Robust, ultrathin, and highly sensitive reduced graphene oxide/silk fibroin wearable sensors responded to temperature and humidity for physiological detection

Hyeonho Cho^{a,†}, Chanui Lee^{a,†}, ChaBum Lee^b, Sangmin Lee^a, and Sunghan Kim^{a,*}

 ^a School of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea
^b J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123, USA

* Corresponding Author E-mail: sunghankim@cau.ac.kr

[†]Hyeonho Cho and Chanui Lee contributed equally to this work.

Figure S1. Schematic of the measurement methods used for the responsivity of a sensor: (a) varying the temperature and (b) varying the humidity.

Figure S2. Resistance of rGO and rGO/SF sensors fabricated with different reduction temperatures.

Figure S3. Representative EDS plots of rGO and rGO/SF films fabricated with a reduction temperature of 230 °C.

Figure S4. AFM images: (a) a force image and (b) a morphological image of an rGO/SF film scanned in the contact mode. The scale bars are 10 μ m in length.

Figure S5. Force-displacement (FD) curves of the z-stage for (a) rGO and (b) rGO/SF films.

Figure S6. Load-deflection plots for (a) rGO and (b) rGO/SF films, constructed for (c) the measurement of the approaching and retracting directions.

(a)

(b)

Roughness (R_q): 3.25 ± 0.51 nm Roughness (R_q): 3.06 ± 0.69 nm

Roughness (R_q): 4.68 \pm 1.02 nm

(d)

Roughness (R_q): 2.80 \pm 0.93 nm

Figure S7. Morphological AFM images of rGO films fabricated with reduction temperatures of (a) 155 and (b) 230 °C. Morphological AFM images of rGO/SF films fabricated with reduction temperatures of (c) 155 and (d) 230 °C.

Figure S8. FTIR spectra of rGO/SF films fabricated with reduction temperatures of 155 (black), 200 (red), and 230 °C (blue).

Figure S9. AFM images of (a) an rGO/SF film without an LbL structure (*z*-scale: 400 nm), (b) an rGO/SF film with an LbL structure (*z*-scale: 70 nm), (c) an rGO film (*z*-scale: 30 nm), and (d) an SF film (*z*-scale: 70 nm).

Figure S10. Resistance-temperature curves of rGO-sensor-based temperature sensors fabricated with reduction temperatures of (a) 155, (b) 170, (c) 185, (d) 200, (e) 215, and (f) 230 °C.

Figure S11. Resistance-temperature curves of rGO/SF-sensor-based temperature sensors fabricated with reduction temperatures of (a) 155, (b) 170, (c) 185, (d) 200, (e) 215, and (f) 230 °C.

Sensing material	Sensitivity [%/K] at 300 K	Temp. range [°C]	Method	Response (recovery) time(s)	Reference
rGO	0.63	30–80	Wet-spinning	7 (20)	[1]
Crosslinked PEDOT:PSS	0.77	25–50	Printing	1.5 (6)	[2]
rGO/CB	0.6	20–60	Spray-coating	100	[3]
rGO	1.30	25–45	Spray-coating	0.33	[4]
rGO/PU	1.20	30–80	Wet-spinning	7 (70)	[5]
GO/PEDOT:PSS	1.09	25–100	Printing	18 (32)	[6]
rGO-based materials	2.77	30–100	Dip-coating	5.5 (5.1)	This work

Table S1. Specifications and comparison of some wearable temperature sensors and their performance

Table S2. Specifications and comparison of some wearable humidity sensors and their performance

Sensing material	Sensor type	Sensitivity	Humid. range [%RH]	Response (recovery) time(s)	Reference
rGO/CB	Resistance	161.16%	16–95	300 (100)	[3]
PDDA/RGO	Resistance	8.69%– 37.43%	11–97	108–147 (94–133)	[7]
Pt-nRGO	Resistance	4.51%	6.1–66.4	-	[8]
GO	Capacitance	3215.25 pF/%RH	10–90	15.8	[9]
LIG/GO	Capacitance	9150 pF/%RH	11–97	49 (2)	[10]
rGO/ND	Capacitance	13086 pF/%RH	11–97	8 (1.5)	[11]
rGO-based materials	Resistance	48.28%	11–97	45 (40)	This work

Figure S12. Response and recovery curves of the rGO/SF sensor for a reduction temperature of 170 °C: (a) between the temperatures of 25 °C to 27 °C and (b) between relative humidity values of 50% to 85%.

