S1

3

4 Figure S1. NS5 host protein interactions during DENV infection

- 5 (A) Representation of a recombinant DENV2 with a Strep-tag fused to NS5 (r4-DV) and
- replication kinetics comparing it with the WT DENV2. (B) DENV2 NS5-host proteins interactionnetwork.

Viral replication in mosquito C6/36 cells

9

10 Figure S2. Viral replication in mosquito cell line C6/36

(A) Viral replication of DENV2 WT, T2A and G3A viruses as a function of time (MOI:1).
Intracellular viral RNA levels relative to 18S measured by RT qPCR. (B) Viral replication of
DENV2 WT, chimeric R1 and R2 viruses is shown. RT qPCR of intracellular viral RNA relative to
18S (MOI:1). (C) Replication levels of viruses carrying one or a combination of point mutations in
R1 region is shown as a function of time (MOI: 1).

Figure S3

Viral replication in human A549 cells

18 Figure S3. Viral replication in human cell line A549

(A) Viral replication of DENV2 WT, T2A and G3A viruses as a function of time in A549 cells
(MOI:0.01). Plaque assay of infectious viral particles in the supernatant of infected A549 cells
(PFU: plaque forming units). (B) Viral replication DENV2 WT, chimeric R1 and R2 viruses relative
to GAPDH measured by RT qPCR (MOI:1). (C) Viral replication of viruses carrying one or a
combination of point mutations in R1 region is shown as a function of time (MOI:1). RT qPCR of
intracellular viral ARN relative to GAPDH.

Figure S4

Kinetics of STAT2 and ERC1 degradation as a function of time after DENV WT and T2A infection

29

30

Figure S4. Kinetics of STAT2 and ERC1 degradation upon infection with DENV2 WT and T2A viruses

(A) Levels of STAT2 and ERC1 proteins as a function of time in cells infected with DENV2 WT or
T2A. A549 cells were infected with an MOI of 10 during 4, 6, 8, 10 or 12 hours and lysed for
analyses. ERC1, STAT2, viral NS3 to assessed infection and GAPDH control are shown on the
left. STAT2 protein was blot before ERC1 and therefore, STAT2 can still be detected (indicated
with * below ERC1)

Viral mutant	Name	Sequence	
Forward	AVG1320	CGGAGACCCTGGAGACATTG	
Reverse	AVG 1323	CTGCGGTGTCATCGGCATAC	
T2A AVG2363 CGTC		CGTCTCTCCTATGTTGCCAGCTCCCCTTCTTGT	
	AVG2364	GGAGCTGGCAACATAGGAGAGACGCTTGGAGA	
G3A	G3A AVG2365 CGTCTCTCCTATGTTGGCAGTTCCCCTTCTTGT		
	AVG2366	GGAACTGCCAACATAGGAGAGACGCTTGGAGA	
R1 AVG2363 CGTCTCTCCTATGTT		CGTCTCTCCTATGTTGCCAGCTCCCCTTCTTGT	
	AVG2364	GGAGCTGGCAACATAGGAGAGACGCTTGGAGA	
R2	AVG2385	TTTAGACCCATCTTTCAGGGCAGATTTTGCTAAGGTTCTATCCACTTCC	
	AVG2382	TCTGCCCTGAAAGATGGGTCTAAAGACCATCACGCTGTGTCG	
A19S	AVG 2447	TAATGAGTTTAGCTGTCTTTTCCATTTCTCTCCAAGCGTCTCT	
	AVG 2446	AGACAGCTAAACTCATTAGGAAAAAGTGAATTCCAGATCTACAAGAAAAG	
G21D AVG 2465 AATTCACTTTTGTCCAATGCGT		AATTCACTTTTGTCCAATGCGTTCAATCGG	
	AVG 2464	TGAACGCATTGGACAAAAGTGAATTCC	
Q26E	AVG 2467	CACTTTTCTTGTAGATTTCGAATTCACTTTTTCCC	
	AVG 2466	GAAAAAGTGAATTCGAAATCTACAAGAAAAGTGG	
127E	AVG 2469	CCACTTTTCTTGTACTCCTGGAATTCACTTTTTC	
	AVG 2468	GTGAATTCCAGGAGTACAAGAAAAGTGGAATC	
127Q	AVG 2471	CCACTTTTCTTGTACTGCTGGAATTCACTTTTTC	
	AVG 2470	GTGAATTCCAGCAGTACAAGAAAAGTGGAATC	
KEE	AVG 2473	GGATTCCACTTTTCTTGTACTCTTCGAATTCTTTTTTCCCAATGCG	
	AVG 2472	CGCATTGGGAAAAAAAGAATTCGAAGAGTACAAGAAAAGTGGAATCC	
EE	AVG 2475	GGATTCCACTTTTCTTGTACTCTTCGAATTCACTTTTTCC	
	AVG 2474	GAAAAAGTGAATTCGAAGAGTACAAGAAAAGTGGAATCC	

