

Supplementary Information for

Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins

Laetitia Misson Mindrebo^{1,2,9}, Hejun Liu^{3,9}, Gabriel Ozorowski^{1,3,4,9}, Quoc Tran^{1,2}, Jordan Woehl^{1,2}, Irene Khalek^{1,2}, Jessica M. Smith², Shawn Barman^{1,4,5}, Fangzhu Zhao^{1,4,5}, Celina Keating^{1,4,5}, Oliver Limbo^{1,2}, Megan Verma^{1,2}, Jingjia Liu⁶, Robyn L. Stanfield³, Xueyong Zhu³, Hannah L. Turner^{1,3,4}, Devin Sok^{1,2,4,5}, Po-Ssu Huang⁶, Dennis R. Burton^{1,4,5,7}, Andrew B. Ward^{1,3,4}, Ian A. Wilson ^{3,8}, Joseph G. Jardine^{*1,2}

¹ IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA ² IAVI, New York, NY 10004, USA

³ Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA

⁴ Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA

⁵ Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA

⁶ Department of Bioengineering, Stanford University, Stanford, CA 94305, USA

⁷ Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA

⁸ Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA ⁹ These authors contributed equally to this work

* Corresponding author: Joseph G. Jardine **Email:** jjardine@iavi.org

This file includes:

Supplementary text Figures S1 to S17 Tables S1 to S14 SI References

Supplementary Information Text

Library construction. The diversity in the CDRH3 was introduced with oligonucleotides synthesized with trimer phosphoramidite mixtures based on the frequencies of amino acids (AAs) found in antibody CDR3 sequences (originally synthesized for the production of a human antibody library, Table S13). All CDRH3 sequences begin in CAR and end in FDY, with 5-15 randomized AAs between the consensus residues. The oligonucleotides that were used, with [TriMix1], [TriMix2], [TriMix3], [TriMix4] and [TriMix5] representing different trimer phosphoramidite mixtures are shown in Table S14.

Double-stranded DNA was generated by combining the CDRH3 oligonucleotides with an invariant oligonucleotide encoding the nanobody framework 4 segment and 3' homology for the pYDSI2u_SiDir vector

(CTCCTAGGAGTTCAGGTGCTGGTGATGGAGGTGACGTGTGAGTCTTGTCACCGGATCCAG ATGAAACAGTGACCTGCGTACCTTGTCCCCAGTAGTCG). This CDRH3/FW4 fragment was then combined with the invariant 5' fragment consisting of the hV_{HH}323 (Fig. S1, codon optimized 5' homology the pYDSI2u SiDir for yeast expression) and for vector (GGTTTGTCATCTACAAATACAACAATCGCATCCATAGCAGCTAAAGAGGAGGGTGTTCAGCT GGACAAGAGAGAGCTAGTGAAGTTCAATTGCAAGAATCTGGTGGTGGTTTGGTTCAACCAG GTGGTTCTTTGCGTTTGTCTTGTGCTGCGTCTGGTTTTACTTTTCTTCTTATGCTATGGGTT GGTATAGACAAGCTCCAGGTAAAGAAAGAGAATGGGTTTGTGCTATTTCCGGTTCTGGCGGT TCTACTTATTATGCTGATTCTGTTAAAGGTAGATTTACTTGTTCTAGAGATAATTCTAAAAACA CTTTGTATCTTCAAATGAATTCTTTGAAGCCAGAGGACACAGCTGTCTACTACTGCGCC) using isothermal assembly. Upon assembling the full nanobody library containing the necessary 5'

and 3' homology for the target vector, the DNA was amplified and PCR cleaned for transformation. Each CDRH3 length was prepared independently and mixed at the desired distribution prior to transformation (Fig. S2).

The nanobody library was then cloned into pYDSI2u_SiDir via homologous recombination in *Saccharomyces cerevisiae* YVH10 cells (ATCC, MYA4940) using protocol described in the reference (1). A total of 32 transformations were performed and pooled to achieve the desired library size. Dilutions of transformed yeast were then plated on dropout medium without uracil (SD–Ura Sunrise Science) as single colonies to obtain the estimate of library diversity of 3x10⁹ unique clones.

The plasmids described in the manuscript will be available by MTA.

Supplementary materials and methods

Magnetic-activated cell sorting (MACS) of naïve library. Initially, 400 µL of Super Mag Streptavidin Beads (50 nm diameter Ocean Nanotech) were pre-coupled with biotinylated SARS-CoV-2 RBD for 30 min at 4 °C in PBS, 2% (w/v) bovine serum albumin (PBSA 2%). 2 × 10¹¹ induced yeast cells from our naïve library (oversampling our library by a factor of ~100) were subsequently washed with PBSA 2% and incubated with the pre-coupled magnetic beads o/n at 4 °C. All three rounds of MACS were performed on an autoMACS Pro Separator using autoMACS columns (Miltenvi Biotec). In the first round of MACS (positive selection, Posseld2 program), 20 runs of 1×10^{10} cells were sorted and the binders to the magnetic beads were selected and grown in SD-Ura o/n at 30 °C, and the following day induced o/n at 30 °C in in SGCAA + Trp induction medium (20 g galactose, 1 g glucose, 6.7 g yeast nitrogen base without amino acid, 5 g bacto casamino acids, 5.4 g Na₂HPO₄, 8.56 g NaH₂PO₄·H₂O, 8.56 mg Trp in 1 L deionized water, pH 6.5, sterilized by filtration). To remove yeast-expressing nanobody that bound nonspecifically to magnetic beads, we performed a negative selection using only the magnetic beads. 2 x 10¹⁰ induced cells were incubated with 200 µL Super Mag Streptavidin Beads in PBSA 2% for 30 min at 4 °C. The yeast cells that didn't bind to the magnetic beads were selected (negative selection, Possel program) and subsequently incubated with pre-coupled magnetic beads to RBD (as described above) o/n at 4 °C. For the third and final round of MACS (positive selection, Posseld2 program), binders to the magnetic beads were selected and grown in SD-Ura o/n at 30 °C.

