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Supplementary Note 

 

Comparison to Latent Factor Correction 

 

Hidden Covariates with a Prior1 (HCP) was run within each tissue, using all measured 

covariates as the prior matrix variable within the tissue samples, using 10 factors, and 

penalization parameters λ1=1, λ2=5, λ3=1. These settings were identified using a grid 

search within the BRNCBL tissue over the grid (K=5,10,15,20; λ=0.1,1,5,10) to 

maximize the AUC of GO prediction using a linear SVM (C=1), using the top 30 

expression singular vectors as features.  

 

We found that the estimated factor matrices, between tissues, differed substantially in 

terms of their singular values and their product, and thus were not likely to be near-

rotations of one another, suggesting that the latent factors or their effects may be tissue-

specific. 

 

We sought to rank the two corrected datasets (linear-model and HCP) on the basis of 

biological signal-to-noise. To do this, we evaluated co-expression module size, and their 

preservation in microarray datasets; the extent to which module eigengenes predicted 



gene ontologies (“GO prediction task”), and by using a bootstrapped version of the 

integrated correlation coefficient.2 

 

Preservation was computed in the same way for both correction methods (see “Module 

preservation in microarray data”). HCP correction has a profound impact on module 

size, tending to result in moderately more modules of significantly smaller size than 

linear-model based correction. As a result, we found that the preservation scores were 

larger for the lm-corrected rWGCNA networks – and a simple proxy for signal (# of 

genes in modules with Zsummary > 8) is nearly always larger for lm-corrected networks 

(depending on the evaluation data). GO prediction was performed using a linear SVM, 

using the module kME matrix as input predictors. The integrated correlation coefficient 

was generated using a jackknife estimate, where samples in a tissue were randomly 

repartitioned 1000 times into two groups, and the integrated correlation coefficient (ICC) 

computed for each partitioning, and the final ICC given by the mean over all partitions. 

The results of these analyses appear in figure S1. 

 

Forward-backward covariate selection using MARS (earth) 

 

A key step in the treatment of RNA-seq data is identifying what technical or biological 

covariates are strong drivers of measured expression. RNASeqQC produces a large set 

of alignment metrics derived from the aligned RNA-seq bams. We combined these with 

the splicing metrics output by STAR. Separately, each of these data were scaled and 



the top 5 PCs calculated to summarize the bulk of the technical covariate distribution, 

producing an additional 10 potential covariates. This final set of technical covariates are 

combined with the sample-level individual-level information provided by GTEx (ischemic 

time, age, biological sex, RIN, ethnicity, race). 

 

We then used the `earth` package in R to select covariates that explained a large 

amount of expression variance across many genes. We set the parameters so that no 

non-linear splines were used, but that cross terms up to degree 3 were allowed, 

enabling the model to select tissue-by-covariate or covariate-by-covariate effects. 

 

earth builds a forward model by selecting the covariate (or cross term) which most 

improves the total R^2 across all genes considered; and when a diminishing-returns 

threshold is reached (for us, an improvement of 0.01), prunes the terms using a 

penalized R^2 heuristic. 

 

We ran earth 100 times on a random sample of 1,000 genes; each run producing an 

estimate of variance explained for all covariates (covariates not included in the model 

are assumed to explain 0% of expression variance). We summarized the impact of each 

covariate by taking the upper 20% of the variance explained (figure S1a). Any covariate 

whose summary estimate was >5% variance explained was included in our final model 

for covariate correction. For group variables (such as tissue); if any subgroup exceeded 

the variance explained threshold, then the entire group variable was selected.  



 

This analysis identified the following main features: sequencing principal 

components seq_pc1 (13%), seq_pc2 (26.9%), and seq_pc3 (3.4%); RNA integrity RIN 

(7.6%), Exonic mapping fraction SMEXNCRT (27.6%), and splice alignments 

Number_of_splices_GT/AG (14.6%). In addition, out of an abundance of caution, we 

also included ischemic time TRISCHD (1.1%), and the delay between death and tissue 

extraction DTHCODD_CAT (3.4%). The three low %VE variables were selected by the 

EARTH-based procedure; and it is therefore likely that they explain large proportion of 

the residual variance, once the other variables are accounted for. 

