sentence. 
 

 

 

6. On line 157, were mqtls associated with multiple metabolites more or less likely to fine map to 

single SNPs? And what about by allele frequency? 

 

Response: We performed linear regression analyses relating the average number of credible set 

size at a given locus to the number of associated metabolites and found no significant 

relationship (p>0.8). Conversely, a significant association was identified for the relationship of 

credible set size and index SNP minor allele frequency (p=2.3E-13), with lower MAF related 

to smaller credible set size. We have added these observations to the manuscript on page 7, lines 

168-70, and extended the methods accordingly (page 41, lines 949f). 

 

7. In the paragraph starting on line 162, it's unclear how much the starting and specificity are 

driven by global differences in power or the pathways that these substrate specific metabolites 

belong to. These global comparisons would greatly aide interpretation by the reader and 

should be included. 

 

Response: We agree with the Reviewer that these are helpful comparisons to aid interpretation. 

We have therefore conducted post-hoc power analyses for urine and for plasma mQTLs, 

separately by metabolite super-pathway, for a sample size of 5,000 and across a range of minor 

allele frequencies. For each matrix-super-pathway subgroup, we assumed the median observed 

effect size across mQTLs as well as the median standard deviation of the metabolites with a 

mQTL within the group. As shown in the new Supplementary Figure 7 to which we now refer 

on page 8, lines 179-81, the power to detect significant associations at the thresholds used in 

our study was very similar for urine and plasma for almost all metabolite super-pathways. The 

only clear difference was observed for energy metabolism, a category that contained only 0.8% 

of mQTLs. 
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8. The paragraph starting on line 195 confuses me. As these highly pleiotropic signals are counted 

multiple times in the list of pairwise colocalizations, then please include the number of distinct 

mQTLs underlying the lines 190-194 as well. Am I understanding your implication correctly that 

pleiotropy is evidence of these genes having key functionality? I would provide additional 

evidence for this. 

 

Response: The numbers of distinct mQTLs for each of the four groups has now been added to 

the legend of Figure 3. The fact that a very high number of colocalizations is observed for some 

genetic loci indicates that they have key functionality in the sense that the same underlying 

genetic signal is likely to drive the association with many metabolites. When investigating 

colocalizations restricted to a certain matrix such as urine, we can therefore identify the 

metabolomic “footprint” of a genetic locus on this matrix. As suggested by the Reviewer, we 

have now added additional citations that support that the implicated genes influence multiple 

metabolites specifically in the investigated matrix (page 10, lines 224). Pleiotropy is further 

supported by the targeted investigation of exonic mQTL index SNPs in the UK Biobank whole- 

exome sequencing data (see below), where available signals in CPS1, SLCO1B1, and SLC17A1 

were associated with numerous other biomarkers, including metabolites. 

 

 

9. Please provide the effect size and p value for both serum and urine on line 234. 

 
Response: The effect sizes for glycocholate in plasma and urine were 0.07 and -0.44, 

respectively, and the corresponding p-values were 0.21 and 2.9E-13. Prompted by Reviewer 

comments that encouraged the study of potentially causal relationships (please also see response 

to the next point), we have however now revised the entire section of the manuscript related to 

SLC10A2. 

 

 

10. Please provide your evidence for SLC10A2 being the causal gene on line 229. 

 
Response: SLC10A2 is the only gene in the associated LD block (see Supplementary Figures 

1 and 4, regional association plots). The encoded protein is the primary transporter for bile acid 

uptake in the distal ileum (Dawson, et al. 18), and both associated metabolites are bile acids. 

Moreover, the index SNP for plasma glycodeoxycholate 3-sulfate is a missense variant that we 

fine-mapped to a single-SNP credible set. The resulting valine to isoleucine substitution at 

position 98 encoded by rs55971546 has experimentally been shown to result in reduced bile 
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acid transport using one in vitro system,19 but not in an earlier study using another system20. 

Moreover, we have now added conditional colocalization analyses (see updated Methods) and 

identified evidence for a shared genetic variant, rs55971546, giving rise to both the association 

with metabolite levels as well as with gallstone (PP H4 = 0.99; new Figure 4a and b). Across 

1,400 EHR-derived broad PheWAS codes from the UK Biobank, rs55971546 was exclusively 

associated with cholelithiasis (Figure 4c). Together, we believe this is compelling evidence for 

SLC10A2 as the likely causal gene. 

