1 Supporting Information

- 2 Article title: Tomato LysM receptor kinase 4 mediates chitin-elicited fungal resistance in
- 3 both leaves and fruit
- 4 Authors: Yingfei Ai¹, Qinghong Li¹, Chenying Li¹, Ran Wang¹, Xun Sun¹, Songyu Chen¹, Xin-
- 5 Zhong Cai², Xingjiang Qi^{3#}, and Yan Liang^{1#}
- 6
- 7 The following Supporting Information is available for this article:
- 8 Fig. S1 Phylogenetic tree of LYK family in *Arabidopsis thaliana* and *Solanum lycopersicum*.
- 9 Fig. S2 Chitin induces *SILYK4* expression.
- 10 Fig. S3 The transcript levels of *SlWRKY33* and *SlWRKY53* are lower in *sllyk4* mutants than
- in the wild type after chitin treatment.
- 12 Fig. S4 Biomass of *Botrytis cinerea* in *sllyk4* leaves is higher than in the wild type.
- 13 Fig. S5 *Sllyk4* mutants are susceptible to *Sclerotinia sclerotiorum*.
- 14 Fig. S6 *Slcerk1* mutants impair chitin-induced immune responses in tomato leaves.
- 15 Fig. S7 Sequence alignment of the kinase domain.
- 16 Fig. S8 SILYK4 associates with SICERK1.
- 17 Fig. S9 *SICERK1* expression pattern.
- 18 Fig. S10 Spatiotemporal expression pattern of *SILYK4*.
- 19 Fig. S11 *SlLYK4* expression in fruit is induced by low temperature and CaCl₂ treatment.
- 20 Fig. S12 SILYK4 localizes to the cell peripheral region.
- 21 Fig. S13 *SlLYK4* overexpression enhances plant resistance to *Sclerotinia sclerotiorum*.
- 22 Fig. S14 *SILYK4* overexpression does not affect fruit cuticle thickness.
- 23 Table S1 Primers used in this study
- 24 Table S2 Vectors used in this study
- 25 Table S3 Accession number of genes mentioned in this study
- 26

Fig. S1 Phylogenetic tree of LYK family in *Arabidopsis thaliana* and *Solanum lycopersicum*.

- An unrooted phylogenetic tree was constructed using the Maximum Likelihood method with the
- 29 MEGA 6.0 program. The full-length amino acid sequences of all lysin motif receptor-like
- 30 kinases (LYKs) from *A. thaliana* (At) and *S. lycopersicum* (Sl) were used for the phylogenetic
- 31 tree. Robustness of the topology was assessed by 1000 bootstrap replications.
- 32

36 Fig. S2 Chitin induces *SILYK4* expression. RNA was extracted from 2-week-old tomato roots

- 37 (A) and leaves (B) 30 min after treatments with H₂O or chitin. The transcript levels of *SlLYK4*,
- 38 *SlLYK6*, and *SlLYK7* were detected by qRT-PCR. Data are expressed as mean \pm SD (n = 3).
- 39 $SlEF1\alpha$ served as the internal control. Asterisks indicate significant differences from the H₂O
- 40 control (** $P \le 0.01$, Student's *t*-test). Ns stands for no significant differences.

- 43 Fig. S3 The transcript levels of *SlWRKY33* and *SlWRKY53* are lower in *sllyk4* mutants than
- in the wild type after chitin treatment. RNA was extracted from 2-week-old tomato leaves of
- 45 wild type (WT) and *sllyk4* mutants 30 min after treatments with H₂O or chitin. The transcript
- levels of *SlWRKY33* (A) and *SlWRKY53* (B) were detected by qRT-PCR. *SlEF1α* was used as an
- internal control. Data are expressed as mean \pm SD (n = 3). Different letters indicate significant
- 48 differences between WT and *sllyk4* mutants ($P \le 0.05$, one-way ANOVA).

