

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202300816

3D-Printed Functional Hydrogel by DNA-Induced Biomineralization for Accelerated Diabetic Wound Healing

Nahyun Kim, Hyun Lee, Ginam Han, Minho Kang, Sinwoo Park, Dong Eung Kim, Minyoung Lee, Moon-Jo Kim, Yuhyun Na, SeKwon Oh, Seo-Jun Bang, Tae-Sik Jang, Hyoun-Ee Kim, Jungwon Park, Su Ryon Shin and Hyun-Do Jung*

Supplementary information

3D-printed Functional Hydrogel by DNA-induced Biomineralization for Accelerated Diabetic Wound Healing

Nahyun Kim^{1,2, +}, Hyun Lee^{1,2, +}, Ginam Han^{1,2}, Minho Kang^{1,2}, Sinwoo Park^{1,2}, Dong Eung Kim³, Minyoung Lee^{4,5}, Moon-Jo Kim³, Yuhyun Na^{1,2}, SeKwon Oh³, Seo-Jun Bang^{1,2}, Tae-Sik Jang⁶, Hyoun-Ee Kim⁷, Jungwon Park^{4,5}, Su Ryon Shin⁸, Hyun-Do Jung^{1,2,*}

¹ Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon,

14662, Republic of Korea

² Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of

Korea

³ Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial

Technology, Incheon, 21999, Republic of Korea

⁴ School of Chemical and Biological Engineering, and Institute of Chemical Processes (ICP), Seoul

National University, Seoul, 08826, Republic of Korea

⁵ Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea

⁶ Department of Materials Science and Engineering, Chosun University, Gwangju, 61452, Republic of Korea

⁷ Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea

⁸ Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States

^{*}Both authors contributed equally to this work.

* Corresponding author. Tel.: +82-2-2164-4357

E-mail address: hdjung@catholic.ac.kr (Hyun-Do Jung)

Figure S1. Cryo-TEM image of DNA (Yellow arrows directing DNA strand).

Figure S2. (A) Size distribution of DNA measured by DLS analysis. (B) Zeta potential distribution of incorporated DNA at pH 10.5.

Figure S3. XPS results of DNA@SA, DNA@FSA, and DNA-bSi30@FSA at different elements.

Figure S4. Zeta potential distributions of (A) silica precursor and (B) DNA-bSi@FSA ink.

Figure S5. Evaluated score (circle symbol) and predicted mean score (dot line) with the 95% confidence interval (blue area) based on (A) 32 training data sets and (B) 8 test data sets.

Figure S6. Optical images of hydrogel inks with different silica contents.

Figure S7. (A) 3D printing of DNA-bSi@FSA hydrogel dressings with circular, triangular, polygonal, and customized structure (scale bar: 10 mm). (B) Fabrication of 3D-printed DNA-bSi@FSA hydrogel dressing for a sample clinical application.

Figure S8. (A) Storage and loss modulus of fabricated hydrogel dressing and (B) computed tan δ following angular frequency.

Figure S9. Monitored swelling ratio of 3D-printed hydrogel dressings.

Figure S10. Degradation ratio of 3D-printed hydrogel dressings in DPBS.

Figure S11. Comparison of (A) L929 proliferation and (B) chemotactic index with altered DNA concentration.

Figure S12. Hemolysis rates of FSA, DNA@ FSA, Si30@ FSA, and DNA-bSi30@ FSA (Inset represents image of samples after centrifugation).

Figure S13. (A) Scheme and the time table of *in vivo* acute wound healing experiments. (B) Optical images of wound sites and computed wound area at 0, 2, 4, 7, and 10 days (scale bar: 5 mm).

Figure S14. Images of H&E and MT stained skin tissues and measured factors related with skin tissue regeneration of acute *in vivo* wound healing experiment (scale bar : 500 µm for x5 magnification and 50 µm for x40 magnification).

Figure S15. Immunohistochemical analysis regarding inflammation (TGF- β and MPO) and angiogenesis (VEGF and CD31) of skin tissues of acute *in vivo* wound healing experiment (scale bar: 50 µm).

