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This manuscript has been previously reviewed at another Nature Portfolio journal. This 

document only contains reviewer comments and rebuttal letters for versions considered at 

Communications Medicine. Mentions of the other journal have been redacted. 



REVIEWERS' COMMENTS:  

Reviewer #1 (Remarks to the Author):  

Authors have adressed further comments and questions. I have checked the similarity of the 
recent manuscript to that submitted to [redacted] before  

Reviewer #4 (Remarks to the Author):  

The authors now sufficiently acknowledge the limitation of the study and I do not have any 
further concerns. The paper clearly improved during the review process and I thank the 
authors for going through all this effort. Well done.  

Reviewer #5 (Remarks to the Author):  

The authors have addressed my concerns appropriately. I would like to highlight that the use 
of a hypergeometric test for assessing the replicability is not ideal though, because the 
significance may be (strongly) influenced by the correlation between the variables. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Because of the comparable results between the permutation and hypergeometric testing for the 
significant proteins, we believe that that the results from these tests support our findings from the 
analysis as well. 

List comparison ordered by p value Ordered by log fold 
change 

REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author). 
 
1. Authors have addressed further comments and questions. I have checked the similarity of the 
recent manuscript to that submitted to [redacted] before 
Response. The authors would like to thank the reviewer for their generous time and valuable inputs 
to make our manuscript better and improve the quality of our publication. 
 
 
Reviewer #4 (Remarks to the Author). 
 
1. The authors now sufficiently acknowledge the limitation of the study and I do not have any further 
concerns. The paper clearly improved during the review process, and I thank the authors for going 
through all this effort. Well done. 
Response. The authors would like to thank the reviewer for their generous time and valuable inputs 
to make our manuscript better and improve the quality of our publication. 
 
 
Reviewer #5 (Remarks to the Author). 
 
1. The authors have addressed my concerns appropriately. I would like to highlight that the use of a 
hypergeometric test for assessing the replicability is not ideal though, because the significance may 
be (strongly) influenced by the correlation between the variables. 
Response. The authors would like to thank the reviewer for their observations.  
To address replicability, we conducted tests to measure agreement using Cohen’s Kappa1 metric. 
This kappa statistic showed a positive agreement (0.257) between the lists with 91% agreement 
result at a p-value <0.001. 
 
In addition, we also conducted permutation testing using CompareList function from the OrderedList 
R package using 10000 permutations. We ran two instances of permutation testing ordering by p-
value and log fold change. In both causes, we found significant (P <0.001) overlap. 
  

Assessing similarity of top ranks top ranks 
Length of lists 4429 4429 
Number of random samples 10000 10000 
Lists are more alike in direct order   
Chosen regularization parameter alpha = 0.058  

(200 genes) 
alpha = 0.058  
(200 genes) 

Weighted overlap score 129.5 177.1 
Significance of similarity p-value < 0.001 p-value < 0.001 
Score percentage for common 
entries 

95 95 

Entries contributing score 
percentage 

50 53 



 
 
References.  
1 McHugh, M. L. Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22, 276-282 

(2012). 



COMMENTS FROM REVIEWER 5  

The problem I have tried to highlight with my comment is that the “hypergeometric test”, which 

tests for significance of the overlap of significant marker lists, is based on the assumption that these 

markers (e.g. proteins) are statistically independent from each other.  

With proteins, this is not the case, because of their sometimes strong co-regulation, and the 

underlying co-expression networks. Therefore, it can (and does) happen that significant lists 

significantly overlap, because they relate to a set of highly correlated proteins.  

To resolve this, one can permute the clinical outcome, and re-compute the list of P-values. This 

preserves the correlation structure between proteins, and the subsequent analysis of overlap will 

not be biased.  

The authors did not address this in their revision, because it appears they performed permutation 

analysis directly on the list of P-values, which would not address the actual issue.  

Despite this, it can be considered that the hypergeometric testing procedure is, although incorrect, 

relatively common practice, due to its simplicity. Unfortunately, it is difficult to judge how strong the 

bias is unless the overlap is very strong, which, however, I don’t think it is. The description of 

significance is also not entirely consistent, as the authors state <0.05 in the manuscript and <0.001 in 

their first rebuttal letter.  