To further strengthen this evidence, we have performed MR analyses. As shown in 

Figure 4d, we provide evidence for a causal role of this bile acid, or the mechanism which it 

reflects, in gallstone disease susceptibility. This motivates special attention to the occurrence of 

gallstones as a potential adverse effect of the new class of medications targeting SLC10A2 for 

cholestasis. In fact, data from emerging clinical trials describes increased rates of cholelithiasis 

in the treatment group (ClinicalTrials.gov Identifier: NCT03566238). This observation may be 

especially relevant because SLC10A2 inhibitors are currently explored in the context of other, 

more common liver, metabolic, and digestive diseases such as constipation. Lastly, with more 

than 30 bile acids quantified in plasma and urine each, our data represents an interesting 

opportunity to systematically explore which specific bile acids are altered in variant carriers 

(Figure 4e). We believe that this new finding significantly adds to our manuscript and have 

revised the corresponding part in the Results section on page 10f, lines 246-63. 

 

11. On line 241, is egfrcrea from your analysis of UKBB or from Stanzick et al.? Do these agree? 

Do they differ from using creatinine directly? 

 

Response: The eGFRcrea GWAS summary statistics used in our manuscript are from Stanzick, 

et al. 8, which is a meta-analysis of summary statistics from the CKDGen Consortium (Wuttke, 

et al. 21) and a GWAS of eGFR in the UKB. We therefore did not evaluate eGFR in the UKB 

only, since a separate assessment would have resulted in reduced power. 

We did conduct a GWAS of serum creatinine in the UKB for the purpose of this 

manuscript. The new Reviewer Figure 3 contains a Venn diagram showing the overlap of 

mQTLs that colocalize with eGFR and those that colocalize with serum creatinine. Because of 

differences in sample size and hence power of the two analyses, we are also showing a scatter 

plot that compares genetic effect sizes on creatinine-based eGFR with those on serum creatinine 

for each index SNP at a mQTL that colocalizes with at least one of both traits. We observe that 

genetic effects compare very well and are highly correlated (Spearman coefficient -0.99, p- 

value 1.6e-61). 
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Reviewer Figure 3: Comparison of genetic associations of mQTLs and their index SNPs with eGFRcrea and 

with serum creatinine as a Venn diagram (left) and a scatter plot (right). 

 

12. The paragraph starting on line 240 takes a nice approach for evaluating shared signals with liver 

function traits, but misses the potential to consider regulatory annotations. Using tools like 

stratified LDSC, do you see evidence of this corresponding serum vs urine enrichments in 

kidney vs liver? While there is some evidence this might be the case, the manuscript and 

dataset provide a really nice opportunity to quantify this phenomenon and support the results 

here and in SF5. 

 

Response: As suggested by the Reviewer, we performed stratified LDSC analyses for 944 

metabolites with an mQTL. Across all 54 tissues and metabolites, the lowest p-value for a tissue 

was 1E-05, which is not statistically significant after correction for multiple testing. Restricting 

the results to only liver and kidney tissue, the top 10 metabolites with the strongest enrichment 

for liver are two urine and eight plasma metabolites, the latter of which contain 5 bilirubin and 

one glucuronidated metabolite. The top 10 metabolites for kidney are mostly from urine (7/10) 

and often related to amino acid and nucleotide metabolism. These findings are consistent with 

existing biological knowledge about the functions of the liver and the kidney, but they are not 

statistically significant. We conclude that such analyses are currently underpowered and believe 
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that it will be interesting to revisit them once mGWAS become available that reach sample sizes 

of several 100,000s, as is the case for many complex traits including the ones examined in the 

original manuscript proposing stratified LDSC.22 

 

 

13. For line 256, please provide evidence that there is an enrichment in the target traits across 

your 115 targets at the mQTLs themselves, not just at the genes they putatively target. 

 

Response: We agree that variant-level investigations of associated traits and diseases are an 

interesting addition to the gene-based associations we presented previously. We have performed 

these analyses and added the results as new Supplementary Table 15, as well as included them 

in the Results section (page 12, lines 284-9). Of note, the new results include the prioritized 

missense variant rs55971546 in SLC10A2 (see above), which was exclusively associated with 

gallstone disease among 11,669 diseases queried. 

 

 

14. What do the associations look like for non-urine-specific (or even serum specific, and clinical 

tests) metabolites at rs601338? And where is FUT2 expressed? Given the disease outcome 

associations presented, it would be quite interesting if these two metabolites were the only 

associations. 