Input variable				Output variable
FSA concentration (% w/y)	Nozzle size (mm)	Temperature (°C)	Pneumatic pressure (kPa)	Score
()			20	0
		27	60	0
	0.2 –		20	0
		37	60	0
l		25	20	3
	<u> </u>	27	60	3
	0.4 –	27	20	7
		37	60	7
		27	20	0
	0.0	27	60	0
	0.2 –	27	20	0
2		37	60	0
2		27	20	3
	0.4	27	60	4
	0.4 –	27	20	7
		37	60	8
		27	20	0
	0.0	$\begin{array}{c c} 27 & \underline{} \\ \hline \\ 60 \\ \hline \\ 27 & 20 \end{array}$	60	0
2.5	0.2 –		0	
		37	60	0
2.5		27	20	3
	0.4	27	60	4
	0.4 –	27	20	7
		37	60	10
		27	20	0
	0.2	27	60	0
	0.2 =	27	20	0
2		37	60	0
3		27	20	3
	0.4	21	60	4
	0.4 –	27	20	7
		37	60	12
		27	20	0
	0.2	27	60	0
	0.2 –	27	20	0
Λ		57	60	0
4		27	20	1
	A 4	27	60	1
	0.4 –	27	20	2
		51	60	3

Table S1. Dataset for machine learning modeling with input variables (FSA concentration, nozzle size, temperature, pneumatic pressure) and output variable (score).

Seconda 1 Seconda 2	Significance		
Sample 1 - Sample 2	Storage modulus	Loss modulus	
FSA - Si10@FSA	1.000	1.000	
FSA - Si20@FSA	0.005**	0.005**	
FSA - Si30@FSA	0.000****	0.000****	
FSA - DNA@FSA	0.952	0.952	
FSA - DNA-bSi10@FSA	0.269	0.269	
FSA - DNA-bSi20@FSA	0.004***	0.004***	
FSA - DNA-bSi30@FSA	0.000****	0.000****	
Si10@FSA - Si20@FSA	0.009**	0.009**	
Si10@FSA - Si30@FSA	0.000****	0.000****	
Si10@FSA - DNA@FSA	0.994	0.994	
Si10@FSA - DNA-bSi10@FSA	0.433	0.433	
Si10@FSA - DNA-bSi20@FSA	0.008**	0.008**	
Si10@FSA - DNA-bSi30@FSA	0.000****	0.000****	
Si20@FSA - Si30@FSA	0.386	0.386	
Si20@FSA - DNA@FSA	0.039*	0.039*	
Si20@FSA - DNA-bSi10@FSA	0.403	0.403	
Si20@FSA - DNA-bSi20@FSA	1.000	1.000	
Si20@FSA - DNA-bSi30@FSA	0.000****	0.000****	
Si30@FSA - DNA@FSA	0.001***	0.001***	
Si30@FSA - DNA-bSi10@FSA	0.008**	0.008**	
Si30@FSA - DNA-bSi20@FSA	0.430	0.430	
Si30@FSA - DNA-bSi30@FSA	0.002***	0.002***	
DNA@FSA - DNA-bSi10@FSA	0.844	0.844	
DNA@FSA - DNA-bSi20@FSA	0.033*	0.033*	
DNA@FSA - DNA-bSi30@FSA	0.000****	0.000****	
DNA-bSi10@FSA - DNA-bSi20@FSA	0.361	0.361	
DNA-bSi10@FSA - DNA-bSi30@FSA	0.000****	0.000****	
DNA-bSi20@FSA - DNA-bSi30@FSA	0.000****	0.000****	

 Table S2. Intergroup statistical comparisons of storage modulus and loss modulus of ink at 1Hz.