Fluorescence-activated cell sorting (FACS). FACS is used after depleting the library of nonbinding clones by MACS to enrich the yeast cells in RBD-specific clones. In vitro engineering of antibodies or nanobodies can lead to constructs that are polyspecific (2), so we alternated between positive and negative selections to enhance the specificity of our synthetic constructs. The cells were alternatively selected as RBD binders (affinity sorts, AFF), or depleted against a biotinylated preparation of detergent solubilized biotinylated membrane proteins (polyspecific reagent or PSR) non-binders (negative sorts, PSR). In each round of selection, 1-5 x10⁷ induced yeast cells were incubated for 60 min at 4 °C (rotating at 50 rpm) with biotinylated SARS-CoV-2 RBD for AFF sorts, or biotinylated HEK-cell soluble membrane protein extracts (3) for PSR sorts in 500 µl 1% PBSA (PBS containing 1% BSA) or PBS, respectively. Yeast cells were then washed twice with 1% PBSA (affinity sorts) or PBS (PSR sorts) and coupled to 2 fluorophores (1µg/mL) for 20 min: anti-V5-AF405-conjugated to check the yeast display, and anti-biotin-APC or streptavidin-PE to check RBD binding (we alternated the use of biotin-specific secondary antibody to prevent the enrichment in secondary antibody/fluorophore specific clones). Yeast cells were then washed once with PBSA 1% and resuspended in 1 mL PBSA 1% for sorting on a FACS Melody (BD Biosciences). Selected yeast cells were sorted into SD-Ura medium, grown and induced for consecutive rounds of selection. For AFF1, AFF2 and AFF3, 100, 20 and 4 nM of biotinylated SARS-CoV-2 RBD were used, respectively. For PSR1 and PSR2, 10 µg of biotinylated HEK-cell soluble membrane protein extracts were used. Sorted cells were either prepared for NGS sequencing, or serial dilutions of the last affinity sorts were plated on SD-Ura agar. After 3 days at 30°C, DNA of single colonies was amplified using Phire Plant PCR kit (Thermo Fisher) and sent for Sanger sequencing.

hV_{HH}323 sequencing and analysis. Libraries were deep sequenced to determine the CDRH3 at each round of selection. The DNA from the sorted yeast cells was miniprepped (Qiagen) in the presence of zymolyase (Zymo Research) and amplified through two rounds of PCR as previously described (1). The first PCR reaction generates a ~ 200 bp amplicon containing flanking universal Nextera sequencing adapters using a set of six primers: hNb323_NGSSeq_Fa, hNb323_NGSSeq_Fb, hNb323_NGSSeq_Fc, hNb323_NGSSeq_Ra, hNb323_NGSSeq_Rb and hNb323_NGSSeq_Rc (Table S14). The second round of PCR adds a specific index primer pair (i5/i7) so the library could be pooled, cleaned, and sent for deep sequencing on an Illumina MiSeq (Illumina Incorporated, San Diego CA) with the paired-end MiSeq v2 500 bp kit.

Deep sequencing analysis. Paired-end fastqs were analyzed for sequence quality using the FastQC package (FastQC v0.11.9) (4). The forward and reverse reads were merged using BBMerge (version 38.87) from the BBTools suite using the default parameters (5). Merged reads were clustered using VSEARCH (v2.15.1) to quickly group reads with fully identical sequences (6). Clustering was done using the "cluster_fast" method and fasta files were written including the abundance of each unique sequence in the fasta header. This step substantially improved performance of downstream fasta parsing as each unique sequence was only analyzed once. A custom python (Python 3.7) script was written to parse the clustered fasta output, remove primer sequences, and translate the DNA sequences to amino acid sequences. The script then quantified the unique CDRH3 positions.

NGS analysis of the on-yeast epitope binning (Table S2). The deep sequencing datasets were concatenated based on the CDRH3 sequence. To remove likely sequencing errors, a filter was applied to remove nanobodies that did not appear in either the C (compete) or the NC (noncompete) datasets of at least two of the antibody datasets. Additionally, nanobodies that had <10 counts were also removed. With these criteria, a total of 123 unique nanobody CDRH3s were obtained. Epitope bins were assigned by defining an overlapping epitope with a tested SARS-CoV-2 antibody as having a C/NC (compete/noncompete) ratio >10, and NC/C ratio >10 for a nonoverlapping epitope. All analysis was based on raw sequencing count data.

Affinity-maturation of LM18. To select high-affinity nanobody variants, an affinity maturation library was prepared based on our previously reported SAMPLER strategy (1). The size of the theoretical starting library was 4.2×10^6 unique nanobodies (138 CDRH1 variants, 116 CDRH2 variants and 261 CDRH3 variants). We also included an M34L mutation that we identified as being

potentially stabilizing. The nanobody library was cloned into pYDSI2u_SiDir using homologous recombination as described above. Four rounds of FACS-based selection (AFF1-AFF2-PSR1-AFF3) were performed to isolate populations of high-affinity clones. Serial dilutions of the AFF3 sort were plated on SD-Ura agar. After 3 days at 30°C, DNA of 96 single colonies was amplified using Phire Plant PCR kit (Thermo Fisher) and sent for Sanger sequencing.

Protein expression and purification. All recombinant soluble proteins from SARS-CoV, SARS-CoV-2 and their truncated protein versions (RBD) were expressed and purified as previously described (7).

Nanobody and antibody expression and purification. Nanobodies-Fc and antibodies (HC and LC constructs) were transiently expressed with the Expi293 Expression System (Thermo Fisher). After five days, 24-deep well culture supernatants were harvested and purified using protein A magnetic beads (Thermo Fisher) and tested for binding and neutralization. Selected nanobodies and antibodies were re-expressed in small to medium scale cultures and IgG-purified on Protein A sepharose (GE Healthcare). Constructs were buffer exchanged in PBS and stored at 4°C. His₁₀-tagged Nbs used for SPR and crystallization were purified with the HisPur Ni-NTA Resin (Thermo Fisher). To eliminate nonspecific binding proteins, each column was washed with at least 3 bed volumes of wash buffer (25 mM Imidazole in TBS, pH 7.4). To elute the purified proteins from the column, we used five bed volumes of elution buffer (250 mM Imidazole in TBS, pH 7.4). Constructs were buffer exchanged in TBS and stored at room temperature.