Figure S13. (a) Experimental setup used to measure the thickness of GO and rGO/SF films. (b) AFM images of the rGO film fabricated with a reduction temperature of 155 °C were obtained for various temperatures of the heating stage at a specific location. All scale bars are 2 μ m.

Figure S14. (a) AFM images of an rGO film at 30 °C before and after heating the film to 80 °C. (b) Thickness of the rGO film at 30 °C before heating, at 80 °C, and at 30 °C after heating and cooling. All scale bars are 3 μ m.

Figure S15. Schematic of the measurement methods used for the cyclic responsivity of sensors: (a) varying the temperature and (b) varying the humidity.

(a) rGO 200 °C: Delamination

Figure S16. (a) Surface of rGO 200 °C and (b) rGO/SF 200 °C after the repeated bending test. The surface of rGO 200 °C was delaminated in the region indicated by the red arrow.

(b)

References

[1] Trung, T.-Q.; Le, H.-S.; Dang, T.-M.-L.; Ju, S.; Park, S.-Y.; Lee, N.-E. Freestanding, fiberbased, wearable temperature sensor with tunable thermal index for healthcare monitoring. *Adv. Healthc. Mater.*, **2018**, *7*, 1800074.

[2] Wang, Y.-F.; Sekine, T.; Takeda, Y.; Yokosawa, K.; Matsui, H.; Kumaki, D.; Shiba, T.; Nishikawa, T.; Tokito, S. Fully printed PEDOT: PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring. *Sci. Rep.*, **2020**, *10*, 1.

[3] Liu, H.; Xiang, H.; Wang, Y.; Li, Z.; Qian, L.; Li, P.; Ma, Y.; Zhou, H.; Huang, W. A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. *ACS Appl. Mater. Interfaces*, **2019**, *11*, 40613.

[4] Liu, Q.; Tai, H.; Yuan, Z.; Zhou, Y.; Su, Y.; Jiang, Y. A high-performance flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring. *Adv. Mater. Technol.*, **2019**, *4*, 1800594.

[5] Trung, T.-Q.; Dang, T.-M.-L.; Ramasundaram, S.; Toi, P.-T.; Park, S.-Y.; Lee, N.-E. A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature. *ACS Appl. Mater. Interfaces*, **2018**, *11*, 2317.

[6] Soni, M.; Bhattacharjee, M.; Ntagios, M.; Dahiya, R. Printed temperature sensor based on PEDOT:PSS-graphene oxide composite. *IEEE Sens. J.*, **2020**, *20*, 7525.

[7] Zhang, D.; Tong, J.; Xia, B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. *Sens. Actuator B-Chem.*, **2014**, *197*, 66.

[8] Choi, S. J.; Yu, H.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Nitrogendoped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. *Small*, **2018**, *14*, 1703934.

[9] Lan, L.; Le, X.; Dong, H.; Xie, J.; Ying, Y.; Ping, J. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. *Biosens. Bioelectron.*, **2020**, *165*, 112360.

[10] Zhu, C.; Tao, L. Q.; Wang, Y.; Zheng, K.; Yu, J.; Xiandong, L.; Chen, X.; Huang, Y. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. *Sens. Actuator B-Chem.*, **2020**, 325, 128790.

[11] Yu, X.; Chen, X.; Ding, X.; Chen, X.; Yu, X.; Zhao, X. High-sensitivity and low-hysteresis humidity sensor based on hydrothermally reduced graphene oxide/nanodiamond. *Sens. Actuator B-Chem.*, **2020**, *283*, 761.