Sample 1 - Sample 2	Significance
FSA - Si10@FSA	0.432
FSA - Si20@FSA	0.391
FSA - Si30@FSA	0.115
FSA - DNA@FSA	0.389
FSA - DNA-bSi10@FSA	0.341
FSA - DNA-bSi20@FSA	0.326
FSA - DNA-bSi30@FSA	0.004***
Si10@FSA - Si20@FSA	0.918
Si10@FSA - Si30@FSA	0.374
Si10@FSA - DNA@FSA	0.094
Si10@FSA - DNA-bSi10@FSA	0.869
Si10@FSA - DNA-bSi20@FSA	0.827
Si10@FSA - DNA-bSi30@FSA	0.028*
Si20@FSA - Si30@FSA	0.444
Si20@FSA - DNA@FSA	0.086
Si20@FSA - DNA-bSi10@FSA	0.957
Si20@FSA - DNA-bSi20@FSA	0.912
Si20@FSA - DNA-bSi30@FSA	0.046*
Si30@FSA - DNA@FSA	0.017*
Si30@FSA - DNA-bSi10@FSA	0.453
Si30@FSA - DNA-bSi20@FSA	0.500
Si30@FSA - DNA-bSi30@FSA	0.303
DNA@FSA - DNA-bSi10@FSA	0.065
DNA@FSA - DNA-bSi20@FSA	0.064
DNA@FSA - DNA-bSi30@FSA	0.000****
DNA-bSi10@FSA - DNA-bSi20@FSA	0.952
DNA-bSi10@FSA - DNA-bSi30@FSA	0.055
DNA-bSi20@FSA - DNA-bSi30@FSA	0.039*

 Table S3. Intergroup statistical comparisons of average pore size.

 Table S4. Intergroup statistical comparisons of storage modulus and loss modulus of scaffolds

 at 1Hz.

Samula 1 Samula 2	Significance		
Sample 1 - Sample 2	Storage modulus	Loss modulus	
FSA - Si10@FSA	0.603	0.957	
FSA - Si20@FSA	0.018*	0.004***	
FSA - Si30@FSA	0.002***	0.000****	
FSA - DNA@FSA	0.299	0.536	
FSA - DNA-bSi10@FSA	0.119	0.053	
FSA - DNA-bSi20@FSA	0.021*	0.003***	
FSA - DNA-bSi30@FSA	0.000****	0.000****	
Si10@FSA - Si20@FSA	0.065	0.029*	
Si10@FSA - Si30@FSA	0.009**	0.000****	
Si10@FSA - DNA@FSA	0.603	0.982	
Si10@FSA - DNA-bSi10@FSA	0.299	0.315	
Si10@FSA - DNA-bSi20@FSA	0.073	0.024*	
Si10@FSA - DNA-bSi30@FSA	0.002***	0.000****	
Si20@FSA - Si30@FSA	0.453	0.205	
Si20@FSA - DNA@FSA	0.184	0.149	
Si20@FSA - DNA-bSi10@FSA	0.419	0.854	
Si20@FSA - DNA-bSi20@FSA	0.954	1.000	
Si20@FSA - DNA-bSi30@FSA	0.204	0.000****	
Si30@FSA - DNA@FSA	0.038*	0.001***	
Si30@FSA - DNA-bSi10@FSA	0.119	0.017*	
Si30@FSA - DNA-bSi20@FSA	0.419	0.238	
Si30@FSA - DNA-bSi30@FSA	0.603	0.052	
DNA@FSA - DNA-bSi10@FSA	0.603	0.809	
DNA@FSA - DNA-bSi20@FSA	0.204	0.126	
DNA@FSA - DNA-bSi30@FSA	0.009**	0.000****	
DNA-bSi10@FSA - DNA-bSi20@FSA	0.453	0.810	
DNA-bSi10@FSA - DNA-bSi30@FSA	0.038*	0.000****	
DNA-bSi20@FSA - DNA-bSi30@FSA	0.184	0.000****	

 Table S5. Intergroup statistical comparisons of compressive properties of fabricated 3D

 printed hydrogel dressings.