I was also wondering where the procedure to assess this is actually described in the methods. 

Unfortunately, I was not able to find it.  

Therefore, I am afraid, I could not with confidence say that the issue has been resolved completely. 



COMMENTS: REVIEWER 5 
 
The problem I have tried to highlight with my comment is that the “hypergeometric test”, which tests for 
significance of the overlap of significant marker lists, is based on the assumption that these markers 
(e.g. proteins) are statistically independent from each other. 
 
With proteins, this is not the case, because of their sometimes strong co-regulation, and the underlying 
co-expression networks. Therefore, it can (and does) happen that significant lists significantly overlap, 
because they relate to a set of highly correlated proteins. 
 
To resolve this, one can permute the clinical outcome, and re-compute the list of P-values. This 
preserves the correlation structure between proteins, and the subsequent analysis of overlap will not be 
biased. 
 
The authors did not address this in their revision, because it appears they performed permutation 
analysis directly on the list of P-values, which would not address the actual issue. 
 
Despite this, it can be considered that the hypergeometric testing procedure is, although incorrect, 
relatively common practice, due to its simplicity. Unfortunately, it is difficult to judge how strong the bias 
is unless the overlap is very strong, which, however, I don’t think it is. The description of significance is 
also not entirely consistent, as the authors state <0.05 in the manuscript and <0.001 in their first 
rebuttal letter. 
 
I was also wondering where the procedure to assess this is actually described in the methods. 
Unfortunately, I was not able to find it. 
 
Therefore, I am afraid, I could not with confidence say that the issue has been resolved completely. 
 
>> The authors thank the reviewer for their detailed suggestion to test our result. We now understand 
the request by the reviewer and have implemented “permutation testing analysis” for the confirmation of 
their significant genes on both, the discovery and validation cohorts. The authors performed the 
following steps for this analysis 



 
1. For the discovery and validation cohorts: 

a. We permuted the AKI outcome variable for all samples to create 100000 instances of 
permutations.  

b. For each instance:  
i. We ran the limma regression model and identified differentially expressed genes 

using the permuted outcome.  
c. For each gene, across 100000 instances, we created the empirical null distribution of t 

statistics 
d. We then compared this empirical null distribution against the true AKI outcome variable 

to compute empirical P values defined as: 
i. We identified the number of instances out of the 100,000 where the absolute 

value of the t statistics from the empirical null was greater than or equal to the t 
statistic value from the truth file.  

e. Empirical P values were adjusted for multiple comparisons using the FDR. 
Results: 

2. Intersecting the common genes between discovery and validation cohorts: 
a. We interested the DE genes from the discovery and validation cohorts and found 272 

statistically significant genes. 
b.  

3. We found that all 62 genes identified in the original analysis were also had an empirical P 
value <0.05 after the permutation testing.  

 
We have attached the results from our permutation testing that list the p-value and the FDR for each 
of the 62 genes for each cohort (table1 below).  
 
In addition, we also performed hypergeometric test and measured the Cohen’s Kappa once again 
Results: The hypergeometric test for overlap between the significant proteins in the validation and 
discovery cohorts was also significant (P = 2.133E-159). Additionally, the Cohen’s Kappa between the 
two protein lists based on P value was 0.501. 
 
 
Table1: Comparison of the p-values after permutation testing for the 62 genes. 