 

Module comparisons 

 

We considered three alternatives to WGCNA for network building and module 

identification: ARACNe, GLASSO, and von-Mises-Fisher clustering. 

 

ARACNe was run with default settings (10 permutations, FDR of 0.05); and genes 

filtered by ARACNe (for having no significant edges) were placed into a background 

‘grey’ module. The resulting network was imported into iGraph3 and modules identified 

by Louvain clustering. 

 

As sparse inverse-covariance estimation is computationally intensive, we took an 

approximate approach. First, we partitioned the genes into initial groups of approximate 



size 1000 using k-medioids clustering. GLASSO was applied independently to each 

group to estimate a blockwise precision matrix. Within each block, the penalty 

parameter was selected using StARS4, targeting an edge instability of between 0.05 

and 0.1. Genes with no partial correlation to any others were grouped into a background 

‘grey’ module. The remaining network was imported into iGraph and modules identified 

by Louvain clustering. 

 

vMF clustering, unlike the other approaches, does not build a network, but seeks to 

identify gene clusters directly. Gene expression vectors were pre-processed by 

transforming their values into ranks (across samples) and normalizing them to unit 

norm. In this way, an inner product between two gene vectors is effectively their 

Spearman correlation. The resulting data is modeled as a collection of draws from an n-

dimensional mixture of k von-Mises-Fisher distributions (where n is the number of 

samples). The model was fit using the R package movMF5 for k varying from 8 to 50. 

The final choice of k came from the model that maximized likelihood – 2 * ndim * k; and 

module assignments were determined from the most likely mixture probability (or ‘grey’ 

if that probability was less than 0.8). 

 

We sought to establish the non-inferiority of WGCNA to these methods, first by 

computing the Jaccard overlaps and their significance, and second by evaluating 

preservation statistics in orthogonal datasets (table S10). We find that most modules 

from each method methods are preserved; but that it is almost always possible to pick 



reasonable preservation thresholds (Zsummary, Zdensity, Zconnectivity, size) that favor 

any particular choice. Because the consensus topological overlap provides a means to 

hierarchically organize co-expression, the choice of WGCNA is well-motivated and 

evidently non-inferior to alternative methods. 

 

Whole-brain module comparisons 

 

Beyond comparing modules within each tissue, we sought to compare our hierarchical 

WGCNA modules with an orthogonal approach for building consensus modules. As 

consensus modules built from methods already similar to WGCNA would certainly 

produce similar consensus modules, we considered an alternate approach: tensor 

decomposition. 

 

First, we built a fully imputed (gene x brain x region) tensor by using probabilistic PCA to 

impute missing samples within every (brain x region) submatrix for each gene. We then 

applied CANDECOMP to this tensor to produce 150 feature triplets: {(gene x 1), (brain x 

1), (region x 1)}. We treated the gene-level features as a (gene x 150) feature matrix, 

and ran t-SNE to embed the genes in a 2-dimensional space. 

 

While this embedding did not show distinct visual clusters, it clearly showed regions of 

high and low density, likely corresponding to modules. Given this intuition, we applied 

the DBSCAN clustering algorithm, producing a set of 30 whole-brain modules.  



 

We found that the ribosomal, glial, and choroid-plexus modules were in one-to-one 

correspondence with TD-DBSCAN modules (figure S1), and that the neuronal WGCNA 

modules correspond to multiple TD-DBSCAN modules, with statistically significant 

overlaps. Visually, the WGCNA modules are localized in the embedded tensor-

decomposed space, strongly suggesting that the modules are not driven by the 

specifics of WGCNA, nor are they induced by the structure of hierarchical merging; but 

rather that these genes are grouped together by disparate approaches because of an 

underlying biological signal. 

 

Module preservation in microarray data 

 

Figures 1c and 1d utilize preservation statistics from multiple microarray-based studies 

of human brain tissue. For computing module preservation, we used several microarray 

datasets for validation, matched to the regions under study. These datasets were: Kang 

2011 (GSE25219; AMY, BA9, BA24, PFC, CDT, CBH, CBL, HIP, PUT), UKBEC 

(GSE46706; BA9, BA24, PFC, CBH, CBL, NAcc, SNA), NABEC (GSE15745; BA9, 

BA24, PFC, CBH, CBL, HIP), Oldham 2008 (GSE1572, GSE3790, GSE5392, 

GSE7540, GSE12649, GSE12654; BA9, BA24, PFC), and the GTEx pilot microarray 

dataset (AMY, BA9, BA24, PFC, CDT, CBH, CBL, HIP, HYP, NAcc, PUT, SNA). 