- 51 Fig. S4 Biomass of *Botrytis cinerea* in *sllyk4* leaves is higher than in the wild type. Six-week-
- 52 old leaves were detached and drop-inoculated with 2.5 µL of *B. cinerea* spore suspension
- solution $(1 \times 10^5 \text{ spores/mL})$. Biomass of *B. cinerea* was quantified by DNA-based qPCR. The
- plant biomass was normalized by *SlEF1* α . Data are expressed as mean \pm SD (n = 4). Different
- letters indicate significant differences between wild-type (WT) and *sllyk4* mutants ($P \le 0.05$,
- 56 one-way ANOVA).

Fig. S5 *Sllyk4* mutants are susceptible to *Sclerotinia sclerotiorum*. Six-week-old detached leaves were inoculated with *S. sclerotiorum* (A), and lesion areas (cm²) were calculated 36 h post-inoculation (B). Scale bars: 1 cm. Data are expressed as mean \pm SE (n = 10). Different letters indicate significant differences between genotypes ($P \le 0.05$, one-way ANOVA).

64

Fig. S6 Slcerk1 mutants impair chitin-induced immune responses in tomato leaves. (A) 66 Schematic representation of SICERK1. Boxes and lines represent gene exons and introns; the 67 gRNA sequences are shown above it, and the structural feature of the protein is shown below it. 68 LysM, LysM motif; TM, transmembrane region (237–260 amino acids). The *slcerk1-2* line has a 69 6-bp deletion, and the *slcerk1-3* line has a 1-bp insertion. (B) The transcript levels of *SlCERK1* in 70 slcerk1-2 and slcerk1-3 mutants were lower than those in the wild type (WT). RNA was 71 extracted from 2-week-old WT and slcerk1 mutant leaves and roots. The transcript levels of 72 SICERK1 were detected by qRT-PCR. SIEF1 α was used as an internal control. Data are 73 presented as means \pm SD from four biological replicates. Different letters indicate significant 74 differences between WT and *slcerk1* mutants ($P \le 0.05$, one-way ANOVA). (C, D) The *slcerk1* 75 mutants showed reduced ROS production after chitin treatment (50 µg/mL). ROS levels were 76 monitored using a chemiluminescence assay, and signals were recorded for 30 min. The line 77 graphs were plotted with values recorded at 60-sec intervals (C), and the total ROS production is 78 shown in (D). Data are presented as mean \pm SE (n = 8). Different letters indicate significant 79 differences between WT and *slcerk1* mutants ($P \le 0.05$, one-way ANOVA). (E) The abundance 80 of phosphorylated mitogen-activated protein kinase (MAPK). Proteins were extracted from 8-d-81 old tomato cotyledons at the indicated time points after treatment with 50 µg/mL chitin. MAPK 82 phosphorylation was detected with an immunoblot analysis using an α -p42/44 MAPK antibody, 83 and an α-Actin antibody served as a loading control. Band intensity was measured by Image J. 84 Numbers on the blot indicate the relative levels of phosphorylated MAPK proteins in the mutants 85 normalized to those in the WT. (F-H) The slcerkl mutants were susceptible to B. cinerea. Six-86 87 week-old tomato leaves were detached and spot-inoculated with 2.5 μ L of *B. cinerea* spores (1 × 10⁵ spores/mL). Images were taken 3 d post inoculation (dpi), and representative images are 88 shown in (F). Lesion diameter in leaves was measured (G). Data are presented as the means \pm 89 SD (n = 10). Biomass of *B. cinerea* was quantified by DNA-based qPCR (H). Data are presented 90 as the means \pm SD (n = 4). Different letters indicate significant differences between the WT and 91 92 *slcerk1* mutants ($P \le 0.05$, one-way ANOVA). Scale bars: 1 cm.

slcerk1-2 slcerk1-3

ŵт

0.0 WT slcerk1-2slcerk1-3

А

Fig. S7 Sequence alignment of the kinase domain. Multiple Sequence alignment was carried
out by ClustalW using the amino acid (aa) sequences from the intracellular domain of SILYK4,
SICERK1, AtCERK1, AtLYK4, and AtLYK5. The kinase subdomains are labeled with roman

- numerals. Red boxes represent amino acids necessary for kinase activity. Fragments used for
- alignment are shown as follows: SlLYK4 (Solyc02g089900): 294–645 aa, SlCERK1
- 100 (Solyc07g049180): 256–626 aa, AtLYK5 (At2g33580): 301–664 aa, AtLYK4 (At2g23770):
- 101 295–612 aa, AtCERK1 (At3g21630): 255–671 aa.