Recombinant Protein ELISAs. Anti Histag monoclonal antibody (Invitrogen, MA1-21315-1MG) was coated onto high-binding 96-well plates (Corning, 3690) at 2 µg/mL overnight at 4 °C. After washing, plates were blocked with PBSA 3% (3% BSA in PBS) for 1 h. Then His₁₀-tagged recombinant RBD or spike protein were captured at 1 µg/mL in PBSA 1% and incubated for 1 h at room temperature. After washing, serially diluted nanobodies or antibodies were added into wells and incubated for 1 h at room temperature. Detection was measured with alkaline phosphatase-conjugated goat anti-human IgG Fc γ (Jackson ImmunoResearch 109-005-008) at 1:1000 dilution for 1h. After the final wash, phosphatase substrate (Sigma-Aldrich, S0942-200TAB) was added into wells. Absorption was measured at 405 nm after less than 15 min. Positive and negative controls were systematically used. Non-linear regression curves were plotted using Prism 8 software.

Polyspecificity reagent ELISA. According to the protocol described by Roger *et al.* (7), solubilized CHO-cell membrane proteins (SMP) and single strand (SS) DNA (Sigma-Aldrich, D8899) were used. SMP or SS were coated onto 96-well half-area high-binding ELISA plates (Corning, 3690) at 5 μ g/mL in PBS overnight at 4°C. After washing, plates were blocked with PBSA 3% for 1 h at RT. Antibody samples were diluted at 100 μ g/mL in PBSA 1% with serial dilution and then added in plates and incubated for 1 h at RT. After washing, alkaline phosphatase-conjugated goat antihuman IgG Fc γ secondary antibody (Jackson ImmunoResearch, 109-055-008) was added in 1:1000 dilution and incubated for 1 h at RT. After final wash, phosphatase substrate (Sigma-Aldrich, S0942-200TAB) was added into each well. Absorption was measured at 405 nm after 15 min.

Pseudovirus (PSV) Assay. PSV assays were performed according to the protocol described by Roger *et al.* (7). Assays were run with multiple batches of PSVs and at least in duplicate. As PSV titers can vary, values indicated in each graph or table were obtained with the same batch of PSV to enable accurate comparison between the tested constructs.

Epitope binning by bio-layer interferometry (BLI). Nanobodies were binned into epitope specificities using an Octet RED384 system. 50 nM of His₁₀-tagged RBD protein antigen were captured using anti-Penta-HIS biosensors (18-5120, Molecular Devices). After RBD loading for 5 min, a saturating concentration of monoclonal antibodies (CR3022, CC6.30 or CC12.1), LM18-Fc or ACE2 (100 μ g/mL) was added until saturation. Competing concentrations of nanobodies (25 μ g/mL) were then added for 5 min to measure binding in the presence of saturating monoclonal antibody (or LM18 or ACE2). All incubation steps were performed in PBS with 0.1% TWEEN 20.

Surface Plasmon Resonance (SPR) Methods. SPR measurements were collected using a Biacore 8K instrument at 25°C. All experiments were carried out with a flow rate of 30 µL/min in a mobile phase of HBS-EP+ [0.01 M HEPES (pH 7.4), 0.15 M NaCl, 3 mM EDTA, 0.0005% (v/v) Surfactant P20]. Two chips were prepared in order to obtain data for the nanobodies (His-tagged) and nanobodies-Fc and bsNb₄-Igs. One, anti-Human IgG (Fc) antibody (Cytiva) was immobilized to a density of ~2000-4000 RU via standard NHS/EDC coupling to a Series S CM-3 (Cytiva) sensor chip; a reference surface was generated through the same method. Two, recombinant CoV-2-RBD was immobilized to a density of ~250 RU via standard NHS/EDC coupling to flow cell 2 of a Series S CM-5 (Cytiva) sensor chip; a reference surface was generated through activation/deactivation of flow cell 1.

For conventional kinetic/dose-response, bsNb₄-Igs were captured to ~50-100 RU via Fc-capture on the active flow cell prior to analyte injection. A concentration series of CoV-2-RBD or CoV-2-Spike were injected across the antibody and control surface for 2 min, followed by a 20 min dissociation phase using a multi-cycle method. Regeneration of the surface in between injections of antigen was achieved by two 120 s injections of 3 M MgCl₂. For conventional kinetics/doseresponse of the nanobodies, a CoV-2-RBD sensor chip was prepared as stated above. A concentration series of each nanobody was injected over CoV-2-RBD and a control surface for 3 min, followed by a 15 min dissociation phase using a multi-cycle method. Regeneration of the surface in between injections of nanobody was achieved with a single, 60 s injection of 10 mM glycine (pH 1.5), 200 mM NaCl. Kinetic analysis of each reference subtracted injection series was performed using the BIAEvaluation software (Cytiva). Sensorgrams were fit to either a 1:1 (Langmuir) binding or heterogeneous ligand model.

Crystallization and X-ray structure determination. The engineered class 4 nanobodies, *i.e.* Nb-C4-225, Nb-C4-240, and Nb-C4-255, were mixed with equimolar SARS-CoV-2 RBD and CC12.1 Fab and incubated overnight at 4°C. 384 conditions of the JCSG Core Suite (Qiagen) were used for setting-up trave for crystal screening on the robotic CrystalMation system (Rigaku) at Scripps Research. Crystallization trials were set-up by the vapor diffusion method in sitting drops containing 0.1 µl of protein complex and 0.1 µl of reservoir solution. Crystals appeared on day 7, were harvested on day 12, pre-equilibrated in cryoprotectant containing 0-10% ethylene glycol, and then flash cooled and stored in liquid nitrogen until data collection. Diffraction quality crystals were obtained in solution containing 0.2 M di-ammonium citrate, 20% (w/v) polyethylene glycol 3350 for Nb-C4-225 complex, 0.16 M ammonium sulfate, 0.08 M sodium acetate pH 4.6, 20% (w/v) polyethylene glycol 4000, 20% (v/v) glycerol for Nb-C4-240 complex, and 0.2 M ammonium sulfate, 0.1 M sodium acetate pH 4.6, 25% (w/v) polyethylene glycol 4000 for Nb-C4-255 complex. Diffraction data were collected at cryogenic temperature (100 K) at the Stanford Synchrotron Radiation Lightsource (SSRL) on beamlines 12-1 and 12-2 for Nb-C4-225 and Nb-C4-240 complexes, and at beamline 23-ID-B of the Advanced Photon Source (APS) at Argonne National Laboratory for Nb-C4-255 complex. The X-ray data were processed with HKL2000 (8). The X-ray structures were solved by molecular replacement (MR) using PHASER (9) with MR models for the RBD and Nbs from 7KN5 (10) and for the Fab from 6XC3(11). Iterative model building and refinement were carried out in COOT (12) and PHENIX (12, 13), respectively.