Because the dissections for these various studies could be broad; we matched areas 

broadly for preservation; for instance cortical areas of GTEx (BA9, BA24, and PFC) are 



examined for preservation (separately) in FC, vFC, oFC, dFC, mFC, and m1C (Kang); 

and the average preservation statistics were retained as a summary, while sub-striatal 

areas (CDT, PUT, NAcc) could only be compared to bulk striatum (Kang). These 

datasets were pre-processed to remove by linear regression the effects of: RIN (Kang, 

UKBEC, GTEx), age (all), sex (all), PMI (Kank, UKBEC, NABEC). 

 

For our WGCNA modules, we find that brain-wide modules show evidence of 

preservation across all brain regions, with the notable exception of the neuronal module, 

BW-M4, which is present in all brain areas except the cerebellum and striatum. In 

contrast, region-specific modules show evidence of preservation only within that region 

(32/63) or adjacent regions (50/63). 

 

We also obtained RNA-sequencing data from GTEx-v8, and computed module 

preservation within samples only present in GTEx-v8 (and not used to construct the 

original modules). Only 4 modules failed to strongly replicate (Zpreservation > 8) in 

GTEx-v8 samples (BRNACC-M1, BRNCDT-M4, BRNHYP-M2, BRNPUT-M6), and none 

failed to show moderate evidence of preservation (Zpreservation < 5). 

	

Single-cell data 

 

Quantified single-cell data was downloaded from http://mousebrain.org6 (mouse) and 

subset to only cells from the CNS (without spinal chord); and GEO GSE979427 was 



downloaded for human. These data were log-transformed log(1 + x) for counts and 

log(0.005 + x) for TPM; and the cell type labels from the respective publications were 

used for all subtype analyses (“In” versus “Ex” for interneuron, “Purkinje” versus all 

other neuronal cells, and “MSN1” and “MSN2” versus all other cells for medium spiny 

neurons). Absolute expression values were taken as the mean expression of a cluster; 

and relative expression was obtained via 

 

Relative = absolute – background 

 

Where the background expression is the average expression of a gene over all cells. To 

incorporate gene variance information into relative expression, the relative expression 

rank is defined as the lower end of a small confidence-interval for the difference in 

means: 

 

rank = (𝜇( − 𝜇*) − 	0.5 ∗
𝑣(
𝑛(
+
𝑣*
𝑛*

 

kME enrichments are based on the correlation between module kME and the relative 

expression rank within a given cell type; and enrichment trends (as fitted by a 

generalized additive model in the R package mgcv) are plotted in figure 1(c). 

 

 

Cell-type enrichment and single-cell data 

 



For kME-based enrichments (such as those in figure 2), the shaded region of the figure 

represents the standard error around the estimated functional relationship between kME 

and relative expression rank. In all cases it is visually apparent that these lines deviate 

from 0 by a factor far exceeding 2.5 times their standard error (p ~ 0.006). 

 

For gene-set based enrichments such those presented in the text, and those in figure 3, 

cell type markers were obtained from several sources8,9,10,11,12,13,14,15 representing 

various studies performed both in mouse and in human. We also obtained gene lists 

corresponding to neural progenitor development16, neuronal migration17, and neuronal 

differentiation18. The statistical test is a logistic regression using the model: 

 

is.cell.marker ~ 1 + is.in.module + gene.length + gene.gc 

 

adjusting for gene length and GC. We test that the coefficient for module presence is 

significantly different and greater than zero, implying an enrichment (as opposed to 

depletion) of cell-type related genes. 

 

This test is performed independently on cell type markers from the various studies, and 

FDR adjusted across all tests.  

 

For Figure 1(c), the genes taken as “Interneuron” markers are those differentially 

expressed between “Ex” and “In” classes from Lake et al. (2016). 



