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Figure S1: Relation of qGI and lfc-based screen replicate correlation. (a) Fitness effects of genes in equally sized bins. The
fitness effects represent the mean LFC scores across the two FASN KO replicates screens indicated. (b) qGI effects of genes in
equally sized bins. qGI scores represent the mean across the two FASN KO screens indicated. (c) Replicate Pearson correlation
coefficients per bin based on LFC (blue) and qGI (orange) scores. Each bin contains exactly 3560 genes that were all taken from
the same screen (see methods). (d) Reproducibility of dLFC effects in four cell lines with different sets of replicate PCCs and WBCs.
Circle size indicates each gene’s dLFC reproducibility and corresponds to the per-gene dLFC product between replicate screens.
Colored dots are the most reproducible genes for a given cell line and match the visible dots in Figure 1i.
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Figure S2: Reproducibility metrics applied to yeast SGA genetic interaction
data. (a) Between-biological replicate correlation of double mutant fitness(dmf) and
genetic interaction scores (epsilon). The mean Pearson correlation coefficient
between 24 query genes screened in biological duplicates against ~4000 array
genes is shown. (b) WBC scores show the difference between each of the query
screens contrasted to the remaining 23 queries by using dmf and epsilon scores. 
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Figure S3: Signal sparsity and background correlation in DepMap CRISPR screens. (a) Per-screen signal
across 693 DepMap screens. The signal is represented by the standard deviation across all gene values in a given
cell line and is shown at the LFC (top) and dLFC (bottom) data processing level. (b) The dependency between
per-screen signal (x-axis) and the background (between-context) screen correlation. For each cell line, the mean
of the background correlation distribution is plotted. The dependency is measured using the Pearson correlation
coefficient.
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Figure S4: WBC stability at different numbers of FASN and non-FASN KO screens. (a) Within-FASN KO
replicate to between FASN KO and non-FASN KO screen ratio of PCCs (WBC; see methods for details). The 3
FASN KO screens were compared to all possible 2, 3 or 4 screen sets of the 5 non-FASN KO (control) screens.
Boxplots show the 10 (2 screen possibilities), 10 (3) and 5 (4) WBC gene-level estimates. (b) Within-FASN KO
replicate to between FASN KO and non-FASN KO screen ratio of PCCs. Done as in (a) but with all possible pairs
of 2 FASN KO screens. 



Method S1: Implementation of the WBC score

Maximilian Billmann

2023-02-20

Load data

CRISPR screening data from Aregger et al., Nature Metabolismn 2020 loaded. See description of each object

below.

load(file = "data/crispr_data_input/t0d.rda")

load(file = "data/crispr_data_input/t0_gene.rda")

load(file = "data/crispr_data_input/t18d.rda")

load(file = "data/crispr_data_input/t18_gene.rda")

load(file = "data/crispr_data_input/fcGuides.rda")

load(file = "data/crispr_data_input/dLFC_rawGI_gRNA.rda")

load(file = "data/crispr_data_input/dLFC_rawGI.rda")

load(file = "data/crispr_data_input/gi.rda")

load(file = "data/crispr_data_input/giStats.rda")

Di�erent data objects are loaded for the 8 screens (FASN x3, SREBF1, SREBF2, LDLR, C12orf49/LUR1,

ACACA) reported in Aregger et al., Nature Metabolism 2020. t0d and t18d contain normalized gRNA

readcounts at the start and end of the experiment, respectively. t0_gene and t18_gene contain those values

summarized per gene for each gene with at least 2 gRNAs. fcGuides contains gRNA-level log2-foldchange

(lfc) data. dLFC_rawGI_gRNA contains gRNA-level di�erential lfc (dLfc) data (where lfc values measured

in a wildtype HAP1 screen are subtracted from a query HAP1 screen). dLFC_rawGI contains gene-level dLfc

data. gi contains gRNA-level genetic interaction (GI) scores. giStats contains gene-level lfc and quantitative

GI (qGI) scores.

Within-vs-Between context replicate Correlation (WBC) score

Implement Within-vs-Between context replicate Correlation (WBC) score function. The input data object

contains screens as columns and measurements (gRNAs, genes) as rows. This data object can be readcounts,

lfc values or GI scores.

wbc_func <- function(x, # data object, contains screens as columns, measurements as rows
qoi, # IDs of replicated screens to test
q_anno, # IDs of all screens or just non-qoi screens
metric = "WBC") { # output WBC or PCC

if(missing(q_anno)) {

q_anno <- colnames(x)

} else {

q_anno <- unique(c(qoi, q_anno)) #relevant if qoi not in q_anno
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}

x <- cor(x[,q_anno], use = "pairwise.complete.obs") #Pearson cor. coeff. (default)

qoi <- qoi[qoi %in% q_anno]

cor_in <- x[qoi,qoi]

cor_in <- cor_in[lower.tri(cor_in, diag = F)] #within replicate correlation

cor_out <- as.vector(x[qoi, q_anno[!q_anno %in% qoi]]) #between replicate correlation

if(metric == "WBC") { # for each screen of interest gets separate WBC
x <- (cor_in - mean(cor_out, na.rm = T)) / sd(cor_out, na.rm = T)

x <- c(x, mean(x, na.rm=T)) # for each screen plus their mean
}

if(metric == "PCC") {

x <- c(cor_in, mean(cor_in, na.rm = T))