Cryo-electron microscopy. Trimeric SARS-CoV-2 6P-Mut7 S protein was incubated with a threefold molar excess of LM18/Nb-C2-136 bsNb₄-Ig at room temperature for 100 minutes at a concentration of 0.85 mg/mL as determined by A₂₈₀. n-dodecyI- β -D-maltopyranoside (DDM) was added to a final concentration of 0.06 mM and the sample deposited on plasma-cleaned Quantifoil 1.2/1.3 300 mesh grids. A Thermo Fisher Vitrobot Mark IV set to 4°C, 100% humidity, 3 s wait time, and a 3 s blot time was used to vitrify samples in liquid ethane.

Data were collected using Leginon (14) on a Thermo Fisher Titan Krios operating at 300 keV and equipped with a Gatan K2 Summit direct electron detector. Movies were aligned and dose weighted using MotionCor2 (15). Aligned frames were imported into cryoSPARC v3.2 (15, 16) and the contrast transfer function (CTF) was estimated using GCTF (15-17). Particle picking was done by automated picking using templates created from an initial round of 2D classification, then extracted and subjected to multiple rounds of 2D classification for cleaning. An *ab initio* model was generated and several rounds of non-uniform refinement (18), CTF refinement and 3D variability analysis

were performed, resulting in a final global reconstruction (Fig. 5, Table S12). To further improve the resolution of the RBD and nanobody interactions, particles were exported to Relion 3.1 (19) and subjected to C3 symmetry expansion. A mask around a single RBD and nanobodies was created using University of California San Francisco Chimera (19, 20) and used for focused 3D classifications without alignment. During focused 3D refinement, a mask of the trimeric core and a single RBD with nanobodies was applied, and angular sampling was restricted to prevent rotation of one protomer onto another. A summary of data collection and processing statistics can be found in Table S12.

Initial models were generated by fitting coordinates from sAbPred (21) for the nanobodies and PDB 6VYB for the S protein into the focused refinement cryo-EM map. Several rounds of iterative manual and automated model building and relaxed refinement were performed using Coot 0.9.8 (22) and Phenix real_space_refine (23). Models were validated using EMRinger (24) and MolProbity (25). Kabat numbering was applied to the nanobody chains. Final refinement statistics and PDB/EMDB deposition codes can be found in Table S12.

Modeling LM18/Nb-C2-136 bsNb₄-Ig. Based on the approximate placement of C_H1/C_L, we used RosettaRemodel (26) to build the bsNb4-lg in three different steps. First, we modeled just the linkers (with the corresponding sequences) connecting C_H1 and Fc domains, requiring the C α and C β atoms on the cysteine residues from the pairing heavy chain be 5.6 ± 1 Å and 4.0 ± 1 Å. Second, "-bypass fragments," "-remodel:match rt limit 2," and "-build disulf" with settings in RosettaRemodel, the geometries between the cysteine residues in models from step one were evaluated according to their closeness to known disulfide geometries in PDB. Third, for the structures with proper disulfide bond geometry, we modeled the linker region downstream from the disulfide and the Fc domains, requiring 5 sets of $C\alpha$ distance pairs derived from a native Fc dimer interface be satisfied. We generated 926 samples from step 1, of which 406 passed step 2, and we built 474 representative Fc models in step 3. After filtering out models with severe clashes based on Rosetta scores, the calculations resulted in 191 final models (Fig. S15). We computed the center of mass for the Fc domains and showed them in Figure S15B to illustrate the range of motion for the Fc domain with respect to $C_H 1/C_L$ via flexible linkers.

1 10 20 30 40 50 60 EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYAMGWYRQAPGKEREWVCAISGSGGSTYYA 70 80 90 101 110 DSVKGRFTCSRDNSKNTLYLQMNSLKPEDTAVYYCARXXXXXXFDYWGQGTQVTVSS

Fig. S1. Sequence of the hV_{HH} 323 scaffold. The mutated position compared to V_H 3 lineage are indicated in bold and blue. The positions mutated to Cys are indicated in yellow. The diversity of the CDRH3 is indicated in red. Residue numbers were assigned according to the Kabat numbering system.

Fig. S2. Sampling fraction (indicated by the dotted line) of CDRH3s containing 10 to 20 residues depending on the frequency. A normal distribution of the CDRH3 length, such as for camelid repertoires, would result in an oversampling of the smaller CDRH3 by a factor of 132 (**A**). A left-skewed distribution prevents such oversampling and the smaller CDRH3 (10 residues) would be sampled by a factor of 5 (**B**).

Fig. S3. Evaluation of the selected four nanobodies for polyreactivity. Fc-fused LM18, LM44, LM45 and LM46 were tested by ELISA for binding to the polyspecificity reagents: **A)** solubilized CHO-cell soluble membrane protein extracts (SMP) and **B)** single strand DNA (SS) (Sigma-Aldrich, D8899). *Bococizumab* ("Boco" CAS: 1407495-02-6) was used as a positive control to determine nonspecific binding. Error bars indicate the standard deviation of the mean.

Fig. S4. Neutralization of SARS-CoV-1 PSV by LM18-Fc and LM18.1.17-Fc. The IC₅₀ values are 12 nM or 0.51 μ g/mL and 0.9 nM or 0.037 μ g/mL for LM18 and LM18.1.17, respectively. Assays were run in duplicate with a nanobody starting concentration of 50 μ g/mL. Error bars indicate the standard deviation of the mean.

