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(a) 

(b) 

Figure S1. Schematic of the measurement methods used for the responsivity of a sensor: (a) varying 

the temperature and (b) varying the humidity. 



3 

 

 

 

  

Figure S2. Resistance of rGO and rGO/SF sensors fabricated with different reduction temperatures. 
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Figure S3. Representative EDS plots of rGO and rGO/SF films fabricated with a reduction temperature 

of 230 °C. 
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(a) (b) 

Figure S4. AFM images: (a) a force image and (b) a morphological image of an rGO/SF film scanned 

in the contact mode. The scale bars are 10 μm in length.  
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(a) (b) 

Figure S5. Force-displacement (FD) curves of the z-stage for (a) rGO and (b) rGO/SF films. 
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(a) 

(b) 

(c) 

Figure S6. Load-deflection plots for (a) rGO and (b) rGO/SF films, constructed for (c) the measurement 

of the approaching and retracting directions. 
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(a) (b) 

(c) (d) 

Figure S7. Morphological AFM images of rGO films fabricated with reduction temperatures of (a) 155 

and (b) 230 °C.  Morphological AFM images of rGO/SF films fabricated with reduction temperatures 

of (c) 155 and (d) 230 °C. 
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Figure S8. FTIR spectra of rGO/SF films fabricated with reduction temperatures of 155 (black), 200 

(red), and 230 °C (blue).  
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Figure S9. AFM images of (a) an rGO/SF film without an LbL structure (z-scale: 400 nm), (b) an rGO/SF 

film with an LbL structure (z-scale: 70 nm), (c) an rGO film (z-scale: 30 nm), and (d) an SF film (z-scale: 

70 nm). 

(a) (b) 

(c) (d) 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure S10. Resistance-temperature curves of rGO-sensor-based temperature sensors fabricated with 
reduction temperatures of (a) 155, (b) 170, (c) 185, (d) 200, (e) 215, and (f) 230 °C. 



12 

 

 

 

  

(a) (b) 

(c) (d) 

(e) (f) 

Figure S11. Resistance-temperature curves of rGO/SF-sensor-based temperature sensors fabricated 
with reduction temperatures of (a) 155, (b) 170, (c) 185, (d) 200, (e) 215, and (f) 230 °C. 
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Table S1. Specifications and comparison of some wearable temperature sensors and their performance 

 

Table S2. Specifications and comparison of some wearable humidity sensors and their performance 

 

 

Sensing material 
Sensitivity 

[%/K] at 300 
K 

Temp. 
range 
[˚C] 

Method 
Response 
(recovery) 

time(s) 
Reference 

rGO 0.63 30–80 Wet-spinning 7 (20) [1] 

Crosslinked 
PEDOT:PSS 

0.77 25–50 Printing 1.5 (6) [2] 

rGO/CB 0.6 20–60 Spray-coating 100 [3] 

rGO 1.30 25–45 Spray-coating 0.33 [4] 

rGO/PU 1.20 30–80 Wet-spinning 7 (70) [5] 

GO/PEDOT:PSS 1.09 25–100 Printing 18 (32) [6] 

rGO-based 
materials 

2.77 30–100 Dip-coating 5.5 (5.1) This work 

Sensing material 
Sensor 

type 
Sensitivity 

Humid. 
range 
[%RH] 

Response 
(recovery) 

time(s) 
Reference 

rGO/CB Resistance 161.16% 16–95 300 (100) [3] 

PDDA/RGO Resistance 
8.69%–
37.43% 

11–97 
108–147 
(94–133) 

[7] 

Pt-nRGO Resistance 4.51% 6.1–66.4 - [8] 

GO Capacitance 
3215.25 
pF/%RH 

10–90 15.8 [9] 

LIG/GO Capacitance 
9150 

pF/%RH 
11–97 49 (2) [10] 

rGO/ND Capacitance 
13086 

pF/%RH 
11–97 8 (1.5) [11] 

rGO-based 
materials 

Resistance 48.28% 11–97 45 (40) This work 
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(b) (a) 

Figure S12. Response and recovery curves of the rGO/SF sensor for a reduction temperature of 

170 °C: (a) between the temperatures of 25 °C to 27 °C and (b) between relative humidity values of 

50% to 85%. 
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Figure S13. (a) Experimental setup used to measure the thickness of GO and rGO/SF films.  (b) AFM 

images of the rGO film fabricated with a reduction temperature of 155 °C were obtained for various 

temperatures of the heating stage at a specific location.  All scale bars are 2 μm. 

(a) (b) 
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Figure S14. (a) AFM images of an rGO film at 30 °C before and after heating the film to 80 °C.  (b) 

Thickness of the rGO film at 30 °C before heating, at 80 °C, and at 30 °C after heating and cooling.  All 

scale bars are 3 μm. 

  

(a) (b) 
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(a) 
(b) 

Figure S15. Schematic of the measurement methods used for the cyclic responsivity of sensors: (a) 

varying the temperature and (b) varying the humidity. 
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Figure S16. (a) Surface of rGO 200 °C and (b) rGO/SF 200 °C after the repeated bending test.  The 

surface of rGO 200 °C was delaminated in the region indicated by the red arrow. 

(a) (b) 
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