102 103

105 Fig. S8 SILYK4 associates with SICERK1. (A) Chitin-induced SILYK4-SICERK1 association.

106 HA-tagged SlLYK4 and Myc-tagged SlCERK1 were co-expressed in *Arabidopsis* protoplasts.

- 107 Proteins were extracted from protoplasts 15 min after treatment with or without chitin (100
- 108 μ g/mL) and then immunoprecipitated with α -HA magnetic beads. Input and co-
- 109 immunoprecipitated proteins were detected by immunoblot analysis with α -HA and α -Myc
- antibodies. (B) SILYK4 interacted with SICERK1 at the plasma membrane. SILYK4-SICERK1
- association was detected by a bimolecular fluorescence complementation assay. SlLYK4 and
- 112 SICERK1 were fused to the N- or C-terminal portion of the yellow fluorescence protein (YFP).
- 113 The fusion proteins were co-expressed in *Arabidopsis* protoplasts. Images were obtained using a
- 114 confocal laser scanning microscope.

118119

115 116

Fig. S9 *SICERK1* expression pattern. RNA was extracted from the root, stem, leaf, flower, and
 fruit of tomato Micro-Tom. Transcript levels of *SICERK1* were detected using qRT-PCR.

- 122 SIEF1 α was used as an internal control. Data are presented as the means \pm SD (n = 3). Different
- letters indicate significant differences in tissues ($P \le 0.05$, one-way ANOVA).

124

125

Fig. S10 Spatiotemporal expression pattern of *SILYK4*. (A) Histochemical GUS staining of
floral organs, root, stem, and leaf of *SILYK4p::GUS* transgenic tomato plants for 24 h. Scale
bars: 0.5 cm. (B) Histochemical GUS staining of 8-d-old transgenic tomato seedlings for 24 h.
Scale bars: 200 μm. (C) Histochemical GUS staining of tomato immature green fruit, mature

131 green fruit, and breaker stage fruit for 8 h. Scale bars: 0.5 cm.

134 Fig. S11 *SlLYK4* expression in fruit is induced by low temperature and CaCl₂ treatment.

135 RNA was extracted from fruit after treatments with low temperature (A), 1% CaCl₂, 2% NaCl,

- and 500 mM mannitol (B). The transcript level of *SlLYK4* was detected by qRT-PCR. *SlACTIN7*
- 137 was used as an internal control. Data are presented as means \pm SD (n = 3). Asterisks indicate
- significant differences from the control treatment (* $P \le 0.05$, Student's *t*-test). Ns stands for no
- 139 significant differences.

140

141

143 Fig. S12 SILYK4 localizes to the cell peripheral region. Two-week-old leaves from 35S::GFP

- 144 (as control) and *35S::SlLYK4-GFP* transgenic lines were used to detect the subcellular
- localization of green fluorescent proteins. Images were obtained using a confocal laser scanning
- 146 microscope. Scale bars: 10 μm.

А

147

- 149 Fig. S13 SILYK4 overexpression enhances plant resistance to Sclerotinia sclerotiorum. Six-
- week-old detached leaves were inoculated with S. sclerotiorum (A), and lesion areas (cm^2) were
- calculated 36 h post-inoculation (B). Scale bars: 1 cm. Data are expressed as mean \pm SE (n = 10).
- 152 Different letters indicate significant differences between genotypes ($P \le 0.05$, one-way ANOVA).

