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Supporting Information Text12

1. Crystal Structure Prediction13

The initial CSP landscapes were generated for benzene, acrylic acid, and resorcinol using our GLEE(1) program. For the CSPs14

of benzene and acrylic acid, we followed our previously described methodology based on rigid-body lattice optimisations using an15

empirically parametrised intermolecular atom-atom exp-6 potential combined with atomic multipole electrostatics (FIT+DMA),16

the parameters souced from the FIT(2) force field. The molecular geometries were optimised at the B3LYP/6-311G(d,p) level17

using Gaussian09(3) and held fixed through the rest of the search. Distributed, atom-centered multipoles up to hexadecapole18

were derived from the resulting electron density by a distributed multipole analysis and partial charges were fitted to the19

multipoles.(4, 5) A quasi-random search of the lattice packing space with one molecule in the asymmetric unit was then20

conducted in selected space groups. For benzene and acrylic acid the 25 most common space groups were searched. Valid21

structures were lattice energy minimised using the software packages PMIN(6) and DMACRYS(7) in a 3-stage protocol22

consisting of: PMIN at ambient pressure with partial charge electrostatics, FIT+DMA at 0.1 GPa with multipole electrostatics,23

and lastly the FIT+DMA once more at ambient pressure with multipole electrostatics. The search was terminated for both24

systems once 250,000 valid structures were generated. In each case, the structure set was clustered iteratively by comparison of25

simulated powder X-ray diffraction (pXRD) patterns generated by PLATON(8) followed by structural overlay comparisons26

using the CSD API with a molecular cluster size of 15 molecules and an RMSD cutoff in atomic positions of 0.3 Å.(9) The27

unique structures were then ranked by the lattice energy of the final optimization stage to yield the CSP landscapes.28

In the case of resorcinol, the CSP landscape was generated by applying our recently developed flexible-molecule CSP29

protocol.∗ This protocol is largely similar to that described for the rigid systems, however, rather than searching the lattice30

packing space of a single conformation we instead search with a pre-calculated pool of rigid conformations. Structures are31

then generated by randomly selecting a conformation from the pool. For resorcinol, the pool was generated by fixing one of32

the hydroxyl group torsions in an anti position while stepping the other through 360 degrees in 40 degree increments. The33

space group of the experimental alpha and beta forms, Pna21, was then searched generating 10,000 valid structures. These34

were lattice energy minimized initially by the same 3-stage protocol, however, after clustering the unique structures were35

further optimised with D3 dispersion-corrected tight-binding DFT (DFTB+D3) as implemented in DFTB+(10) using the 3ob36

parameter set to allow the conformations to relax within the the lattice.(11)37

∗Manuscript in preparation
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2. Threshold Clustering38

For benzene, acrylic acid, and resocinol the lowest energy structures from the CSP landscapes were included in the threshold39

simulations. The structures were expanded to P1 cells to remove symmetry constraints on the sampling, with structures in40

higher symmetry, centered space groups, such that the corresponding P1 cells had more than 8 molecules in the cell, reduced41

to smaller primitive cells for computational efficiency. The Monte Carlo trajectories in all simulations employed the same42

core moveset consisting of molecular translations and rotations, cell length and angle changes, and cell volume changes. The43

resorcinol simulations included additionally torsional moves. The maximum move amounts were calibrated for each system by44

running short simulations and adjusting the cutoffs to achieve an absolute average energy change of around 1 kJ mol-1. If45

necessary, these were refined further to produce an acceptance ratio of approximately 50-60%. The probability of choosing a46

given move was set equal to the proportion of the total degrees of freedom it represented. In the case of torsion moves the47

probability was increased three times this base value in order to better reflect the importance of this degree of freedom.48

The number and length of Monte Carlo trajectories was set for each system based on the expected complexity of the energy49

surface following smaller preliminary simulations of the systems. For benzene 3 trajectories of 30,000 steps (15,000 with 2.5 kJ50

mol-1 lid then 15,000 with 5.0 kJ mol-1 lid) were initiated from each CSP structures. For acrylic acid and resorcinol the same51

number of trajectories were initiated per CSP structures but the length of the trajectories was 20,000 steps (single lid of 5.052

kJ mol-1). In all simulations, the single point evaluations of the perturbed structures and the lattice energy minimizations53

of accepted structures were performed with the same energy model as used to calculated the CSP landscapes. For benzene54

and acrylic acid this was FIT+DMA and for resorcinol this was DFTB+D3. Following the simulations, the trajectories were55

combined by comparing pairs of energy minimized structures across all trajectories in an iterative procedure consisting of initial56

comparisons of simulated pXRD patterns generated by PLATON(8) followed by structural overlays using the CSD API(9)57

where matches were identified by root-mean-square differences (RMSD) in atomic positions of less than 0.3 Å using a molecular58

cluster of 15 molecules. In the case of resorcinol, due to the poor sensitivity of pXRD to hydrogen position, the equivalent59

structures from pXRD comparisons were checked to ensure they were the same conformation. From the clustering, overlapping60

trajectories are readily identifiable and the disconnectivity graph was then constructed assuming that all overlapping trajectories61

represent a single basin.62

It was observed that the initial P1 minimizations at the start of the threshold simulations led to some minima coalescing.63