Fig. S5. Evaluation of nanobody-Fc by size-exclusion chromatography (SEC) using an Agilent 1260 Infinity II HPLC equipped with a TSKgel SuperSW mAb HR column (Tosoh, 7.8 mm I.D. x 30 cm, 4 μ m) with a 1 mL/min flow rate and detection wavelength at 280 nm. An isocratic gradient of 100% PBS was used. **A)** LM18; **B)** Class 2 nanobodies and **C)** Class 4 nanobodies.

Fig. S6. Evaluation of nanobodies and bsNb₄-Igs for specific binding to Wuhan-1 SARS-CoV-2. Nanobodies-Fc (top two panels) and bsNb₄-Igs were tested by ELISA for binding to Wuhan-1 SARS-CoV-2 RBD. CC6.30 was used as a positive control (green) and a nanobody-Fc from our library not selected for RBD binding was used as a negative control (red). We tested the bsNb₄-Igs with LM18 either as a HC or LC and observed no notable difference for RBD binding, indicating that bsNb₄-Ig building block can be linked indifferently to the C_H1 or C_L. Error bars indicate the standard deviation of the mean.

Fig. S7. Evaluation of SARS-CoV-2 nanobodies-Fc and IgG-like bsNb₄-Igs for polyreactivity. Nanobodies-C2 and nanobodies-C2-based bsNb₄-Igs (**A**) and nanobodies-C4 and nanobodies-C4-based bsNb₄-Igs (**B**) were tested by ELISA for binding to CHO-cell soluble membrane protein (SMP) extracts. *Bococizumab* (CAS: 1407495-02-6) was used as a control (ctrl) to determine nonspecific binding to SMP. We tested the bsNb₄-Igs with LM18 either as a HC or LC and observed no notable difference for nonspecific binding.

Fig. S8. Epitope binning of Fc-tagged nanobodies using an Octet RED384 platform. His₁₀-tagged RBD was captured using a Ni-NTA biosensor, and indicated monoclonal antibodies (CR3022, CC6.30, CC12.1) or nanobody (LM18), or ACE2 at a concentration of 100 μ g/ml were first incubated (*), followed by an incubation with 25 μ g/ml of competing nanobody (**). **A)** LM18; **B)** Class 2 nanobodies and **C)** Class 4 nanobodies. The tested nanobody # is indicated on the left of each graph.

Fig. S9. Evaluation of nanobodies-Fc for specific binding to SARS-CoV-2 RBD *omicron* by ELISA. LM18 is shown in purple, nanobodies-C2 in teal and nanobodies-C4 in salmon. Assay was run in duplicate. Class 2 Nb-C2-136 and class 4 Nb-C4-198, Nb-C4-225, Nb-C4-237, Nb-C4-240 and Nb-C4-255 bind to RBD *omicron*, whereas LM18 and class 2 Nb-C2-121 binding is highly affected by the mutations present on this variant. Error bars indicate the standard deviation of the mean.

Fig. S10. Neutralization of PSVs variants by nanobodies and nanobody cocktails. **A**) Neutralization of PSVs carrying Wuhan-1 (wt) or mutated SARS-CoV-2 by Fc fused nanobodies. **B**) Neutralization of PSVs carrying Wuhan-1 (wt) or mutated SARS-CoV-2 by an equimolar ratio of by Fc fused nanobodies. The purple and black dotted lines illustrate the average of LM18-Fc IC₅₀ values and the absence of neutralization (IC₅₀ > 100 μ g/mL), respectively.

Fig. S11. SPR binding curves of LM18, one representative of the class 2 Nb (Nb-C2-136) and class 4 Nb (Nb-C4-225) for RBD and spike protein binding in different formats. In all cases, the Nb-Fc or Ab is immobilized by the Fc and the SARS-CoV-2 RBD or spike is flown as the analyte.

Fig. S12. Flow cytometry plots of the three affinity sorts for the affinity-maturation of LM18. The gates are indicated in red. Yeast display is shown on the x axis and RBD binding on the y axis. Of note, the gates in are representative, as the sorter does not record the actual sort gates used in the experiment.

Fig. S13. Neutralization of Wuhan-1 SARS-CoV-2 PSV by LM18-Fc and matured LM18-Fc (LM18.1.17). Assays were run in triplicate with a nanobody starting concentration of 100 μ g/mL. Error bars indicate the standard deviation of the mean.

Fig. S14 Neutralization of SARS-C0V-2 PSV variants by matured LM18 (LM18.1.17)- based bsNb₄-Igs. IC₅₀ values of clinical antibody candidates (LY-CoV16, REGN10933 and REGN-10987), CC12.1 and CC6.30 from our previous study (27) were added for reference

Fig. S15. Structural details elucidated by X-ray crystallography and cryo-EM. **A**) Disulfide bond in the reported engineered nanobodies. The blue mesh shows a 2mFc-DFo density map of the disulfide bond (shown as sticks) contoured at 1.0 σ. Nb-C4-255 is shown in light purple. SARS-CoV-2 RBD in gray. **B**) Structure-based sequence alignment of nanobody CDRH3s. CDRH3 of class 4 Nb-C4-225, Nb-C4-240, and Nb-C4-255 showed similar binding mode as YYDRxG antibodies, e.g. COVA1-16 (Fig. 5) and ADI-62113. The AA sequences constituting these CDRH3s are aligned based on structural superposition shown below. Yellow indicates conserved residues. CDRH3 tips of class 4 Nb-C4-225, Nb-C4-240, and Nb-C4-255 (sticks) are aligned to COVA1-16 based on SARS-CoV-2 RBD superimposition. Key residues in the CDRH3 and RBD are shown as sticks. **C**) Summary schematic of focused classification and refinement methods used to generate map for LM18/Nb-C2-136 bsNb₄-Ig + SARS-CoV-2 6Pmut7 S model building. See Methods for additional details.

Fig. S16. Modeling of RBD-LM18/Nb-C2-136 Fab and bsNb₄-Ig format. **A)** Modeling of RBD-LM18/Nb-C2-136 Fab complex (based on the Cryo-EM reconstruction of LM18/Nb-C2-136 bsNb₄-Ig in complex with SARS-CoV-2 6Pmut7 S protein). The linkers are colored in red and indicated by the red arrows. The presence of a linker enables enough flexibility to the nanobody building blocks to bind RBD. **B)** Based on the C_H1/C_L placement in Figure 5, a complete bsNb₄-Ig can be modeled to assess the plausibility of 1:1, bsNb₄-Ig to spike, binding. Fc is highly labile in the sample and has no discrete density in the EM reconstruction, the center-of-mass for ~200 alternative Fc locations are represented as yellow spheres here.