 
Response: We have now clarified that rs601338 was exclusively associated with levels of the 

metabolites galactosylglycerol and 1,6-anhydroglucose, both of which happen to be urine- 

specific (page 13, lines 317f). With the clinical tests performed in the UK Biobank, which we 

evaluated for colocalization, the FUT2 signal colocalized with alkaline phosphatase, CRP, 

gamma-GT, LDL and total cholesterol, apolipoprotein B, IGF-1, total bilirubin and protein, and 

eGFRcys (Supplementary Table 12). As displayed in Reviewer Figure 4, FUT2 shows a 

ubiquitous pattern of expression in the GTEx data, with highest levels in tissues of the digestive 

system. We have added this information to the manuscript on page 13, line 318. 
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15. Similarly, what does the phewas look like at rs62542743? 

 
Response: Reviewer Figure 5 shows a PheWAS of rs62542743 in the AQP7 locus, using the 

same dataset as for rs601338 in FUT2. No significant findings were identified after appropriate 

correction for multiple testing, which may not be surprising given the hypothesized mechanism 

(see below). 

 
 

Reviewer Figure 5: PheWAS of rs62542743 in AQP7 and 1,400 EHR-derived codes for 57 million TOPMed- 

imputed variants in 400,000 white British individuals as provided by the Lee lab (https://pheweb.sph.umich.edu/). 

 

 

 

16. There are previously reported associations at AQP7, though your proposed 
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mechanism seems quite plausible. 

 

Response: We have now investigated all four genome-wide significant associations reported for 

“AQP7” in the GWAS Catalog. These arise from three unique SNPs: rs144994089 (trait: urinary 

albumin excretion), rs35201538 (lung adenocarcinoma), and indel rs145465051 (blood glucose 

levels). Using the European ancestry samples included in the TOPMed Project, the variants 

rs144994089 and rs35201538 are not in LD with the index SNP identified in our manuscript, 

rs62542743 (r2<0.2; http://topld.genetics.unc.edu/). The variant rs145465051 was 

not included in the TOPMed or other SNP reference databases such as LDlink, but its estimated 

frequency differs clearly from the one of our variant (0.18 vs. 0.06). Given the literature support 

of AQP7 as a glycerol transporter, including mouse models and a case report of a monogenic 

manifestation in a single family, as well as the absence of associations between rs62542743 and 

other diseases and traits, we agree with the Reviewer that the proposed mechanism is quite 

plausible. 

 

 

17. The SLC13A3 story is very nice. Do you see experimental evidence of allele specific binding 
at rs6124828 in heterozygous individuals, either in HNF ChIP or ATAC/histone chip? 

 

Response: We agree with the Reviewer that this is an interesting question, which we are looking 

forward to investigate further once suitable datasets become available. At the moment, we do 

not have approval to obtain genetic information from the donors of the kidney samples from 

which we generated the ATAC-seq data. We are also not aware of any publicly available 

individual-level datasets that contain both genotype and HNF CHiP or ATAC/histone chip 

information that we could use to identify persons heterozygous for rs6124828, in order to 

explore this question further. The HNF ChIP-seq information in our current manuscript is 

derived from a cell line, for which we do not know the genotype status of the donor at 

rs6124828. Therefore, we have included the investigation of this question as an interesting area 

of future investigation (page 16, line 379-81). 

 

 

18. Is there evidence of epistasis with variants at HNF genes? 

 
Response: We performed SNP*SNP interaction analyses for variants within +/- 500 kb around 

the HNF1A and HNF1B genes and the rs6124828 variant in SLC13A3, for each of the four 

associated metabolites. We did not identify any significant SNPs after accounting for testing of 

http://topld.genetics.unc.edu/)
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502 independent SNPs across both regions (estimated with plink using r2<0.2) and the number 

of traits (all interaction p-values >0.05/(502*4)). We conclude that there is no compelling 

evidence for epistasis of rs6124828 with common variants at HNF1A or HNF1B. This is not 

unexpected if rs6124828 at SLC13A3 alters the binding motif of these transcription factors, 

whereas variation in the genes encoding for the transcription factors themselves may lead to 

different amounts or conformation of the transcription factors. 

 

 

19. Suggestion to run mendelian randomization to support the (very neat!) results in the paragraph 

starting on line 393. Can you use other associations with these metabolites genome wide to 

tease out which might be causal (or is that what you did on line 398? I was confused)? That 

would likely simplify 7d as well, which I had trouble understanding. 

 

Response: MR analyses at the DPEP1 locus are complicated by its pleiotropic associations with 

multiple traits and diseases, which can introduce horizontal pleiotropy, thereby violating MR 

assumptions. We therefore instead carried out colocalization analyses of genetic associations at 

this locus with metabolites and multiple traits and diseases. These showed that the same 

underlying genetic signal gave rise to associations with osteoarthritis and hypertension in 

opposing effect directions. We realize that the graphic representation of these results may not 

have been straightforward, and have now revised Figure 8d to address this point. 