	Significance			
Sample 1 - Sample 2	Compressive	Compressive		
	strength	modulus		
FSA - Si10@FSA	0.488	Not statistically		
FSA - Si20@FSA	0.073	different between the		
FSA - Si30@FSA	0.028*	groups		
FSA - DNA@FSA	0.488			
FSA - DNA-bSi10@FSA	0.204			
FSA - DNA-bSi20@FSA	0.018*			
FSA - DNA-bSi30@FSA	0.001***			
Si10@FSA - Si20@FSA	0.273			
Si10@FSA - Si30@FSA	0.133			
Si10@FSA - DNA@FSA	1.000			
Si10@FSA - DNA-bSi10@FSA	0.564			
Si10@FSA - DNA-bSi20@FSA	0.094			
Si10@FSA - DNA-bSi30@FSA	0.011*			
Si20@FSA - Si30@FSA	0.686			
Si20@FSA - DNA@FSA	0.273			
Si20@FSA - DNA-bSi10@FSA	0.603			
Si20@FSA - DNA-bSi20@FSA	0.564			
Si20@FSA - DNA-bSi30@FSA	0.149			
Si30@FSA - DNA@FSA	0.133			
Si30@FSA - DNA-bSi10@FSA	0.356			
Si30@FSA - DNA-bSi20@FSA	0.862			
Si30@FSA - DNA-bSi30@FSA	0.299			
DNA@FSA - DNA-bSi10@FSA	0.564			
DNA@FSA - DNA-bSi20@FSA	0.094			
DNA@FSA - DNA-bSi30@FSA	0.011*			
DNA-bSi10@FSA - DNA-bSi20@FSA	0.273			
DNA-bSi10@FSA - DNA-bSi30@FSA	0.050			
DNA-bSi20@FSA - DNA-bSi30@FSA	0.386			

Sample 1 - Sample 2	Significance
FSA - Si10@FSA	1.000
FSA - Si20@FSA	0.995
FSA - Si30@FSA	0.780
FSA - DNA@FSA	1.000
FSA - DNA-bSi10@FSA	0.999
FSA - DNA-bSi20@FSA	0.818
FSA - DNA-bSi30@FSA	0.035*
Si10@FSA - Si20@FSA	1.000
Si10@FSA - Si30@FSA	0.949
Si10@FSA - DNA@FSA	1.000
Si10@FSA - DNA-bSi10@FSA	1.000
Si10@FSA - DNA-bSi20@FSA	0.964
Si10@FSA - DNA-bSi30@FSA	0.088
Si20@FSA - Si30@FSA	0.992
Si20@FSA - DNA@FSA	1.000
Si20@FSA - DNA-bSi10@FSA	1.000
Si20@FSA - DNA-bSi20@FSA	0.995
Si20@FSA - DNA-bSi30@FSA	0.160
Si30@FSA - DNA@FSA	0.992
Si30@FSA - DNA-bSi10@FSA	0.967
Si30@FSA - DNA-bSi20@FSA	1.000
Si30@FSA - DNA-bSi30@FSA	0.540
DNA@FSA - DNA-bSi10@FSA	1.000
DNA@FSA - DNA-bSi20@FSA	0.943
DNA@FSA - DNA-bSi30@FSA	0.071
DNA-bSi10@FSA - DNA-bSi20@FSA	0.978
DNA-bSi10@FSA - DNA-bSi30@FSA	0.104
DNA-bSi20@FSA - DNA-bSi30@FSA	0.495

 Table S6. Intergroup statistical comparisons of fluorescent intensity.

Table S7. Intergroup statistical comparisons of cell proliferation cultured on the scaffolds after3 and 5 days.

	Signif	icance
Sample 1 - Sample 2	3d	5d
FSA - Si10@FSA	0.908	0.817
FSA - Si20@FSA	0.273	0.149
FSA - Si30@FSA	0.024*	0.028*
FSA - DNA@FSA	0.326	0.862
FSA - DNA-bSi10@FSA	0.043*	0.299
FSA - DNA-bSi20@FSA	0.005**	0.038*
FSA - DNA-bSi30@FSA	0.001***	0.006**
Si10@FSA - Si20@FSA	0.326	0.094
Si10@FSA - Si30@FSA	0.033*	0.015*
Si10@FSA - DNA@FSA	0.386	0.686
Si10@FSA - DNA-bSi10@FSA	0.057	0.204
Si10@FSA - DNA-bSi20@FSA	0.007**	0.021*
Si10@FSA - DNA-bSi30@FSA	0.001***	0.003***
Si20@FSA - Si30@FSA	0.248	0.453
Si20@FSA - DNA@FSA	0.908	0.204
Si20@FSA - DNA-bSi10@FSA	0.356	0.686
Si20@FSA - DNA-bSi20@FSA	0.083	0.525
Si20@FSA - DNA-bSi30@FSA	0.021*	0.184
Si30@FSA - DNA@FSA	0.204	0.043*
Si30@FSA - DNA-bSi10@FSA	0.817	0.248
Si30@FSA - DNA-bSi20@FSA	0.564	0.908
Si30@FSA - DNA-bSi30@FSA	0.248	0.564
DNA@FSA - DNA-bSi10@FSA	0.299	0.386
DNA@FSA - DNA-bSi20@FSA	0.065	0.057
DNA@FSA - DNA-bSi30@FSA	0.015*	0.009**
DNA-bSi10@FSA - DNA-bSi20@FSA	0.419	0.299
DNA-bSi10@FSA - DNA-bSi30@FSA	0.166	0.083
DNA-bSi20@FSA - DNA-bSi30@FSA	0.564	0.488

Table S8. Intergroup statistical comparisons of cell migration.	