 

Defining mouse orthologs to human genes 

 

The ensembl API was used, through biomaRt, to query human genes with associated 

mouse orthologs and the type of orthology; and visa versa. These queries enabled 

defining genes as one-to-one orthologs, one-to-many orthologs, many-to-many 

orthologs, or non-orthologous. The ensembl API was also used to obtain human-mouse 

dN and dS values; and the ratio dN/dS calculated, with 0/0 treated as 0.  

 

GO enrichment 

 

Gene ontology enrichment is performed competitively, with covariate correction, using 

logistic regression. Briefly, each GO or KEGG19 category is treated as a binary variable 

(1 for genes in the category, 0 for genes not in the category – only genes ascertained in 

our gene expression matrix are part for the regression). Modules are also treated as 

binary. We include as covariates the average gene expression across all tissues in the 

brain, the gene GC content, the log gene length, and the gene expression 

reproducibility (see below). The GO enrichment model is then 

 

GO ~ module.1 + … + module.k + mean.expr + GC + log.gene.length 

 



And is fit using logistic regression. If we detect that convergence fails, an L2-regularized 

logistic regression is instead applied (using `brglm`). The enrichment p-values are taken 

to be the statistics that reject (βi ≤ 0) for all βi corresponding to a module indicator. 

 

The enrichment p-values are adjusted for all ontologies. 

In one instance (TGF-beta signaling in BW-M1), the FDR reported comes from 

STRING20 and is annotated as such in the main text. 

 

Meta-GSEA 

To aggregate enrichment results (such as GO) from the module level to the 

module set level, the GO p-values are treated as independent p-values, and Fisher’s 

method is applied: For a given ontology category, a χ2 value is calculated as -2 * 

log(p1*p2*…*pk), where the product is taken across modules in the set. In the case of 

independence, this statistic has 2*k degrees of freedom; allowing a p-value to be 

calculated. Because the modules in a set overlap by construction, the resulting statistics 

are not calibrated probabilities, and are referred to as “scores” or “rankings,” and should 

not be interpreted as reflecting significance. In nearly all cases, the highly-ranked 

consensus ontology had been significant in one or more of the modules within the set. 

The meta-GSEA applied to generate supplemental figures 5b,c was to identify 

the genes within the regional BW-M4 modules (e.g. PFC-BW-M4) with MAGMA Z-

scores > 3.0 (SCZ) or 2.5 (ASD). This generated an indicator variable which was then 

used to perform gene ontology, using the BW-M4 genes as a background; generating p-



values for each ontology. Meta-GSEA was applied to these p-values, generating a 

score for each ontology, plotted in figure S5. 

 

pLI enrichment 

 

Gene pLI scores were downloaded from the ExAC consortium release21, and a gene 

was considered likely to be LoF-intolerant if its pLI score was 0.9 or higher. Enrichment 

for "hard" module membership (i.e. comparing two gene lists) is performed via Fisher's 

exact test on the contingency table between module membership and LoF-

tolerance/intolerance. "Soft" module enrichment (i.e. based on kME) is computed via a 

Brownian Bridge statistic.  

 

The genes are ranked by their module membership (kME); and the proportion of all 

genes which are likely LoF-intolerant (the pLI rate, r=P/M) is computed. At a given 

quantile q of genes, we tabulate how many of the first q * M genes are LoF-intolerant; 

and denote this cumulative sum by Cs(q). The expected number of LoF-intolerant genes 

is Ne(q) = q * P = q * r * M. For large M, this cumulative sum converges to a scaled 

Brownian motion with drift r; and has variance V(q) = q * (1 - q) * M * r * (1 - r). Z-scores 

for this cumulative sum at each q are given by Z(q) = (Cs(q) - Ne(q))/√V(q). An excess 

of LoF-intolerant genes occurs when min_q Φ(Z(q)) < 0.05. For clearer visualization, we 

plot (Cs(q) - Ne(q)) and 2.17 * √V(q) as functions of q. 

 



We also used a generalized additive models (“GAM”) and a generalized linear models 

(“GLM”) to verify findings of constraint. In these cases we applied the (logistic) model: 

 

is.constrained ~ rank(kME)+ gene.length + gene.GC 

 

and found that, for the whole-brain modules, these enrichments were so strong that the 

three methods were in 100% concordance. The results of the linear models did not 

change substantively when using competitive as opposed to marginal enrichments. 