 

 

20. I would consider running GWAS for the ratio of urine to serum levels of each metabolite as well, 

which should pinpoint effects on the kidneys even further. 

 

Response: We agree with the Reviewer that the evaluation of metabolite ratios in the context of 

their renal handling is of special interest. We believe however that such analyses are most 

informative when performed with measurements that provide absolute instead of semi- 

quantitative metabolite levels, as only this enables the calculation of the metabolites’ fractional 

excretions. In fact, we are working on such analyses as part of a dedicated, separate project that 

uses a different technique for metabolite quantification. We have therefore decided to include 

the study of metabolite ratios that use absolute quantification as a future endeavor of interest 

(page 21, lines 504). 
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21. The statement on line 469 only applies to urine; these results should be extended to serum in 

this manuscript (which I, for one, would find useful) or the statement should be clarified. 

 

Response: We thank the Reviewer for this important comment. Indeed, while we had 

previously shown that genetic effects on urine metabolite levels were similar for participants 

of the GCKD study and those from a general population-based sample,9 we have now added 

new data to extend this evaluation to circulating metabolites. We find that the genetic effects 

on plasma metabolite levels are very similar between participants of the GCKD study and 

those of the population-based ARIC study, in which a comparable serum metabolomics 

dataset was available. For 459 mQTLs with available SNPs and metabolite levels, we 

observed a replication rate of 94.1% (P-value <0.05/459 and direction consistent). Moreover, 

genetic effects on metabolite levels were highly correlated (Pearson correlation coefficient of 

0.98). A high correlation of genetic effect sizes was also observed when only ARIC 

participants with eGFR of 60 ml/min/1.73m2 were included for the comparison (Pearson 

correlation coefficient of 0.98). We included these new findings in the manuscript on page 6, 

lines 140-148. A scatter plot of the genetic effects in the two studies is now included as 

Supplementary Figure 3, while the new Supplementary Table 6 includes the numeric results. 
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Decision Letter, first revision: 
4th Jan 2023 

 

 

Dear Professor Köttgen, 

 

Your Article, "Genetic studies of paired metabolomes reveal enzymatic and transport processes at the 

interface of plasma and urine" has now been seen by 2 referees. You will see from their comments 

below that while they find your work of interest, some important points are raised. We are interested 

in the possibility of publishing your study in Nature Genetics, but would like to consider your response 

to these concerns in the form of a revised manuscript before we make a final decision on publication. 

 

We therefore invite you to revise your manuscript taking into account all reviewer and editor 
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comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 

upload a copy of the manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

 

When revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Article format instructions, available 

<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-

integrity">guidelines on digital image standards.</a> 

 

Please use the link below to submit your revised manuscript and related files: 

 

[redacted] 

 

<strong>Note:</strong> This URL links to your confidential home page and associated information 

about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 

this email to co-authors, please delete the link to your homepage. 

 

We hope to receive your revised manuscript within 8 to 12 weeks. If you cannot send it within this 

time, please let us know. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit <a 
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href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review your 

work. 

 

Sincerely, 

Wei 

 

Wei Li, PhD 

Senior Editor 

Nature Genetics 

New York, NY 10004, USA 

www.nature.com/ng 

 

 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Thank you for the opportunity to assess the revised version of this manuscript. The authors have 

carefully attempted to respond to the reviewers' comments. 

 

This is a fast-moving field, and the updates do still not account for the existing knowledge and recent 

studies that vastly exceed the current one in sample size (but are lacking the matrix comparison). 

Therefore, all results for the genetic analysis of plasma metabolites need to be updated to not make 

false claims of novelty. I cannot be sure, but strongly assume that the new results render much of the 

plasma discoveries of this work redundant. Examples highlighted in the rebuttal letter, such as 

rs55971546 in SLC10A2, are known and have been reported not only for glycochenodeoxycholate 

sulfate but long been linked to gallstones, so neither the variant, gene, nor the mechanism are new. 

 

The genetic comparison between plasma and urine using all available mQTLs (rather than the matched 

analysis) is a helpful addition but also out of date. Please state more clearly how many of the 'novel' 

urine mQTLs (compared to the author's earlier work) are already captured by larger plasma studies, 

i.e. concordant? 

 

I was struck by the fact that the correlation of genetic effects as well as validation rates were 

higher for the GCKD study than for larger, published GWAS of the circulating metabolome. Is this the 

case for the largest efforts? If yes, this is interesting, and the authors interpret this to demonstrate 

the value of a paired study design. However, it does beg the question how much of this this is driven 

by selected focus on CKD patients with reduced kidney function and not generalisable to a general 

population? 