Sample 1 - Sample 2	Significance	Sample 1 - Sample 2	Significance
FSA 6h - Si10@FSA 6h	1.000	DNA@FSA 6h - Si30@FSA 12h	0.189
FSA 6h - Si20@FSA 6h	0.268	DNA@FSA 6h - DNA@FSA 12h	0.221
FSA 6h - Si30@FSA 6h	0.307	DNA@FSA 6h - DNA-bSi10@FSA 12h	0.210
FSA 6h - DNA@FSA 6h	0.351	DNA@FSA 6h - DNA-bSi20@FSA 12h	0.027*
FSA 6h - DNA-bSi10@FSA 6h	0 243	DNA@FSA_6h - DNA-bSi30@FSA_12h	0 006**
FSA 6h - DNA-bSi20@FSA 6h	0.041*	DNA-bSi10@FSA_6h - DNA-bSi20@FSA_6h	0.382
FSA_6h - DNA-bSi30@FSA_6h	0.001***	DNA-bSil0@FSA_6h - DNA-bSi20@FSA_6h	0.044*
FSA_6h_FSA_12h	0.001	DNA bSil0@ESA 6b ESA 12b	0.580
FSA_6b_Si10@FSA_12b	0.065	$DNA-05110@FSA_011-15A_1211$	0.360
FSA_6h_Si20@FSA_12h	0.038	$DNA-05110@F5A_0II - 5110@F5A_12II$	0.400
FSA_6h_Si20@FSA_12h	0.029	$DNA-05110@F5A_011-5120@F5A_1211$	0.307
FSA_0II - SISU@FSA_12II	0.023*	DNA-05110@FSA_0II - 5150@FSA_121	0.201
FSA_6n - DNA @FSA_12n	0.031*	DNA-DSIIU@FSA_6fi - DNA @FSA_12fi	0.321
FSA_on - DNA-DSI10@FSA_12n	0.029*	DNA-DS110@FSA_00 - DNA-DS110@FSA_120	0.307
FSA_6h - DNA-0S120@FSA_12h	0.002***	DNA-bS110@FSA_6h - DNA-bS120@FSA_12h	0.04/*
FSA_6h - DNA-bSi30@FSA_12h	0.000****	DNA-bSi10@FSA_6h - DNA-bSi30@FSA_12h	0.011*
Si10@FSA_6h - Si20@FSA_6h	0.268	DNA-bSi20@FSA_6h - DNA-bSi30@FSA_6h	0.255
Si10@FSA_6h - Si30@FSA_6h	0.307	DNA-bSi20@FSA_6h - FSA_12h	0.748
Sil0@FSA_6h - DNA@FSA_6h	0.351	DNA-bSi20@FSA_6h - Si10@FSA_12h	0.884
Si10@FSA_6h - DNA-bSi10@FSA_6h	0.243	DNA-bSi20@FSA_6h - Si20@FSA_12h	0.884
Si10@FSA_6h - DNA-bSi20@FSA_6h	0.041*	DNA-bSi20@FSA_6h - Si30@FSA_12h	0.838
Si10@FSA_6h - DNA-bSi30@FSA_6h	0.001***	DNA-bSi20@FSA_6h - DNA@FSA_12h	0.907
Si10@FSA_6h - FSA_12h	0.085	DNA-bSi20@FSA_6h - DNA-bSi10@FSA_12h	0.884
Si10@FSA_6h - Si10@FSA_12h	0.058	DNA-bSi20@FSA_6h - DNA-bSi20@FSA_12h	0.268
Si10@FSA_6h - Si20@FSA_12h	0.029*	DNA-bSi20@FSA_6h - DNA-bSi30@FSA_12h	0.096
Si10@FSA_6h - Si30@FSA_12h	0.025*	DNA-bSi30@FSA_6h - FSA_12h	0.145
Si10@FSA_6h - DNA@FSA_12h	0.031*	DNA-bSi30@FSA_6h - Si10@FSA_12h	0.199
Si10@FSA_6h - DNA-bSi10@FSA_12h	0.029*	DNA-bSi30@FSA_6h - Si20@FSA_12h	0.321
Si10@FSA_6h - DNA-bSi20@FSA_12h	0.002***	DNA-bSi30@FSA_6h - Si30@FSA_12h	0.351
Si10@FSA_6h - DNA-bSi30@FSA_12h	****000.0	DNA-bSi30@FSA_6h - DNA@FSA_12h	0.307
Si20@FSA_6h - Si30@FSA_6h	0.930	DNA-bSi30@FSA_6h - DNA-bSi10@FSA_12h	0.321