}

x

}

Prepare array for FASN reproducibility stats. Here, the 3 possible per-FASN screen-pair reproducibility is

reported as well as the mean reproducibility. Both, the WBC and the Pearson correlation coe�cient (PCC)

are reported.

wbc_stats <- array(NA, dim = c(5, 4, 2, 2),

dimnames = list(c("t0","t18","lfc","dlfc","qGI"),

c("12","13","23","mean"),

c("gRNA","gene"), c("pcc","wbc")))

Define control screens or use all 5 non-FASN screens (default). Note: since those query genes have biological

functions related to FASN, they are likely more similar to FASN than expected by chance. Therefore, the

true reproducibility of the FASN screens, expressed as WBC score, are likely higher.

FASN screening IDs are the first 3 colnames in this object.

Qoi <- colnames(giStats)[1:3]

Run the WBC implementation for all data processing levels at gRNA and gene-level.

for(j in 1:dim(wbc_stats)[4]) {

m <- c("PCC","WBC")[j]

wbc_stats["t0",,"gRNA",j] <- wbc_func(x = t0d[,,"norm"], qoi = Qoi, metric = m)

wbc_stats["t0",,"gene",j] <- wbc_func(x = t0_gene[,,"mean"], qoi = Qoi, metric = m)

wbc_stats["t18",,"gRNA",j] <- wbc_func(x = t18d, qoi = Qoi, metric = m)

wbc_stats["t18",,"gene",j] <- wbc_func(x = t18_gene[,,"mean"], qoi = Qoi, metric = m)

wbc_stats["lfc",,"gRNA",j] <- wbc_func(x = fcGuides, qoi = Qoi, metric = m)

wbc_stats["lfc",,"gene",j] <- wbc_func(x = giStats[,,"mean","lfc"], qoi = Qoi, metric = m)

wbc_stats["dlfc",,"gRNA",j] <- wbc_func(x = dLFC_rawGI_gRNA, qoi = Qoi, metric = m)

wbc_stats["dlfc",,"gene",j] <- wbc_func(x = dLFC_rawGI, qoi = Qoi, metric = m)
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wbc_stats["qGI",,"gRNA",j] <- wbc_func(x = gi, qoi = Qoi, metric = m)

wbc_stats["qGI",,"gene",j] <- wbc_func(x = giStats[,,"mean","qGI"], qoi = Qoi, metric = m)

}

Show WBC scores

Plot WBC scores and PCCs to generate Figure 1b and c.

scol <- c("#74c476","#bae4b3","#31a354")

par.p <- par(mfrow = c(1,2))

y <- barplot(t(wbc_stats[5:1,"mean",,"pcc"]), beside = T, xlim = c(0,1), las = 1,

xlab = "Mean PCC", horiz = T, col = c("#dbdbdb","#525252"), border = "white")

for(i in 1:3) {

points(wbc_stats[5:1,i,"gRNA","pcc"], y[1,], pch = 21, bg = scol[i], cex = 1.3) #gRNA
points(wbc_stats[5:1,i,"gene","pcc"], y[2,], pch = 21, bg = scol[i], cex = 1.3) #gene

}

abline(v = c(0,1))

legend("bottomright", legend = c("gene","gRNA"), fill = c("#525252","#dbdbdb"))

y <- barplot(t(wbc_stats[5:1,"mean",,"wbc"]), beside = T, las = 1,

xlim = c(0, max(wbc_stats[,,,"wbc"])), xlab = "Mean WBC",

horiz = T, col = c("#dbdbdb","#525252"), border = "white")

abline(v = c(0,3), col = "black", lty = c(1,3), lwd = 1)

for(i in 1:3) {

points(wbc_stats[5:1,i,"gRNA","wbc"], y[1,], pch = 21, bg = scol[i], cex = 1.3) #gRNA
points(wbc_stats[5:1,i,"gene","wbc"], y[2,], pch = 21, bg = scol[i], cex = 1.3) #gene

}

legend("topright", legend = c("gene","gRNA"), fill = c("#525252","#dbdbdb"))
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par(par.p)

## R version 4.2.1 (2022-06-23)

## Platform: aarch64-apple-darwin20 (64-bit)

## Running under: macOS Monterey 12.6.3

##

## Matrix products: default

## BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib

## LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib

##

## locale:

## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## loaded via a namespace (and not attached):

## [1] compiler_4.2.1 magrittr_2.0.3 fastmap_1.1.0 cli_3.3.0

## [5] tools_4.2.1 htmltools_0.5.3 rstudioapi_0.14 yaml_2.3.5

## [9] stringi_1.7.8 rmarkdown_2.16 highr_0.9 knitr_1.40

## [13] stringr_1.4.1 xfun_0.32 digest_0.6.29 rlang_1.0.5

## [17] evaluate_0.16
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