 

Given these limitations, a study more focused on the comparative element would not only help to 

reduce the still very lengthy technical description of GWAS loci (in plasma), which is not a unique 

feature of this study, but allow focussing on the main stated rationale: to use the plasma-urine 

comparison in CKD patients to identify transporters and enzymes with pharmaceutical relevance for 
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CKD and more broadly. This part does not stand out clearly enough and is what might make this work 

competitive. 

 

Another point of note is the total absence of any investigation of sex differences. 

 

A strength of the revised version is that replication is performed, although it would be more useful had 

this been extended to include an assessment of the generalisability of findings to ethnic groups 

represented in the ARIC replication cohort to compensate at leats partly for the fact that this is yet 

another White European focussed effort. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have provided a very strong and detailed rebuttal to my comments and the revised 

version of the manuscript, and the Supplement look excellent. There are only a few remaining minor 

points worth addressing (as listed below). 

 

1. Thank you for conducting an additional sensitivity analysis and providing a rationale for assigning 

equal weight to all tissues in the algorithm used to nominate the most likely gene drivers. I think that 

inclusion of Table S1 cataloguing these genes is most useful. While I am satisfied that these additional 

analyses and results make a very persuasive case for not making any further changes to the 

algorithm, I do think that the discussion requires a little bit more contemplation of its limitations. 

Indeed, the algorithm (i) identifies the highest scoring gene, but it does not specify the tissue through 

which the genes is likely to influence the metabolites (ii) it does not provide equal weights to protein-

coding and non-coding (e.g. long non-coding) genes in scoring which may explain why the latter are 

not amongst the prioritised genes. This is important because (i) a proportion of GWAS signals operate 

through changes in expression of different genes in different tissues (please see CKD-defining traits as 

a relevant example - Nat Commun. 2018;9:4800.) and (ii) long non-coding RNAs are recognised gene 

mediators of associations signals with complex human traits. It would be most helpful to see this 

being covered in the discussion with appropriate references. 

2. Can you please clarify for what percentage of the mQTLs you could not identify the most likely gene 

drivers? 

3. I think that the title of the Results section “Systemic roles of renal dipeptidase 1 /DPEP1/: 

circulating enzymes, hypertension and arthropaties” needs changing to “Systemic roles of dipeptidase 

1 /DPEP1/: circulating enzymes, hypertension and arthropaties”. Indeed, DPEP1 encodes dipeptidase 1 

also called Microsomal Dipeptidase or Dipeptidase 1 (Renal). In the current form the titles suggests 

that it is the kidney expression of this gene that determines the levels of digestive enzymes, 

hypertension and arthropaties while of course based on the provided data one cannot assign a specific 

tissue that is responsible for these findings. As the authors point out, DPEP1 is expressed not only in 

the kidney. 

 

 

 

Reviewer #3: 

None 
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Author Rebuttal, first revision: 

Dear Editors and dear Reviewers, 

 

 
Thank you for the evaluation of our revised manuscript. We have carefully considered your 

comments, performed new analyses, and responded to each comment in the point-by-point 

response, below. 

 

We believe that your comments have helped us to further improve our manuscript. We hope 

that the implemented changes meet your requests, and that we have answered all open 

questions. 

 
 

Sincerely, 

Pascal Schlosser, Nora Scherer, and Anna Köttgen, on behalf of all authors 

 
 
 

Point-by-point response 

 
 
 
Reviewer #1: 

 
Thank you for the opportunity to assess the revised version of this manuscript. The authors 

have carefully attempted to respond to the reviewers' comments. 

 

This is a fast-moving field, and the updates do still not account for the existing knowledge and 

recent studies that vastly exceed the current one in sample size (but are lacking the matrix 

comparison). Therefore, all results for the genetic analysis of plasma metabolites need to be 

updated to not make false claims of novelty. I cannot be sure, but strongly assume that the new 

results render much of the plasma discoveries of this work redundant. Examples highlighted in 
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the rebuttal letter, such as rs55971546 in SLC10A2, are known and have been reported not 

only for glycochenodeoxycholate sulfate but long been linked to gallstones, so neither the 

variant, gene, nor the mechanism are new. 

 

Response: We agree that the elucidation of the genetic basis of plasma metabolite levels is a 

fast-moving field. Since we had performed the requested comparisons for the first revision of 

our manuscript, two additional studies that met our selection criteria for maximizing overlap 

with the findings from our study were published in peer-reviewed journals (Surendran et al, 

Nature Medicine, November of 20221; Chen et al, Nature Genetics, January of 20232). We were 

also meanwhile able to obtain summary statistics of the results published by Hysi et al in 20223. 