40 Table 1. Primers used to introduce mutations in the DENV2 infectious clone

43 Table 2. Primers used to obtain viral protein expression plasmids

Name	Sequence
AVG2	CCCTCGAGGGACCTGGAGCCACGAACTTCTCTCTGTTAAAGCAAGC
375	GGCCTGTGAGCAAGGGCGAGGAGCT
AVG2	
376	ATGGGCCCCTTGTACAGCTCGTCCATGC
AVG2	CCCTCGAGGGACCTGGAGCCACGAACTTCTCTCTGTTAAAGCAAGC
375	GGCCTGTGAGCAAGGGCGAGGAGCT
AVG2	
377	ATCTCGAGTTACTTGTACAGCTCGTCCATGC
AVG2	
269	CCGGTACCATGGGAACTGGGACCACAGGAGAGACACTGG
AVG2	
270	ATCTCGAGCGTTCCTGCCCCAAGATCTACGTCCTTC
AVG2	
380	CGCAAATGGGCGGTAGGCGTG
AVG2	
384	CTCTTCAAACTCTTTTCTGTCTAATGAGTTTAGCTGTCTTTTCCATTTCTCTCCAAGCGTCTCT
AVG2	
381	AGACAGCTAAACTCATTAGACAGAAAAGAGTTTGAAGAGTACAAGAAAAGTGGAATCCAGGAAGTGG
AVG2	
387	CTCGAGCCACAGAACTCCTGCTTCTTCCTCTCC
AVG2	
385	TTTAGACCCATCTTTCAGGGCAGATTTTGCTAAGGTTCTATCCACTTCC
AVG2	
382	TCTGCCCTGAAAGATGGGTCTAAAGACCATCACGCTGTGTCG
AVG2	
386	TTCAGGTTTTGAAGACAACCAATTTTCTACTAAGTTAAGGACTC
AVG2	
383	TCTTCAAAACCTGAATTTTGCATAAAGGTTCTCAACCC

Name	Sequence 58
Aedes_albopictus 18S_Forward_qPCR	GTGCATGGCCGTTCTTAGTTC59
Aedes_albopictus 18S_Reverse_qPCR	CGAACCGTCGGTATCAAACATC
DENV_Forward_qPCR	ACAAGTCGAACAACCTGGTCCAT
DENV_Reverse_qPCR	GCCGCACCATTGGTCTTCTC
human ERC1_Forward_qPCR	GGAATCAGCCAGGACCAATGCT
human ERC1_Reverse_qPCR	CCTTTTCTGCCAGAGACTGCTG
human GAPDH_Forward_qPCR	ACAACTTTGGTATCGTGGAAGG
human GAPDH_Reverse_qPCR	TATTTGGCAGGTTTTTCTAGACG
human IFNb_Forward_qPCR	TCTGGCACAACAGGTAGTAGGC
human IFNb_Reverse_qPCR	GAGAAGCACAACAGGAGAGCAA
human IL6_Forward_qPCR	AGAGGCACTGGCAGAAAACAAC
human IL6_Reverse_qPCR	AGGCAAGTCTCCTCATTGAATCC
human TNF_α_Forward_qPCR	TCAGCTTGAGGGTTTGCTAC
human TNF_α_Reverse_qPCR	TGCACTTTGGAGTGATCGG
human UBR4_Forward_qPCR	GGTGTTCCAGAGGCTAGTGATC
human UBR4_Reverse_qPCR	CCAACTGCTTCTGCGGTTCCTT