Supporting Information

Microfluidic formulation of curcumin loaded multi-responsive gelatin nanoparticles for anticancer therapy

Yu Xia^{1,4}, Ruicheng Xu^{1,4}, Siyuan Ye¹, Jiaxuan Yan¹, Piyush Kumar², Peng Zhang³,

Xiubo Zhao^{1,2,}*

¹School of Pharmacy, Changzhou University, Changzhou 213164, China

²Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK

³School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China

⁴The authors contribute equally to this paper.

*Author for correspondence: E-mail: xiubo.zhao@cczu.edu.cn

Figure S1. (a) FTIR spectra of gelatin (green) and folate conjugated gelatin (red). **(b)** ¹H NMR spectra of gelatin (A) and folate conjugated gelatin (B) in D₂O solvent.

Figure S2. Characterization of Fe_3O_4 nanoparticles. (a) Transmission electron microscopy image of Fe_3O_4 with the SEM image inserted. **(b)** XRD patterns of Fe_3O_4 . **(c)** FTIR spectrum of Fe_3O_4 . **(d)** Magnetization curve of superparamagnetic Fe_3O_4 NPs.

Figure S3. Effect of curcumin concentration on drug entrapment efficiency, particle size, PDI and Zeta potential. (a) EE%. (b) LC %. (c) Particle size and PDI. (d) Zeta potential.

Figure S4. Effect of CuS concentration on CuS entrapment efficiency, particle size, PDI and Zeta potential. (a) EE%. (b) LC %. (c) Particle size and PDI. (d) Zeta potential.

Figure S5. Effect of Fe_3O_4 concentration on Fe_3O_4 entrapment efficiency, particle size, PDI and Zeta potential. (a) EE%. (b) LC %. (c) Particle size and PDI. (d) Zeta potential.

Figure S6. Size distribution of (a) CuS@GNPs-FA and (b) Fe₃O₄/CuS@GNPs-FA.