We have therefore updated the comparison of our findings for plasma metabolites to include 

these new studies. 

 

As in our previous comparison, we find excellent correlation of genetic effects on plasma 

metabolites detected in the GCKD study with the corresponding metabolites and variants (or 

their proxies) in the newly added population-based studies: Spearman correlation coefficients 

are 0.92 for all three studies. Our initial motivation for the comparative analyses of plasma 

findings to published studies was to assess whether genetic effects in the GCKD study and in 

population-based samples agree and how their effect sizes correlate, rather than claiming or 

emphasizing novelty. Based on our newly updated comparisons, the majority (92.6%) of plasma 

mQTLs from our study were already reported as genome-wide significant in one or more of the 

seven published studies of the circulating metabolome. This is not surprising, since their sample 

size exceeds that of our study up to 17-fold. In fact, it bolsters confidence in the results that we 

use to perform a comparative study of genetic footprints on the urine and plasma metabolomes, 

the main goal of our study. We note that we still detected 50 significant plasma mQTLs from 

our study that did not pass the significance threshold in any of the evaluated larger GWAS of 

the circulating metabolome, of which 20 arose from 17 metabolites not reported in any of the 

previous studies. We have added these new results and considerations to the Results (page 6f, 

lines 149-160), updated the methods section accordingly, and updated the respective display 

items (Supplementary Figure 3, Supplementary Tables 5 and 6.) Lastly, we have added 

citations of additional studies of the circulating metabolome that did not meet the selection 

criteria for our comparison to published studies (Results, page 43, lines 983-990).4-8 

About SLC10A2, the association with plasma glycodeoxycholate 3-sulfate has been reported in 

the studies by Surendran et al and Chen et al in the meantime, including Mendelian 

randomization (MR) analyses in the study by Surendran et al. We agree with the Reviewer that 
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our previous figure needed revision, and have taken the Reviewer’s advice to more clearly 

emphasize the comparative aspect of our study. 

 

In fact, the SLC10A2 locus represents an interesting example of how the study of different 

matrices can facilitate the detection of different likely causal variants in the same locus. By 

adding the information about the urine mQTL at SLC10A2, we show that the fine-mapped 

plasma and urine index SNPs leave different footprints on the bile acid profiles in the two 

matrices (new Figure 6). Whereas the effect of the plasma index SNP on levels of sulfated bile 

acids is propagated to urine by filtration and therefore observed in both matrices, the study of 

urine revealed a regulatory variant in the 5’ UTR of the gene, rs16961281, that was fine-mapped 

to a single-SNP credible set. It maps into accessible chromatin in the cortex of our kidney 

functional genomics data, and more specifically in proximal tubular cells (new Supplementary 

Figure 12), where the encoded transporter ASBT is expressed and responsible for the 

reabsorption of bile acids from urine. The minor allele is associated with higher SLC10A2 

expression in the kidney, lower levels of its substrate glycocholate in urine, as well as with lower 

risk of gallstone disease, independently of the plasma index SNP and supported by positive 

pairwise colocalizations. This regulatory variant leaves a urine-specific fingerprint on several 

bile acids that are known substrates of the encoded transport protein ASBT such as glycocholate 

(new Figure 6), whereas sulfated bile acids, the metabolites associated with the plasma index 

SNP, have been reported not to be transported by ASBT9. The urine-specific variant likely 

represents a more direct readout of ASBT-mediated transport in a matrix directly interacting with 

the transporter, whereas plasma levels may reflect secondary changes. We have added these 

observations to the manuscript (page 15, lines 362-403). 

The genetic comparison between plasma and urine using all available mQTLs (rather than the 

matched analysis) is a helpful addition but also out of date. Please state more clearly how many 

of the 'novel' urine mQTLs (compared to the author's earlier work) are already captured by larger 

plasma studies, i.e. concordant? 

 

Response: Following the same workflow as for plasma, we have updated the comparison of 

urine mQTLs (Supplementary Figure 5e-5f). Across all 622 urine mQTLs, 352 (56.6%) were 

not reported as associated with the corresponding metabolite in any of the seven evaluated, large 

studies at their defined level of significance (updated Supplementary Table 6). When restricted 

to the 399 urine mQTLs not reported in our earlier work, this was the case for 243 mQTLs 

(60.9%). Of note, even when a urine mQTL was captured by larger plasma studies, the direction 

of association was not always concordant. These discordant effects were especially observed at 

loci that encode for transporters and enzymes expressed at the apical membrane of tubular 
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epithelial cells in the kidney. For example, genetic associations with myo-inositol levels in urine 

and plasma show opposite directions, reflecting its active reabsorption from urine by the 

implicated transport protein SLC5A11. We have included this information in the Results section 

(page 7, lines 165-181), and replaced the term “novel” with “not previously reported in urine”. 