 

For supplemental figure 4 (enrichment in pLI and o/e bins), the odds ratio and p-values 

were computed using a Fisher Exact Test between module membership, and bin 

membership. 

 

PPI enrichment 

 

We use the InWeb PPI database22 (brain tissue) for a source of defined protein-protein 

interactions, with a confidence threshold of 0.2 used as a cutoff for a particular 

interaction. PPI prediction is treated as edge-related data, where the response variable 

is binary (presence/absence of PPI), and the predictors the following collection of data 

relevant to that edge: the (PPI) connectivity of its first vertex, the (PPI) connectivity of its 

second vertex, the product of kMEs of its vertices (for each module), the product of the 

GCs of its vertices, and the product of the reproducibilities of its vertices. Or: 



 

Eij ~ Ci + Cj + kME_M1i * kME_M2j + … + kME_Mki * kME_Mkj + GCi*GCj  

 

This equation encodes the model that gene pairs which are mutually close to a given 

module are more likely to physically interact. The logistic model is fit using `statsmodels` 

in python, and the hypotheses βi ≤ 0 is assessed for each βi corresponding to a 

module.  

 

Module Imputation 

 

For our lncRNA analysis, we imputed whole-brain modules into an independent RNA-

seq dataset23 by i) splitting the data into BA9 and BA41-42-22 regions, ii) Calculating 

module kMEs within each region, and iii) Averaging across the two regions. This 

generates a set of 11 features (average within-region kME to each module) for each 

gene. The overlapping genes between the GTEx modules and control brain expression 

were used as labels to fit a gradient boosted trees classifier24 (using the R package 

xgboost with 2000 trees and a learning rate of 0.025). Non-overlapping genes (which 

contain most lncRNA and a set of held-out, length and GC matched protein-coding 

genes) are assigned to modules via the prediction of the fitted classifier. Using cross-

validation on the matched protein-coding genes, we estimate that the sensitivity and 

specificity of this approach are 0.63 and 0.53 for BW-M6, with sensitivity ranging from 

0.25-0.7 and specificity from 0.2-0.8 across other modules. The most common 



misclassification (>60%) results from assigning a ‘grey’ gene as in the module, or a BW-

M6 gene as ‘grey’. We examined the predicted cell-type lncRNA in published single-cell 

data25, and found that the lncRNA predicted to be in cell-type modules are up-regulated 

in those corresponding cells. 

 

Isoform specificity from sorted cell data 

 

RNA-sequencing data was obtained from GSE73721 (SRA project SRP064454) and 

quantified at the isoform level with Kallisto (mouse gencode release M16). These data 

included sorted populations of astrocytes, oligodendrocytes, endothelial cells, a single 

neuronal population, and a whole-tissue background. Relative isoform expression were 

obtained as described in “Single-cell data,” with the background set to be the average 

expression across the whole-tissue background samples. 

 

Isoform switching and validation 

 

Isoform-level TPM values (produced by RSEM) were corrected using a linear model 

with the same covariates used for correcting gene expression TPMs. Subsequently, 

each isoform expression (within tissue) was correlated to brain-wide module 

eigengenes computed within the tissue, and the mean correlation across tissues taken 

as an estimate of module membership for the isoform.  

 



To determine an appropriate kME threshold, we evaluated the impact of thresholding on 

cell type enrichments. Each threshold produces a set of isoforms within a module; and 

each isoform can be annotated with the cell type marker status of its parent gene. 

Fisher’s Exact Test produces an odds ratio and p-value for cell-type enrichment at each 

threshold. We found that a threshold of 0.45 produced a 15-fold enrichment for both 

astrocyte and oligodendrocyte markers when looking at kME to their respective modules 

(M6 and M7); but that when increasing this threshold the odds ratio for oligodendrocytes 

did not substantially change, while the astrocyte odds ratio increased (figure S7). 

Based on this we defined the threshold for isoform module membership at 0.45 kME. In 

the case where an isoform has >0.45 kME to multiple modules, module with highest 

kME is selected. 

To validate these findings, we used RNA-seq data from sorted cells,26 quantified at the 

isoform level. Correlation between isoform kME (to a cell-type module) and the rank of 

the gene expression within the corresponding cell type was moderate (rho=0.286 oligo, 

0.258 astrocyte), but significant (p<10-15 for both) using Spearman’s rho. 