Si20@FSA_6h - DNA@FSA_6h	0.861	DNA-bSi30@FSA_6h - DNA-bSi20@FSA_12h	0.977
Si20@FSA 6h - DNA-bSi10@FSA 6h	0.953	DNA-bSi30@FSA_6h - DNA-bSi30@FSA_12h	0.600
Si20@FSA 6h - DNA-bSi20@FSA 6h	0.351	FSA 12h - Si10@FSA 12h	0.793
Si20@FSA_6h - DNA-bSi30@FSA_6h	0.038*	ESA 12h - Si20@ESA 12h	0.641
Si20@ESA_6h - ESA_12h	0 540	ESA 12h - Si30@ESA 12h	0.600
Si20@ESA_6h - Si10@ESA_12h	0.431	ESA 12h - DNA@ESA 12h	0.662
Si20@ESA_6h - Si20@ESA_12h	0.281	FSA 12h - DNA-bSi10@FSA 12h	0.641
Si20@ESA_6h - Si30@ESA_12h	0.255	FSA 12h - DNA-bSi20@FSA 12h	0.153
Si20@FSA_6h_DNA@FSA_12h	0.294	$FSA_{12h} = DNA_{b}Si30@FSA_{12h}$	0.047*
Si20@FSA_6h_DNA_bSi10@FSA_12h	0.221	Silo@ESA 12b Si20@ESA 12b	0.771
Sizo@FSA_ch_DNA_bSizo@FSA_12h	0.201	S110@FSA_12h S120@FSA_12h	0.771
Sizo@FSA_6h_DNA_bSizo@FSA_12h	0.041	S110@FSA_12h DNA@FSA_12h	0.720
SIZUETSA_0II - DNA-0SISUETSA_1ZII	0.009	SHOWFSA_12H - DNA WFSA_12H	0.795
SIJUETSA_UII - DIVAEFSA_UI	0.930	SILVETSA_121 - DNA-03110@FSA_121	0.771
SIDUETSA_UII - DIVA-USITUETSA_UI	0.004	SILVETSA_1211 - DNA-US120@FSA_1211 SIL0@ESA_125_DNA_SI20@ESA_125	0.210
SIJUEFSA_OII - DINA-DSIZUEFSA_ON	0.307	SHUWFSA_12H - DNA-05150@F5A_12h	0.071
SISUEFSA_ON - DINA-DSISUEFSA_6h	0.031*	5120@F\$A_12h - 5150@F\$A_12h	0.933
SISUEFSA_6n - FSA_12h	0.484	S120@FSA_12h - DNA@FSA_12h	0.977
S13U@FSA_6h - S110@FSA_12h	0.382	S120@FSA_12h - DNA-bS110@FSA_12h	1.000
Si30@FSA_6h - Si20@FSA_12h	0.243	Si20@FSA_12h - DNA-bSi20@FSA_12h	0.336
Si30@FSA_6h - Si30@FSA_12h	0.221	Si20@FSA_12h - DNA-bSi30@FSA_12h	0.129
Si30@FSA_6h - DNA@FSA_12h	0.255	Si30@FSA_12h - DNA@FSA_12h	0.930
Si30@FSA_6h - DNA-bSi10@FSA_12h	0.243	Si30@FSA_12h - DNA-bSi10@FSA_12h	0.953
Si30@FSA_6h - DNA-bSi20@FSA_12h	0.033*	Si30@FSA_12h - DNA-bSi20@FSA_12h	0.366
Si30@FSA_6h - DNA-bSi30@FSA_12h	0.007**	Si30@FSA_12h - DNA-bSi30@FSA_12h	0.145
DNA@FSA_6h - DNA-bSi10@FSA_6h	0.816	DNA@FSA_12h - DNA-bSi10@FSA_12h	0.977
DNA@FSA_6h - DNA-bSi20@FSA_6h	0.210	DNA@FSA_12h - DNA-bSi20@FSA_12h	0.321
DNA@FSA_6h - DNA-bSi30@FSA_6h	0.025*	DNA@FSA_12h - DNA-bSi30@FSA_12h	0.122
DNA@FSA_6h - FSA_12h	0.431	DNA-bSi10@FSA_12h - DNA-bSi20@FSA_12h	0.336
DNA@FSA_6h - Si10@FSA_12h	0.336	DNA-bSi10@FSA_12h - DNA-bSi30@FSA_12h	0.129
DNA@FSA_6h - Si20@FSA_12h	0.210	DNA-bSi20@FSA_12h - DNA-bSi30@FSA_12h	0.580