 

 

I was struck by the fact that the correlation of genetic effects as well as validation rates were 

higher for the GCKD study than for larger, published GWAS of the circulating metabolome. Is 

this the case for the largest efforts? If yes, this is interesting, and the authors interpret this to 

demonstrate the value of a paired study design. However, it does beg the question how much 

of this this is driven by selected focus on CKD patients with reduced kidney function and not 

generalisable to a general population? 

 

Response: Our updated analyses show that the correlation coefficient for the genetic effect sizes 

of urine mQTLs with matching plasma metabolite levels is still somewhat higher for GCKD 

(Spearman correlation coefficient 0.81) than for the larger, published mGWAS (range of 

coefficients: 0.19-0.77; median: 0.74). The validation rates depended on the significance level: 

while they were similar at a nominal significance level (0.82 in GCKD, 0.84 in Surendran, 0.84 

in Chen, 0.75 in Hysi), they were lower at more stringent levels (e.g., at p<5E-08: 0.64 in GCKD, 

0.70 in Surendran, 0.77 in Chen, 0.59 in Hysi). In the study of Yin et al, which had a similar 

sample size as GCKD (N=6,000 vs. N=5,000 in GCKD) and hence should have similar or slightly 

better power, these validation rates were somewhat lower than in GCKD even at genome-wide 

significance (Spearman coefficient 0.59). We have added these observations to the manuscript 

(Supplementary Figure 5; Supplementary Table 6; page 7, lines 169-77). The Reviewer’s 

second question can only conclusively be answered once well-powered GWAS of paired plasma 

and urine metabolites from a population-based study become available, which we have now 

emphasized as an interesting direction for future research (page 22, lines 525-28). 

 

 

Given these limitations, a study more focused on the comparative element would not only help 

to reduce the still very lengthy technical description of GWAS loci (in plasma), which is not a 

unique feature of this study, but allow focussing on the main stated rationale: to use the plasma-

urine comparison in CKD patients to identify transporters and enzymes with 

pharmaceutical relevance for CKD and more broadly. This part does not stand out clearly 

enough and is what might make this work competitive. 
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Response: We agree with the Reviewer and follow the advice as outlined above. We have 

performed the updated comparisons, quantified overlap with previous studies, and focus more 

on the comparative element of our study, for which we have added a new example. Details 

related to the GWAS loci in plasma have been moved to the Supplementary Results. 

 

 

Another point of note is the total absence of any investigation of sex differences. 

 
Response: We agree that this is interesting information and have evaluated sex differences 

following a published workflow10. After correction for multiple testing, we detected 37 

significant (p<3.8E-05) interactions with sex. The SNPs that showed the strongest differences 

by sex are consistent with existing knowledge: for example, variants at the CPS1 locus showed a 

stronger effect on the levels of plasma glycine11,12 and also other associated plasma and urine 

metabolites in women compared to men. When an mQTL for a given metabolite was detected 

in both plasma and urine at the CPS1 locus, most significant sex differences detected in plasma 

translated to urine. A stronger genetic effect of variants at the SULT2A1 locus on the plasma 

levels of androgen metabolites in men as compared to women is consistent with the gene’s 

function in catalyzing dehydroepiandrosterone sulfation in the adrenal cortex, and could be 

explained by higher levels of these metabolites in men compared to women. To the best of our 

knowledge, the significantly (p-interaction = 8E-11) larger effect of the index SNP at the 

SLC28A2 locus on urine adenosine levels in men as compared to women has not been reported 

previously. The encoded protein operates as a nucleoside transporter in the apical membrane of 

kidney epithelial cells where it mediates nucleoside reabsorption, including adenosine.13 GTEx 

data show higher median expression levels of SLC28A2 in men as compared to women, which 

may explain the observed differences. We have included a new Supplementary Table 7 that 

summarizes the interaction analyses between our index SNPs and sex, and added the new 

findings to the Results (page 8, lines 183-7), Supplementary Results (Supplementary 

Information page 3f), and Methods sections (page 44, lines 1022-5). 

 

 

A strength of the revised version is that replication is performed, although it would be more 

useful had this been extended to include an assessment of the generalisability of findings to 

ethnic groups represented in the ARIC replication cohort to compensate at leats partly for the 

fact that this is yet another White European focussed effort. 
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Response: We agree and have now extended the replication effort to the African American (AA) 

participants of the ARIC Study. We find that genetic effects on metabolite levels show very 

good correlations with the discovery estimates in GCKD (Pearson correlation coefficient 0.86, 

as compared to 0.98 for ARIC EA; expanded Supplementary Figure 2, also shown below). 