 

An “isoform switch” is defined as two sister isoforms having membership to different 

modules. Genes linked to Autism (either via known mutations or other genetic evidence) 

were obtained from AutDB,27 and the likelihood of observing the four ASD genes among 

all isoform switching genes was obtained using Fisher’s exact test. 

 

Overlap with disease-implicated co-expression networks 



Data sets were obtained for normal brain28,29 , autism30 , schizophrenia31,32, cross-

psychiatric33,  Alzheimer’s disease34, epilepsy35, and developing brain36,37,38 from the 

main or supplementary tables of the corresponding publications. We computed the 

Jaccard overlap and its significance (Fisher exact test) between our whole-brain and 

regional modules, and the disease-relevant modules. 

Differential preservation analysis 

 

Modules defined in the GTEx tissue samples were assessed for their preservation in 

ASD case samples and (separately) in normal samples. These produced a pair of 

preservation Z-scores per module. We defined differential preservation to be cases 

where the control Z-score is  preserved (>3) while the ASD Z-score is not preserved 

(<3).  

 

Hub gene co-expression 

Gene expression data was obtained for adult human brains from the Allen Brain Atlas. 

Gene expression values were averaged across individuals, and Z-scored within region. 

Figure 6g shows that the CTX-M3 hub genes have nearly identical patterns of 

expression across all cortical regions, while the patterns are more variable in non-

cortical regions. 

 

Activity-dependent gene enrichment 



Lists of activity-dependent genes were obtained from Schanzenbacher et al.,39 and 

gene set enrichment was performed identically to other ontologies (see above). 

 

Network construction and computation of d(G) 

Transcription Factor Binding Networks  

Bipartite transcription factor binding graphs were obtained from 

regulatorycircuits.org, and converted to a similarity network as in Marbach2016. Briefly, 

the probability weights are taken as edge weights, and the random-walk kernel 

K=(I+W)4 with W the symmetrically-normalized Laplacian D-1/2AD-1/2 of the adjacency 

matrix; and converted to a dissimilarity via 𝐷5 = 1 − (5789: 5 )
(8;< 5 789: 5 )

. A natural set of 

“core” genes on this network are the most highly-connected genes of K; of which the top 

25 are taken. Distances are either the mean or minimum path distance under DK.  

 

Protein-protein interaction networks 

 InWeb40 was used for the protein-protein interaction network. The refined brain-

PPI network was obtained from the resource, and a confidence of 0.05 required for an 

edge to be defined; and the interactions were converted into a binary matrix. Distances 

were defined as either the minimum or mean path distance in this network. 

As with TFBNs, the natural set of hub genes are the most connected genes, of which 

the top 25 are taken. 

 

 



Partial Correlation Networks 

To compute (approximate) partial correlation networks, covariate-corrected expression 

data for whole-blood, prefrontal cortex, and prenatal cortex were processed as follows: 

1. Genes are partitioned into blocks, of target size 3000, using a number of centers 

equal to ⌊n.genes/target.block.size⌋*3, using projective k-means 

2. GLASSO is run on each block, using the glasso function with `approx=T`. The 

penalization parameter rho (=1/Lambda) is selected by taking Lambda to be 

initially high (5000), and repeatedly shrinking by 20% until the total proportion of 

edges are between 3% and 8% of all possible edges. 

3. The final network is unsigned, using the absolute value of estimated partial 

correlations as the edge weights 

As with PPI networks, these edges are used to define the minimum and mean path 

distances in the network. As the partial correlation is estimated blockwise, it generates a 

graph of several disconnected components; and rather than using infinity as the 

maximum distance; the distance between two non-connected genes is set to 1 + the 

maximum distance observed between connected genes.  

 

Significance calculation for Φ 

 

Because Φ reflects a partitioning of a subset of genes, a significance value can be 

calculated by Fisher’s Exact Test. As a specific example: the overlap of genes between 

two studies is 15902 genes. After computing network distances, the top decile contains 



1590 genes. Imagine that the core gene set (after excluding non-coding, non-regulatory 

genes) contains 32 genes, and 12 of these overlap the set of 1590. The contingency 

table 14312 1590
20 12  reflects this observation, and has a p-value of 0.00003.  
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