Fig. S17. Sequence alignment of CDRH3 of the selected 24 hV_{HH} 323 nanobodies binned to compete with CR3022.

Table S1. IC₅₀ values and potency for neutralization of Wuhan-1 SARS-CoV-2 PSV by four nanobodies-Fc identified by Sanger sequencing. Assays were run in triplicate with a starting nanobody concentration of 100 μ g/mL.

	IC50 (µg/mL)	IC50 (nM)	% Neut	R^2
LM18	2.65	66.25	86	0.94
LM44	70.93	1773.25	71	0.69
LM45	4.16	104.03	46	0.71
LM46	23.95	598.75	66	0.78

-	~ 0	1	-	~ 0	-	_	28.90 C	504 1.30	40	-	21.43	071	7107	c	-	<u><</u> 0.10	01 3/3	CARHI FPLRVWPLNPUT	4
				0 0			136.5	/3 2			134	5	134		, #	0.05	/ 13	CARHGY ILSUIYYYRYYQFUY	40
 			 				02.10		4		671		671			0.02			
• -	0 C		• -	5 C		. .	ED 40	17 00		۔ د	1000		1000	<u>ـ</u> ـ	, ,				200
1 0	0	3	1	0	0	-	28 08	323 56	0 16	-	299		299	-	0	0	116	CARHASEYGGDIERVEDY	RE
1 0	2 0	2 1	1 0	2 0	0	-	154	54 1	0		63		63	-	0	0	21	CARHALPDVWYWGSRVFDY	37
1 0	1 0	0	1 0	1 0	-	0	0	21		0	0	9		0	-	23	23	CARGYIERYYYSDRDAFDY	36
000	0	0	0	0 1	-	0	0	109	-	0	0	30		0	0	3.53	46 13	CARGWLWRYAQGLVSDYYFDY	35
000	0	0	0	0 1	-	0	0	27		0	0	15		0	0	0	8	CARGVYSVSSDERTPDDYFDY	34
1 0	2 0	2 1	1 0	2 0	0	-	42.29	326 55	0	-	22.7	57	1294	0	0 0	5 0.79	24 103	CARGVYSVIYGERVGGPFDY	33
1 0	1 0	0	1 0	1 0	-	0	7 7E-04	4 601	-	0	0.003	4162	14	0	-	756	536 6	CARGVTYYDFQGTAGFDAFDY 4	32
1 0	1 0	0	1 0	1 0	-	0	0	79	-	0	0	82		0	-	76	76	CARGVRVYELYSSYYEWFDY	31
1 0	2 0	2 1	1 0	2 0	0	-	23.7	146 61	0 14	-	105.3	8	842	-	0	9 0.09	09 109	CARGVPWPLYYIGDDTFDY	30
1 0	1 0	0	1 0	1 0	-	0	35 0.002	10 2366	0	0	0.11	7384	814	0	-	655.	362 28	CARGSFYYTYGGSVGFDAFDY 18	29
1 0	1 0	0	1 0	1 0	-	0	0.014	6 426	-	0	0	256		0	-	17.3	26 13	CARGRYYFYADQAWYDVFDY	28
1 0	2 0	2 1	1 0	2 0	0	-	46	16	0	-	58		58	0	0	0.33	15 45	CARGPPWYAYVSWRDYDYFDY	27
1 0	2 0	2 1	1 0	2 0	0	-	49	949 10-	0 49	-	261.6	12	3139	0	÷	7 0.77	127 145	CARGPHYTERYIGDSYFDY 1	26
1 0	2 0	2 1	1 0	2 0	0	-	35.99	121 309	0 11	-	27.57	267	7360	0	0	9 0.68	160 464	CARGPDPPYYPVAVWLYAFDY 3	25
1 0	1 0	0	1 0	1 0	-	0	3 0.002	13 785	-	0	0.002	4446	10	0	-	181	447 3	CARGIPYYDREGTVFLEWFDY 5	24
	0 1						97	97 1	6		51		51			370	70	CARGEYPLRPPGYPLYDVFDY 3	23
1 0	1 0	0	10	10		0	0.038	01 238	0	0	0.113	7020	793	0	-	134	594 19	CARGDYYGPYGRAGFDY 28	22
	0 1						71	11	~		93		93			61	51	CARGDYFLHWDGQYYFDY	21
1 0	1 0	0	10	10	-	0	8 9E-04	8 897		0	0	6159		0	-	203.	305 31	CARGDVYYPNSDRSFGFDY 6	20
0	0	0	0	0 1	-	0	0.088	58 660		0	0.042	428	18	-	0	2 0.09	25 25	CARGDSQWPLWVKSYFDY	19
1 0	2 0	1 0	2 1	2 0	0	0	4.838	99 99	0	-	17.05	20	341	0	1	477.	433 3	CARGDGPGYYYRPLAFDY 1	18
1 0	1 0	0	1 0	1 0	-	0	0 0.019	31 166	-	0	0.026	855	22	0	-	130-	304	CARGAVYYTRYGYPGYTPFDY 1	17
1 0	2 0	2 1	1 0	2 0	0	-	104.3	13 3	0	-	72.5	2	145	0	0	0.77	91 11	CARGARGLVYFWRTYGQPFDY	16
1 0	2 0	2 1	1 0	2 0	0	-	46.66	193 47	0 21	-	24.15	52	1256	-	* 0	9 0.04	67 150	CARFYWGVYAGGPGYPFDY	15
1 0	1 0	1 0	0 0	1 0	0	-	74.17	90 12	1 8	0	0	2218		-	0	0.00	5 72	CARFRWYDGRDFKVSAFFDY	14
1 0	2 0	2 1	1 0	2 0	0	-	3 57.04	727 15:	0 87	-	299.6	19	5692	0	0	3 4.42	920 111	CARFPLDYYPYGRRYPGFDY 4	13
1 0	2 0	2 1	1 0	2 0	0	-	30.05	374 79	0 23	-	38.74	35	1356	0	0 0	0.51	86 50	CARFGTFDNQYWYGRAALFDY	12
1 0	1 0	0 0	1 0	1 0	-	0	3 0.032	28 868		0	0.029	342	10	0	7	125-	254	CARFDYGGWGFSGGYELFDY 1	11
2 1	2 0	1 0	1 0	2 0	0	-	13	13		0			30	0	-	20	20	CARESSGYPQYASTPFDY	10
2 1	2 0	1 0	1 0	2 0	0	-	22	22	0	0			8	0	-	37	37	CAREQYGTVGYRRFDY	9
000	0	0	0 0	0 1	0	0	5.844	26 90	0	0	3.952	42	166	-	4	8 6E-0	1 159	CARDVPDAALYLEFDY	8
1 0	2 0	2 1	1 0	2 0	0	-	238.8	55 4	0	-	26.24	21	551	0	0	0.50	36 46	CARDRGLGDRPVGVYGPQFDY	7
1 0	2 0	2 1	1 0	2 0	0	-	78	78	0	-	85		85	-	0	0	93	CARAYYRLYGSDQRGFDY	6
1 0	2 0	2 1	1 0	2 0	0	-	23.55	947 29	0 69	-	248.8	19	4727	0	7	3 0.13	60 408	CARAYPPYVDPYYARVFDY	ы
1 0	2 0	2 1	1 0	2 0	0	-	2 41.9	979 26:	0 10	-	41.74	202	8432	0	0	4 0.12	81 810	CARAYDWWSVVPVYYGDFDY	4
1 0	1 0	1 0	000	1 0	0	-	3 51.61	396 15:	1 78	0	8E-04	18208	14	-	0	8 0.00	11 477	CARARYSGSGDLPPPYFDY	ω
1 0	2 0	1 0	2 1	2 0	0	0	9	9	0	-	23		23	0	-	34	34	CARALATSRHRHSTFDY	2
1 0	2 0	2 1	1 0	2 0	0	1	28.61	15 18	0 5	1	269		269	1	3 0	1 0.02	9 38	CARAHGYSDYYSWHGVYTFDY	1
6	4	42	8	13	35	69			42	50				34	43	_			
2 C		10	1 C		mpete	te			pete	te n				mpete	te	-			
CR302	Abs	CC12.	CC12.	Abs	nonco	compe	C/NC	-C 0-N	onco 0	ompe n	C/NC c	1-NC	1 ්	e nonco	comp		2-C 22-M		#
0 0/	C 3	0 0/	2 C/	NC 3	0.0	0.0	.3 ratio	36.3 CC6	1 2	- 2	ratio	CC12.	CC12.	2	2	30 ratio	R30 eCR	ec	:
CC6.3		CC6.3	CR302		CC6.3	CC6.3	_		C12	2012 0				9 CR302	CR30	-			