    Discovery Cohort Validation Cohort 

Target UniProt 
Entrez 
Gene 

Symbol 
full gene name tstats 

Count 
>= 

ground 
truth 

P Val tstats 
Count 

>= 
ground 

truth 
P Val 

ALK-1 P37023 ACVRL1 
Serine/threonin
e-protein kinase 

receptor R3 

12.72395
606 0 0 4.5989

39848 6 6.00E-05 

Angiopoiet
in-2 O15123 ANGPT2 Angiopoietin-2 5.778974

815 0 0 2.7146
52605 738 0.00738 

Apo F Q13790 APOF Apolipoprotein F 7.863807
47 0 0 3.9934

81888 18 0.00018 

ASGR1 P07306 ASGR1 Asialoglycoprot
ein receptor 1 

7.441806
725 0 0 4.6840

83378 4 4.00E-05 



ATOX1 O00244 ATOX1 
Copper 

transport protein 
ATOX1 

14.79760
184 0 0 5.2810

96398 0 0 

BOLA1 Q9Y3E2 BOLA1 BolA-like protein 
1 

12.16794
545 0 0 5.2972

65907 0 0 

Carbonic 
anhydrase 

III 
P07451 CA3 Carbonic 

anhydrase 3 
7.578252

754 0 0 3.2035
15231 186 0.00186 

CD59 P13987 CD59 CD59 
glycoprotein 

9.899959
182 0 0 4.8209

47452 0 0 

SCG1 P05060 CHGB Secretogranin-1 14.08173
049 0 0 5.2117

42713 0 0 

COL P04118 CLPS Colipase 8.867440
321 0 0 3.3019

37785 178 0.00178 

COSA1 Q2UY09 COL28A1 Collagen alpha-
1(XXVIII) chain 

13.36327
142 0 0 5.6700

13394 0 0 

CPLX2 Q6PUV4 CPLX2 Complexin-2 12.28690
253 0 0 4.7385

31632 2 2.00E-05 

CRK P46108 CRK Adapter 
molecule crk 

8.973633
925 0 0 4.1763

49475 1 1.00E-05 

Cystatin C P01034 CST3 Cystatin-C 15.02757
845 0 0 6.1552

59359 0 0 

CYTD P28325 CST5 Cystatin-D 7.484548
53 0 0 3.1952

15413 171 0.00171 

Chymotry
psin P17538 CTRB1 Chymotrypsinog

en B 
6.163949

729 0 0 4.1551
83319 9 9.00E-05 

ACBP P07108 DBI Acyl-CoA-
binding protein 

15.73168
536 0 0 5.3506

41282 0 0 

Discoidin 
domain 

receptor 2 
Q16832 DDR2 

Discoidin 
domain-

containing 
receptor 2 

9.962324
573 0 0 4.4943

63526 4 4.00E-05 

EGFL9 Q6UY11 DLK2 Protein delta 
homolog 2 

8.224380
504 0 0 3.9312

54468 17 0.00017 

DJB12 Q9NXW2 DNAJB12 
DnaJ homolog 

subfamily B 
member 12 

8.656881
472 0 0 3.8250

87274 17 0.00017 

DSC2 Q02487 DSC2 Desmocollin-2 14.53045
114 0 0 5.4958

67273 0 0 

EFNB1 P98172 EFNB1 Ephrin-B1 14.37502
479 0 0 7.3968

64761 0 0 

EFNB2 P52799 EFNB2 Ephrin-B2 7.965874
595 0 0 3.7585

87057 31 0.00031 

Epithelial 
cell kinase P29317 EPHA2 Ephrin type-A 

receptor 2 
10.04532

675 0 0 5.1057
84226 1 1.00E-05 

FABP P05413 FABP3 
Fatty acid-

binding protein, 
heart 

9.973958
285 0 0 3.9367

19921 14 0.00014 

SAP3 P17900 GM2A Ganglioside 
GM2 activator 

14.79835
67 0 0 6.9899

24786 0 0 

HDGF P51858 HDGF 
Hepatoma-

derived growth 
factor 

5.145341
503 0 0 2.0471

93655 4259 0.04259 

TM149 Q9H665 IGFLR1 IGF-like family 
receptor 1 

11.37743
904 0 0 3.9066

06358 11 0.00011 

IgG4, 
Kappa P01861 IGHG4 Ig gamma-4, 

Kappa 
7.225380

325 0 0 5.6149
06313 0 0 

Lipocalin 2 P80188 LCN2 

Neutrophil 
gelatinase-
associated 

lipocalin 

10.16756
756 0 0 4.3307

12248 3 3.00E-05 



Myoglobin P02144 MB Myoglobin 10.42674
542 0 0 2.9988