в

153

А

- Fig. S14 *SILYK4* overexpression does not affect cuticle thickness. (A) Cuticle sections stained
 with Sudan IV to visualize the cutinization of epidermal cell walls in Micro-Tom (WT),
- 156 35S::GFP, and 35S::SILYK4-GFP. Scale bars: 25 μm. (B) Quantification of the cuticle thickness
- 157 of epidermal cell walls. Different letters indicate significant differences between genotypes
- 158 ($P \le 0.05$, one-way ANOVA).
- 159

Table S1 Primers used in this study

Primers	Sequences (5'-3')
SILVK4-GW-F	GGGGACAAGTTTGTACAAAAAGCAGGCTACATGAATTATTCTCATCT
SIL I K+-O W-I	CATC
SILVK4-GW-R	GGGGACCACTTTGTACAAGAAAGCTGGGTCGGGCAATCTATGTGGTGA
SIL I K+-O W-K	CA
SILVK6 GW F	CA GGGGACAAGTTTGTACAAAAGCAGGCTACATGAATTGGCTTTTGAA
SIL I KO-O W-I	TATT
SILVK6 GW P	
SIL I KO-O W-K	
SILVK7_GW_F	AA GGGGACAAGTTTGTACAAAAGCAGGCTACATGGGTGATTTTCCACT
SILTK/-OW-I	TAT
SILVK7 GW D	
SILIK/-UW-K	
SILVEA VICS E	Α
SIL I К4-VIUS-Г	
CH VIZA VICE D	
SIL I K4-VIUS-K	
SILVEA VICS E	
SIL I KO-VIUS-F	
CILVICO D	
SIL I KO-VIUS-K	GUUUACTAUTTUTAUAAUAAAUUTUUUTUUAUTUUAATTATAAUUTU
SILVEZ VICE E	
SILYK/-VIUS-F	
OIL VIZZ VICO D	
SILYK/-VIGS-K	GUUUACLACIIIGIACAAUAAAUCIGUUICICCIIGICIICIGIICCC
SILYK4pro-F	GUUUACAAUTTUU AUAAAAAAGUAUUUTACAAATUTUUAUUCAAUAA
SILYK4pro-R	GGGGACCACIIIGIACAAGAAAGCIGGGICIIICAGIICAIIAGAAICA
CIEE DT E	
SIEF-qKI-F	GGAACTIGAGAAGGAAGGAAGAGTCT
SIEF-QKI-K	
SIACTIN/-qKI-F	
SIACTIN/- q KT-K	
SILYK4-qKI-F	
SILYK4-qKI-K	
SILYKI-qKI-F	
SILYKI-QKI-K	
SILYK6 apt p	
SILYKO-QKI-K	
SILYK/- q KI-F	
SIL I K $/-q$ K I - K	
SILYKI2-qKI-F	
SILYKI2-qKI-K	
SILINIS-QKI-F	
SILINIS-9KI-K	
51WKK I 55-9K I - F	
SIWKKISS-QKI-K	
SIWKKIJJ-QKI-F	
$D_{0}2$ E	
DCJ-K	UUAUUAAUAATTAATUUUATTTU