Table S2. NGS analysis and CDRH3 sequences from competitive sorts with CC12.1, CR3022, and CC6.30. In yellow are indicated the NGS counts for the 6 competition sorts, in grey the 4 sequences that correspond to nanobodies competing with the 3 epitopes that were not taken into account.

82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42
CARSWQGNPTGPRYFDY	CARSWIDYVSQSVGPVFDY	CARSSYDPRVFDWPDVFDY	CARSSVIYSWYWGDGVFDY	CARSRYTYPTERYGYGYFDY	CARSRWEADRLYEYYYLFDY	CARSPYDFYGRQIDYLFDY	CARSPPSDYGGPEYEGFDY	CARSPPPAYDEEEYVGFDY	CARSGYGSTVWGDQYFDY	CARSEPVFYTTQLYFWAPFDY	CARSAWVIDYYPSPYFDY	CARRYIERYYYSDRDAFDY	CARRWGVDASYVPPFDY	CARRRYVSQWSPGQGPSFDY	CARRRLASLSDSYDLVFDY	CARRPLSLRRYTDIYPFDY	CARRAYAIARATDIYYFDY	CARRASISGYPAWSYFDY	CARQIALYDRYLHEDTLFDY	CARQDRYGVWPGPRQYFDY	CARQAWYYSPYGGPEFEAFDY	CARPVYQHPPVYSLHFDY	CARPEGVVLGYPASIIFDY	CARPDYHRYRSYPGVFDY	CARPDWTQFGYRWAPDYVFDY	CARNYPGVFGLTPDGFDY	CARNVNVYVWYSDQDGFDY	CARNIRGLYGSYPESVFDY	CARLYWGPLGYRSAFDY	CARLYPGRHFISFDY	CARLWYYVPTGADVTVSFDY	CARLRQTEQGIVFDY	CARLRFWDFEPGYYSEYQFDY	CARLORYFTDKGDPIIYFDY	CARLPTRGYSENSGLWYFDY	CARLLPIPYEYDYRDWFDY	CARLADWTWRFGGFDY	CARIYWYPGRQPGGFDY	CARILDDERWAWRFYGFDY	CARHYRVYGGSDYASFDY
16	912	579	36	287		2325	2300	-	2974		21	18772	16	633	46	749	41	596	52		16341		28	379	4321	81	7376	562	23	34	382	6169	2611	60	2862	145	1622	573	1389	18
	2	646	195	148	31	-	6961	сл	5764	263	681	6		13269	46	144	173			681	35	506		37	6	81	8	3944	19		-	2756	сл	35	12516	104	404	2342	2639	1532
16	456	0.896	0.185	1.939	0	2325	0.33	0.2	0.516	0	0.031	3129	16	0.048	-	5.201	0.237	596	52	0	466.9	0	28	10.24	720.2	-	922	0.142	1.211	34	382	2.238	522.2	1.714	0.229	1.394	4.015	0.245	0.526	0.012
_	-	0	0	0	0	-	0	0	0	0	0	-	-	0	0	0	0	-	-	0	-	0	-	-	-	0	-	0	0	-	-	0	-	0	0	0	0	0	0	0
0	0	0	0	0	-	0	0	0	0	-	-	0	0	-	0	0	0	0	0	-	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
ω	19	407	180	371		228	1609		8048	68		108	ъ	54	9	414		160	ω		961	214		95	30	205	21	4305	12	9	61	1334	18	ω	15416	27	708	1860	109	1435
	367	150			70	152	10280	67	93	39	1579	12553		53804	187	9	549			1669	6502			149	1310		4625	79	62			9384	2410	141	276	313	145	88	10010	
3	0.052	2.713	180	371	0	1.5	0.157	0	86.54	1.744	0	0.009	ъ	0.001	0.048	46	0	160	ω	0	0.148	214		0.638	0.023	205	0.005	54.49	0.194	9	61	0.142	0.007	0.021	55.86	0.086	4.883	21.14	0.011	1435
0	0	0	-	-	0	0	0	0	_	0	0	0	0	0	0	-	0	-	0	0	0	-	0	0	0	-	0	_	0	0	-	0	0	0	-	0	0	_	0	-
0	_	0	0	0	-	0	0	-	0	0	-	_	0	-	-	0	-	0	0	-	0	0		0	_	0	-	0	0	0	0	0	-	-	0	-	0	0	-	0
0	ω	1538	336	402	45	166	1499	51	1236	275	1044	476	23	84		802	222	213	11	339	63	567	ω	298	219	268	194	6901	82		145	2395	21	7	2316:	17	1827	3372	5977	2710