These observations support that many findings from a discovery population of European 

ancestry and with reduced kidney function are generalizable to an African American sample from 

the general population. However, the sample size of ARIC AA participants with available 

metabolite measurements was substantially smaller (max. N=818) than for the ARIC 

EA sample (N=3,603), and fewer mQTLs pass the multiple-testing corrected significance 

threshold (124 mQTLs, p<0.05/430 and direction consistent). We have added the new 

replication data to the manuscript, so that readers can compare the genetic effect size correlations 

between the GCKD discovery and the ARIC EA or ARIC AA replication samples, as well as 

explore effect estimates, allele frequencies and sample sizes for the individual SNPs in each of 

the three samples (Supplementary Table 4). The manuscript has been expanded in the Results 

(page 6, lines 141-8) and the Methods section (page 39, lines 905-7 and page 44, line 1020f). 
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Supplementary Figure 2: Replication of plasma mQTLs from GCKD in the ARIC EA (left) and AA (right) sample. 
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Reviewer #2: 

 
The authors have provided a very strong and detailed rebuttal to my comments and the revised 

version of the manuscript, and the Supplement look excellent. There are only a few remaining 

minor points worth addressing (as listed below). 

 

Response: Thank you for the positive assessment of our revised manuscript. 
 

1. Thank you for conducting an additional sensitivity analysis and providing a rationale for 

assigning equal weight to all tissues in the algorithm used to nominate the most likely 

gene drivers. I think that inclusion of Table S1 cataloguing these genes is most useful. 

While I am satisfied that these additional analyses and results make a very persuasive 

case for not making any further changes to the algorithm, I do think that the discussion 

requires a little bit more contemplation of its limitations. Indeed, the algorithm (i) 

identifies the highest scoring gene, but it does not specify the tissue through which the 

genes is likely to influence the metabolites (ii) it does not provide equal weights to 

protein-coding and non-coding (e.g. long non-coding) genes in scoring which may 

explain why the latter are not amongst the prioritised genes. This is important because 

(i) a proportion of GWAS signals operate through changes in expression of different 

genes in different tissues (please see CKD-defining traits as a relevant example - Nat 

Commun. 2018;9:4800.) and (ii) long non-coding RNAs are recognised gene mediators 

of associations signals with complex human traits. It would be most helpful to see this 

being covered in the discussion with appropriate references. 

 

Response: Thank you for the concrete and helpful suggestions. Regarding point i), 

Supplementary Table 11, columns L and N show in which tissues an eQTL was identified or 

in which tissue a positive colocalization with gene expression was detected, respectively. We 

agree with the Reviewer, however, that this information is not unambiguous: one the one hand, 

more than one tissue and gene can be implicated and on the other hand, not all tissues may be 

equally well represented. We have therefore added these observations to the limitations section 

of the discussion (pages 23f, lines 555-62), where we have also addressed the second point about 

protein coding and non-coding genes. We have included appropriate references, including the one 

above. 

 



 
 

 

40 
 

 

 

 

2. Can you please clarify for what percentage of the mQTLs you could not identify the 
most likely gene drivers? 

 

Response: Our implemented workflow always assigns a most likely gene. Genes in the locus 

were evaluated and scored based on multiple sources of evidence as outlined in the Methods. In 

case there were several genes receiving the highest score in a locus, such ties were resolved by 

distance and the closest gene assigned as the most likely causal one. The most likely causal gene 

was assigned by distance for 17% of the mQTLs (221/1299). We have now added this 

information to the manuscript (page 47, lines 1098f). The number and sources of evidence that 

support each gene in each associated locus are shown for interested readers in Supplementary 

Table 11, column H. 

 

 

3. I think that the title of the Results section “Systemic roles of renal dipeptidase 1 
/DPEP1/: circulating enzymes, hypertension and arthropaties” needs changing to 

“Systemic roles of dipeptidase 1 /DPEP1/: circulating enzymes, hypertension and 

arthropaties”. Indeed, DPEP1 encodes dipeptidase 1 also called Microsomal 

Dipeptidase or Dipeptidase 1 (Renal). In the current form the titles suggests that it is the 

kidney expression of this gene that determines the levels of digestive enzymes, 

hypertension and arthropaties while of course based on the provided data one cannot 

assign a specific tissue that is responsible for these findings. As the authors point out, 

DPEP1 is expressed not only in the kidney. 

 

Response: Indeed, we included “renal” as part of the enzyme’s name. We agree with the 

Reviewer’s comment and have now implemented the suggested changes. 
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