25565 376 0.00376 

MXRA7 P84157 MXRA7 

Matrix-
remodeling-
associated 
protein 7 

10.15403
388 0 0 6.0790

63804 0 0 

Myosin 
light chain 

1 
P08590 MYL3 Myosin light 

chain 3 
8.235074

86 0 0 2.8351
85357 525 0.00525 

DAN P41271 NBL1 
Neuroblastoma 
suppressor of 

tumorigenicity 1 

14.10672
958 0 0 6.7404

2808 0 0 

N-terminal 
pro-BNP P16860 NPPB N-terminal pro-

BNP 
5.300911

758 0 0 2.2253
22217 2767 0.02767 

PCDGA Q9Y5H3 PCDHGA1
0 

Protocadherin 
gamma-A10 

8.415558
273 0 0 3.7403

95269 47 0.00047 

PIANP Q8IYJ0 PIANP 
PILR alpha-
associated 

neural protein 

10.88352
279 0 0 2.1592

96383 3158 0.03158 

LIPR1 P54315 PNLIPRP1 

Inactive 
pancreatic 

lipase-related 
protein 1 

8.098872
905 0 0 3.5796

57094 47 0.00047 

Trypsin P07477 PRSS1 Trypsin-1 7.520788
226 0 0 3.8100

1249 25 0.00025 

Trypsin 2 P07478 PRSS2 Trypsin-2 11.32386
081 0 0 5.2271

34613 1 1.00E-05 

TRY3 P35030 PRSS3 Trypsin-3 8.967646
529 0 0 4.8371

18072 0 0 

PTH P01270 PTH Parathyroid 
hormone 

7.878645
874 0 0 3.5205

52176 66 0.00066 

PXDN Q92626 PXDN Peroxidasin 
homolog 

13.41575
623 0 0 4.8475

4534 0 0 

PSP P05451 REG1A Lithostathine-1-
alpha 

14.17458
715 0 0 5.2462

47684 1 1.00E-05 

PAP1 Q06141 REG3A 
Regenerating 
islet-derived 

protein 3-alpha 

11.24273
317 0 0 4.9084

67627 1 1.00E-05 

RNase 1 P07998 RNASE1 Ribonuclease 
pancreatic 

14.35865
859 0 0 4.1252

90322 6 6.00E-05 

RNAS6 Q93091 RNASE6 Ribonuclease 
K6 

11.97576
266 0 0 3.9395

331 9 9.00E-05 

ROR2 Q01974 ROR2 

Tyrosine-protein 
kinase 

transmembrane 
receptor ROR2 

12.93705
739 0 0 3.9644

55547 20 2.00E-04 

SELW P63302 SEPW1 Selenoprotein 
W 

8.277672
661 0 0 3.4432

86183 79 0.00079 

ISK7 P58062 SPINK7 
Serine protease 
inhibitor Kazal-

type 7 

9.072302
857 0 0 5.3149

38234 0 0 

Osteopont
in P10451 SPP1 Osteopontin 9.928970

619 0 0 3.3955
87223 122 0.00122 

SRCA Q86TD4 SRL Sarcalumenin 14.21867
87 0 0 4.4331

93794 5 5.00E-05 

STMN3 Q9NZ72 STMN3 Stathmin-3 5.909098
577 1 0.044

96 
5.0231
11972 1 1.00E-05 

SUMO2 P61956 SUMO2 
Small ubiquitin-
related modifier 

2 

15.71934
188 0 0 4.1501

81565 4 4.00E-05 



TAGL Q01995 TAGLN Transgelin 11.65964
555 0 0 4.8851

63211 0 0 

Trefoil 
factor 2 Q03403 TFF2 Trefoil factor 2 8.487414

97 0 0 4.9048
98761 3 3.00E-05 

TFF3 Q07654 TFF3 Trefoil factor 3 15.02572
999 0 0 4.4233

27069 5 5.00E-05 

TMEDA P49755 TMED10 

Transmembran
e emp24 
domain-

containing 
protein 10 

15.24531
038 0 0 6.5152

30398 0 0 

TAJ Q9NS68 TNFRSF19 

Tumor necrosis 
factor receptor 

superfamily 
member 19 

13.14367
736 0 0 5.0150

33288 0 0 

TNF sR-I P19438 TNFRSF1A 

Tumor necrosis 
factor receptor 

superfamily 
member 1A 

9.946876
065 0 0 5.0151

46035 0 0 

Troponin 
T P45379 TNNT2 Troponin T, 

cardiac muscle 
11.49971

959 0 0 3.1976
61947 166 0.00166 

TITIN Q8WZ42 TTN Titin 10.99864
194 0 0 4.9473

30952 3 3.00E-05 

 