Consequently, the disconnecivity graphs appear to have fewer ‘initial minima’ than expected. For benzene the 5.0 kJ mol-164

disconnectivity graph indicates 90 distinct initial structures from the 100 CSP structures, for acrylic acid it is 97 from 100, and65

for resorcinol it is 45 from 50. In the case of benzene and resorcinol, this can be partly attributed to combining CSP landscapes66

generated by searching selected space groups with simulations in P1 because some minima in the space group symmetry may67

not be minima when the symmetry is removed (due to the additional degrees of freedom). However, this cannot be entirely68

the cause considering the same behaviour is observed for the resorcinol structures, which were optimised in P1 as part of the69

DFTB stage before the simulations. From this, it seems that some of the coalescing minima may then also be due to instability70

in the minimizer algorithms. Removing the duplicate trajectories of coalesced structures was not found to alter the results,71

which is expected since in order to coalesce the two structures must be within the same basin. Nevertheless, this does represent72

inefficient sampling, and thus ideally threshold clustering should be combined with CSP landscapes wherein the structures are73

true minima on the P1 energy surface.74
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3. Comparison of Threshold Clustering and MD-based Methodologies75

To further expand on the comparison of methods for reducing CSP overprediction we have collected here the advantages and76

disadvantages of the proposed threshold clustering method and the established MD with enhanced sampling approach.77

Firstly, as stated in the main text in terms of complexity of the workflow and software required, threshold clustering is78

much simpler than the MD approaches so far proposed. However, MD software is more well developed and accessible, which79

has practical benefits.80

The enhanced sampling dynamics approaches, sch as metadynamics would be expected to more efficiently search high81

dimensional configurational spaces, such as that of highly flexible molecules, than random walkers. However, these typically82

rely on enhanced sampling along a collective variable (CV), which introduces sensitivity of the results to the choice of CV. Of83

course, this is not a like-for-like comparison and there are more efficient MC methods for exploring complex spaces that could84

be applied to improve the performance of threshold clustering.85

Finally, threshold clustering is readily compatible with the static energy methods that are ubiquitous in the lattice energy86

approach of conventional CSP. While MD methods could in principal use these energy models, practically it is not an insignificant87

challenge, which is evidenced by the lack of examples in the literature. Overall, the performance of these methods will likely88

vary depending on the system and a perfect comparison will be challenging. Moreover, we do not expect such comparisons to89

be helpful in regard to advancing methods for reducing overprediction and thus such work is not in our future plans.90
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Fig. S1. Initial predicted landscape for acrylic acid. The matches to the experimental polymorphs and the energy cutoff for the structures included in threshold clustering
simulations are shown.
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Fig. S2. Initial predicted landscape for resorcinol. The matches to the experimental polymorphs and the energy cutoff for the structures included in threshold clustering
simulations are shown.
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Fig. S3. Threshold clustering results of the lowest 100 structures predicted Benzene structures showing the disconnectivity graph under energy thresholds of 2.5 kJ mol-1

(above) and 5.0 kJ mol-1 (below). Initital Structures are coloured blue.
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Fig. S4. Disconnectivity graph of the from the threshold simulations of the 100 lowest energy predicted acrylic acid structures. The structures are coloured by their corresponding
hydrogen bonding motif. Structures that do not correspond to purely dimer or chain motifs are coloured grey.
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Fig. S5. Disconnectivity graph of the from the threshold simulations of the 100 lowest energy predicted acrylic acid structures. The structures are coloured depending whether
closer to the anti-anti conformation or the anti-syn conformation.
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Fig. S6. Crystal structure overlay of the second and fourth lowest energy predicted resorcinol structures which have the same packing but different conformations. The
conformation determines the direction of a hydrogen bonding chain.
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Fig. S7. Convergence of the connections between the initial structures for benzene (a), acrylic acid (b), and resorcinol (c) with increasing number of trajectories initiated per
structure: one (left), two (middle), and three (right). MC Structures that were not part of the initial CSP have been omitted from the disconnectivity graphs for clarity.
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Table S1. Breakdown of the cost in CPU hours to apply threshold clustering to each of the CSP landscapes. Considering the convergence
presented above, we have provided an estimated total cost for running a single trajectory per initial structure.

Benzene Acrylic Acid Resorcinol
Monte Carlo Simulations 2877 1905 2052
Lattice Energy Minimisations 14049 9111 47100
Clustering 272 309 893
Total 17198 11325 50045
Estimate for single trajectory 5732 3775 16681
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