Table S9. Intergroup statistical comparisons of antioxidant ability and ROS scavenging effect

 of hydrogel.

Semala 1 Semala 2	Significance			
Sample 1 - Sample 2	Antioxidant ability	ROS scavenging effect		
Control - H ₂ O ₂	0.000****	0.004***		
Control - FSA	0.000****	0.048*		
Control - DNA@FSA	0.000****	0.199		
Control - Si30@FSA	0.000****	0.231		
Control - DNA-bSi30@FSA	0.002***	0.701		
H ₂ O ₂ - FSA	0.225	0.716		
H ₂ O ₂ - DNA@FSA	0.005**	0.263		
H ₂ O ₂ - Si30@FSA	0.002***	0.228		
H ₂ O ₂ - DNA-bSi30@FSA	0.000****	0.050		
FSA - DNA@FSA	0.264	0.943		
FSA - Si30@FSA	0.120	0.914		
FSA - DNA-bSi30@FSA	0.002***	0.426		
DNA@FSA - Si30@FSA	0.994	1.000		
DNA@FSA - DNA-bSi30@FSA	0.089	0.891		
Si30@FSA - DNA-bSi30@FSA	0.201	0.925		

Table S10. Intergroup statistical comparisons of relative dermis thickness, thickness of epidermis, thickness of granulation tissue, and collagen density of skin tissue extracted from diabetic mouse model after 15 days.

	Significance				
Sample 1 - Sample 2	Relative dermis thickness	Thickness of epidermis	Thickness of granulation tissue	Collagen density	
Saline - FSA	0.715	Not statistically	Not statistically	0.768	
Saline - DNA@FSA	0.144	different	different	0.168	
Saline - Si30@FSA	0.028*	between the	between the	0.023*	
Saline - DNA-bSi30@FSA	0.005**	groups	groups	0.001***	
FSA - DNA@FSA	0.273			0.685	
FSA - Si30@FSA	0.068			0.140	
FSA - DNA-bSi30@FSA	0.014*			0.005**	
DNA@FSA - Si30@FSA	0.465			0.699	
DNA@FSA - DNA- bSi30@FSA	0.171			0.034*	
Si30@FSA - DNA- bSi30@FSA	0.523			0.242	

Table S11. Intergroup statistical comparisons of immunohistochemical factors (TGF- β , MPO, VEGF, and CD31) of skin tissue extracted from diabetic mouse model after 15 days.

Samula 1. Samula 2		Significance			
Sample 1 - Sample 2	TGF-β	MPO	VEGF	CD31	
Saline - FSA	0.523	0.523	0.300	0.535	
Saline - DNA@FSA	0.121	0.055	0.110	0.049*	
Saline - Si30@FSA	0.018*	0.045*	0.004***	0.003***	
Saline - DNA-bSi30@FSA	0.001***	0.001***	0.003***	0.000****	
FSA - DNA@FSA	0.361	0.201	0.952	0.468	
FSA - Si30@FSA	0.083	0.171	0.102	0.028*	
FSA - DNA-bSi30@FSA	0.011*	0.011*	0.071	0.000****	
DNA@FSA - Si30@FSA	0.411	0.927	0.280	0.349	
DNA@FSA - DNA-bSi30@FSA	0.100	0.201	0.202	0.001***	
Si30@FSA - DNA-bSi30@FSA	0.411	0.235	0.999	0.013*	

 Table S12. Intergroup statistical comparisons of L929 proliferation by different DNA concentration.