REVIEWERS' COMMENTS:  

Reviewer #5 (Remarks to the Author):  

The authors have now implemented a permutation approach as part of their analysis workflow.  

However, it appears the main issue of my concern has not been understood well.  

The issue is that the *overlap* of the P-value lists of discovery and validation cohorts can arise by 

chance (e.g. if you have two relatively large lists of proteins with FDR<0.05, and the overlap relates 

to a smaller, highly correlated set of proteins).  

To test this, the permutation needs to target the overlap of the p-value lists, i.e. it would need to be 

tested in how many of the permutations, there is an overlap of at least 62 genes between the 

training and the validation data. It has to be considered though that when FDR control is part of the 

workflow, during permutation one is likely to observe a far lower number of significant proteins, and 

thus overlap. Instead, one would likely take the same number of top significant proteins as in the 

original analysis, and then test the overlap.  

In any case, I would now suggest accepting as is, with the following modifications:  

- add to the methods and results that FDR was performed on training and validation data with 

respect to all proteins measured  

- modify the text of page 15 accordingly, which still states that the 62 proteins only show nominal 

significance in the validation data  

. state the overall number of significant proteins after FDR in the validation data 



Dear Dr Nadkarni, 
 
Thank you again for submitting your revised manuscript "Proteomic Characterization of Acute Kidney 
Injury in Patients Hospitalized with SARS-CoV2 Infection" to Communications Medicine. We have now 
asked Reviewer 5 to see this again. We have also checked your manuscript files against our previous 
editorial requests. 
 
You will see from Reviewer 5's comments below that they feel there has been a misunderstanding 
regarding the permutation testing. However, they suggest a way forward towards publication. We'd ask 
that you address the points at the end of their report. We will not need to seek further reviewer advice if 
these are fully addressed. Please provide a rebuttal letter. 
 
Regarding our editorial requests, there are still a small number of issues that need fixing (see below), 
related to our previous requests. Please resolve these issues. We should then be in a position to 
accept your manuscript. 
 
 
REVIEWERS' COMMENTS: 
 
Reviewer #5 (Remarks to the Author): 
 
The authors have now implemented a permutation approach as part of their analysis workflow. 
 
However, it appears the main issue of my concern has not been understood well. 
 
The issue is that the *overlap* of the P-value lists of discovery and validation cohorts can arise by 
chance (e.g. if you have two relatively large lists of proteins with FDR<0.05, and the overlap relates to a 
smaller, highly correlated set of proteins). 
 
To test this, the permutation needs to target the overlap of the p-value lists, i.e. it would need to be 
tested in how many of the permutations, there is an overlap of at least 62 genes between the training 
and the validation data. It has to be considered though that when FDR control is part of the workflow, 
during permutation one is likely to observe a far lower number of significant proteins, and thus overlap. 
Instead, one would likely take the same number of top significant proteins as in the original analysis, 
and then test the overlap. 
 
In any case, I would now suggest accepting as is, with the following modifications: 
- add to the methods and results that FDR was performed on training and validation data with respect 
to all proteins measured 
- modify the text of page 15 accordingly, which still states that the 62 proteins only show nominal 
significance in the validation data 
. state the overall number of significant proteins after FDR in the validation data 
 
>> We thank the reviewer for their patience and their feedback through this session. We have made 
the suggested edits in the manuscript.  The suggested line has been added to the Methods and Results 
section. 
 

a. - add to the methods and results that FDR was performed on training and validation data with 
respect to all proteins measured 

 



Differential expression analysis for prevalent AKI  

 Using data from the AKI cohort, log2 transformed normalized protein values were 

modelled using multivariable linear regression in the Limma framework39  Models were 

adjusted for age, sex, history of chronic kidney disease (CKD), and supplemental oxygen 

requirement (0,1, or 2 [see above]) at the time of specimen collection. P-values were adjusted 

using the Benjamin-Hochberg procedure to control the false discovery rate (FDR) at 5%. FDR 

was performed on discovery and validation data with respect to all proteins measured. 