Table S2 Vectors used in this study

Vectors	Description	Purpose	Source or
pGWB5	C-terminal GFP tag	Generation of <i>SlLYK4-GFP</i> overexpression lines; <i>SlCERK1^{K355E}-GFP</i> , <i>SlLYK4-GFP</i> and <i>SlLYK7-GFP</i> transient expression in <i>N</i> benthamiana	
pGWB3	C-terminal GUS tag	Generation of <i>SlLYK4 promoter-GUS</i> transgenic lines	Nakagawa et
pGWB14	C-terminal $3 \times HA$ tag	<i>SlLYK4-HA</i> transient expression in <i>N</i> . <i>benthamiana</i> for CoIP	al.
pGWB17	C-terminal 4 × Myc tag	<i>SlCERK1^{K355E}-Myc</i> transient expression in <i>N. benthamiana</i> for CoIP	
pUC19-GW- Myc pUC19-GW-	C-terminal 4 × Myc tag C-terminal 3 × HA	<i>SlCERK1-Myc</i> transient expression in Arabidopsis protoplasts for CoIP SlLYK4-HA transient expression in	Laboratory stock
HA pAMPAT- YFPn/YFPc	tag C-terminal YFPn/YFPc tag	Arabidopsis protoplasts for CoIP <i>SICERK1^{K355E}-YFPn</i> and <i>SILYK4-</i> <i>YFPc</i> transient expression in Arabidopsis protoplasts for BiFC	Chen et al. ²
pTRV2	TRV-based VIGS vector	Putative SILYK4 silencing in tomato by VIGS	Liu et al. ³
pDEST15	N-terminal GST tag	Prokaryotic expression of the cytosolic kinase domains of SILYK4 and SICERK1	Laboratory stock

Table S3 Accession numbers of genes mentioned in this study.

Name	ID	Other name, remark ⁴
SICERK1	Solyc07g049180	Bti9, LYK1 ⁵
SILYK2	Solyc02g094010	
SILYK3	Solyc03g121050	
SlLYK4	Solyc02g089900	Tandem duplication with SlLYK7 ⁴
SlLYK6	Solyc12g089020	Kinase partly truncated
SILYK7	Solyc02g089920	Tandem duplication with SlLYK4
SILYK8	Solyc09g083200	Kinase truncated
		Tandem duplication with SlLYK9
SILYK9	Solyc09g083210	Tandem duplication with SlLYK8
SILYK10	Solyc02g065520	
SILYK11	Solyc02g081040	Tandem duplication with <i>SlLYK12</i>
SILYK12	Solyc02g081050	Tandem duplication with SlLYK11
SILYK13	Solyc01g098410	
SILYK14	Solyc06g069610	

SILYK15	Solyc11g069630	
AtCERK1	At3g21630	
AtLYK2	At3g01840	
AtLYK3	At1g51940	
AtLYK4	At2g23770	
AtLYK5	At2g33580	
SlWRKY33	Solyc09g014990	
SlWRKY53	Solyc08g008280	
SlACTIN7	Solyc03g078400	
SlEFa	Solyc06g005060	

¹⁶⁹ The accession numbers are found from the Sol genomics network for tomato and TAIR

172	1.	Nakagawa, T. et al. Development of series of gateway binary vectors, pGWBs, for
173		realizing efficient construction of fusion genes for plant transformation. Journal of
174		Bioscience and Bioengineering 104, 34-41 <u>http://dx.doi.org/10.1263/jbb.104.34</u> (2007).
175	2.	Chen, D.Q. et al. S-acylation of P2K1 mediates extracellular ATP-induced immune
176		signaling in Arabidopsis. Nature Communications 12, 2750 2750
177		http://dx.doi.org/10.1038/s41467-021-22854-1 (2021).
178	3.	Liu, Y.L., Schiff, M. & Dinesh-Kumar, S.P. Virus-induced gene silencing in tomato.
179		<i>Plant Journal</i> 31 , 777-786 <u>http://dx.doi.org/10.1046/j.1365-313X.2002.01394.x</u> (2002).
180	4.	Buendia, L., Wang, T., Girardin, A. & Lefebvre, B. The LysM receptor - like kinase
181		SILYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytologist
182		210 , 184-195 http://dx.doi.org/10.1111/nph.13753 (2016).

210, 184-195 <u>http://dx.doi.org/10.1111/nph.15/55</u> (2016).
5. Zeng, L., Velásquez, A.C., Munkvold, K.R., Zhang, J. & Martin, G.B. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. *The Plant Journal* 69, 92-103 <u>http://dx.doi.org/10.1111/j.1365-313x.2011.04773.x</u>
(2012).

188

¹⁷⁰ databases for Arabidopsis.