Sample 1 - Sample 2		Significance				
	1d	3d	5d			
0 μg/mL - 25 μg/mL	0.022*	0.014*	0.002***			
0 μg/mL - 50 μg/mL	0.182	0.171	0.937			
0 μg/mL - 100 μg/mL	0.004***	0.273	0.136			
0 μg/mL - 500 μg/mL	0.917	0.411	0.000****			
25 μg/mL - 50 μg/mL	0.650	0.273	0.007**			
25 μg/mL - 100 μg/mL	0.768	0.171	0.000^{****}			
25 μg/mL - 500 μg/mL	0.079	0.001***	0.000^{****}			
50 μg/mL - 100 μg/mL	0.154	0.784	0.042*			
50 μg/mL - 500 μg/mL	0.521	0.028*	0.000****			
100 μg/mL - 500 μg/mL	0.013*	0.055	0.000****			

Sample 1 - Sample 2	Significance
Positive control - FSA	0.000****
Positive control - DNA@FSA	0.000****
Positive control - Si30@FSA	0.000****
Positive control - DNA-bSi30@FSA	0.000****
FSA - DNA@FSA	1.000
FSA - Si30@FSA	1.000
FSA - DNA-bSi30@FSA	1.000
DNA@FSA - Si30@FSA	1.000
DNA@FSA - DNA-bSi30@FSA	1.000
Si30@FSA - DNA-bSi30@FSA	1.000

 Table S13. Intergroup statistical comparisons of hemolysis rates.

Table S14. Intergroup statistical comparisons of relative dermis thickness, thickness of epidermis, thickness of granulation tissue, and collagen density of skin tissue extracted from acute wound healing model after 10 days.

	Significance			
Sample 1 - Sample 2	Relative dermis thickness	Thickness of epidermis	Thickness of granulation tissue	Collagen density
Saline - FSA	0.992	Not	0.315	0.768
Saline - DNA@FSA	0.524	statistically different between the groups	0.144	0.168
Saline - Si30@FSA	0.043*		0.036*	0.023*
Saline - DNA-bSi30@FSA	0.012*		0.001***	0.001***
FSA - DNA@FSA	0.763		0.648	0.685
FSA - Si30@FSA	0.083		0.273	0.140
FSA - DNA-bSi30@FSA	0.023*		0.028*	0.005**
DNA@FSA - Si30@FSA	0.432		0.523	0.699
DNA@FSA - DNA- bSi30@FSA	0.141		0.083	0.034*
Si30@FSA - DNA- bSi30@FSA	0.916		0.273	0.242

Table S15. Intergroup statistical comparisons of immunohistochemical factors (TGF- β , MPO, VEGF, and CD31) of skin tissue extracted from acute wound healing model after 10 days.

Sample 1 - Sample 2	Significance			
	TGF-β	MPO	VEGF	CD31
Saline - FSA	0.528	0.273	Not	0.803
Saline - DNA@FSA	0.251	0.171	statistically different between the groups	0.024*
Saline - Si30@FSA	0.001***	0.014*		0.002***
Saline - DNA-bSi30@FSA	0.000****	0.001***		0.000****
FSA - DNA@FSA	0.970	0.784		0.132
FSA - Si30@FSA	0.009**	0.171		0.009**
FSA - DNA-bSi30@FSA	0.001***	0.028*		0.001***
DNA@FSA - Si30@FSA	0.022*	0.273		0.437
DNA@FSA - DNA-	0.002***	0.055		0.037*
bSi30@FSA				
Si30@FSA - DNA- bSi30@FSA	0.490	0.411		0.471

Supporting movie file

Video S1. On-demand 3D printing of patient-customized functional hydrogel dressings with a non-lattice pattern (left) and a lattice pattern (right) using a diabetic ulcer foot model.