 

RESULTS 
 

Discovery and Validation Cohort Overview 

 To discover proteins associated with COVID-AKI, we enrolled a prospective cohort of 

patients hospitalized with COVID-19 admitted between March 24, 2020 and August 26, 2020 

into a biobank as previously described34. Cases were defined as patients who developed AKI 

(stage 2 or 3) during their hospital admission and controls included all other patients (Fig 1). 

Characteristics of cases and controls in the discovery cohort are provided in Supplementary 

Data 1 (sheet “Table 1”). Patients who developed AKI (stage 2 or 3) had a greater prevalence 

of diabetes (42% vs 22%, p <0.001), and chronic kidney disease (31% vs 5%, p< 0.001) and 

more frequently required intubation (46% vs 11%, p <0.001). Patients who developed AKI 

(stage 2 or 3) also had a significantly lower minimum systolic blood pressure (104 vs 110, p 

<0.001), greater maximum pulse (106 vs 94, p <0.001), white blood cell count (12.9 vs 8.8, p 

<0.001), ferritin (2210 vs 1030 p <0.001), and frequency of vasopressor use (48% vs 14%, p 

<0.001). We validated proteomic associations in an external cohort from Quebec, Canada. 

Characteristics of the validation cohort are provided in Supplementary Table 1 (See 



Supplementary Information). In the validation cohort, compared to controls, AKI (stage 2 or 

3) cases have a significantly higher prevalence of CKD (29% vs 11%, p = 0.01) and a higher 

rate of intubation at the time of sample collection (49% vs 13%). FDR was performed on 

discovery and validation data with respect to all proteins measured.  

 

- modify the text of page 15 accordingly, which still states that the 62 proteins only show nominal 

significance in the validation data 

. state the overall number of significant proteins after FDR in the validation data 

 

>> Thank you for the suggestions. We have made the following modifications: 

 

Validation of AKI-associated proteins  

 We then performed an external validation of AKI-associated proteins in a prospective 

biobank cohort from Quebec, Canada. 443 proteins in the discovery cohort are 

significantly associated with AKI (FDR adjusted P <0.05) while 71 proteins in the 

validation cohort are significantly associated with AKI (p <0.05). Of the proteins 

significantly associated with AKI in the discovery cohort, 62 are also associated with 

AKI in the validation cohort (p <0.05, See Supplementary Data 1 (sheet “Table 2”). The 

hypergeometric test for overlap between the significant proteins in the validation and discovery 

cohorts was also significant (P = 2.133E-159). Additionally, the Cohen’s Kappa between the 

two protein lists based on P value was 0.501. All validated proteins associate with an 

increased risk of AKI with nominal significance. The correlation of fold changes of 

validated proteins in the discovery and validation cohort show a Pearson correlation score of 

0.71 (Fig 2b). The 62-protein signature distinctly separate AKI cases from cohorts in the 



discovery cohort (Fig 2c). To assess how many of our candidate proteins had orthogonal 

evidence for target specificity, we sought to identify how many of our proteins contained 

reported plasma protein quantitative trait loci (pQTL) associations from a recent publication by 

Ferkingstad et al. (Nat Genet, 2021). Of the 62 AKI associated proteins, 45 have both cis and 

trans pQTLS, 14 have only trans pQTLs, and 2 had cis pQTLs (See Supplementary Figure 1, 

Supplementary Information). Protein-protein interaction (PPI) network analysis reveal 

enrichment of several highly connected proteins, including LCN2 (alternative name: NGAL), 

REG3A, and MB (Fig 4a). The AKI-associated protein network also includes a cluster of 

cardiac structural proteins (Fig 4b), TNNT2, TTN, MYL3, SRL, and NPPB (alternative name: 

BNP). 
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