	823	46	4	25		346	1 232		2 226	28	20	1769		6978	250	12	з	39		06	2352	29		ω	2290	20	8239	107		47	22	1842	2866	427	3 365	1131	43	88	. 123	26
6	0.004	33.43	84	16.08	45	0.48	64.62	51	54.7	9.821	52.2	8 0.027	23	4 0.001	0	66.83	74	5.462	11	3.767	0.003	19.55	ω	99.33	0.096	13.4	0.024	64.5	82	0	6.591	4 0.13	0.007	0.016	63.46	0.015	42.49	38.32	48.59	104.2
0	0	1	-	1	-	0	1	-	_	0	_	0	-	0	0	1	-	0	-	0	0	1	0	1	0 0	_	# 0	_	-	0	0	0	0	0	-1	0	1	1	1	1
0	_	0	0	0	0	0	0	0	0	0	0	-	0	-	-	0	0	0	0	0	-	0	0	0	-	0	-	0	0	-	0	0	-	-	0	-	0	0	0	0
_																																								_
1	1	1 0	2 0	2 0	1 0	1 0	1 0	1 0	2 0	0 1	1 0	1 0	2 0	0 1	0 1	2 0	1 0	2 0	2 0	0 1	1 0	2 0	1 0	2 0	1 0	2 0	1 0	2 0	1 0	1 0	2 0	0	1 0	0 1	2 0	0 1	1 0	2 0	1 0	2 0
_																																								_
1	1	000	1 0	1 0	000	1 0	0 0	000	1 0	0	000	1 0	1 0	00	0 0	1 0	0	2 1	1 0	0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	000	1 0	2 1	000	1 0	00	1 0	0 0	00	10	0	1 0
_																																								_
0	0	1 0	2 1	2 1	1 0	000	1 0	1 0	2 1	000	1 0	000	1 0	000	000	2 1	1 0	1 0	1 0	000	000	2 1	000	1 0	000	2 1	000	2 1	1 0	0	1 0	000	0	000	2 1	000	1 0	2 1	1 0	2
_																																								—
1	-	1	2 (2 (1	1	1	1	2	0	1	1	2	0	0	2 (1	2	2 (0	1	2	1	2 (1	2 (1	2	1	1	2 (0	1	0	2	0	1	2	1	2
_							5					5	5										5					5							5					_
-	-	-	-	-	-	-	-	-	-	0	-	-	N	0	0	-	-	-	2	0	-	-	-	N	-	-	-	-	-	-	-	0	-	0	-	0	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

C71	122	121	120	119	118	117	116	115	114	113	112	111	110	109	108	107	106	105	104	103	102	101	100	66	98	97	96	95	94	93	92	91	90	68	88	87	86	85	84	83
	CARYTYIGRQVPDARYYFDY	CARYRVTQPAEYYSRGFDY	CARYRPGPSYQWGRYQTFFDY	CARYRDYSHFGSSYPYAFDY	CARYQDFRHRYYYSFDY	CARYQDDGPLPDVIDYFDY	CARYPGVYDEDDPYYSFDY	CARYGYPHGWLPHGRDVYFDY	CARYGGPYDPTDSTYAFDY	CARYFPDYTYPDWNGYRFDY	CARYAGYPSDDDDTAPFDY	CARYAGYPDGGYDPFDY	CARYAGRDIGYVTRYLRFDY	CARWYGRLDRDYREGPGYFDY	CARWPGYPVHVYTQYAVFDY	CARWGGDWDDPFDY	CARWAGPFSPYDYTYPFDY	CARVYVVYDRFSTYYDYFDY	CARVYQFYGARDYGYPYDFDY	CARVYPVYQVRYPITWGYFDY	CARVYPVIGRYIRDYPFDY	CARVVYSVSSDERTPDDYFDY	CARVVSYYDQTGFVYWQSFDY	CARVVRAYDAQGWWYEPFDY	CARVVLYWTLSSQGYDYFDY	CARVSGWIVVTYLYPLPQFDY	CARVRYGDDAGRRVYTDDFDY	CARVFQFYGARDYGYPYDFDY	CARVFGSWDQRSGGQLYWFDY	CARTWLGLFSSDFEYFDY	CARTVAWYGLWTEGFDYFDY	CARTSYVFYRSGRRGYEPFDY	CARTSQYWTVDSTGFDYFDY	CARTLRKPGDPGYPGFDY	CARTDYWYPERDSAWFDY	CARSYYGTIGSYSDAFDY	CARSYWGLFGSWDEGFDY	CARSYVPSGSYPYGNYFFFDY	CARSYPHRSRRHEFAFDY	CARSYIWVRYGTDYDFDY
-	687	787	81	168	176	7	7			2984		8	12	369	35		-	109	36097	89	269	633	1533	3368	58		20		25		47	1211	2258	902	ω	126	26	19	206	166
	1220	838	137	4032		377	5582	1807	1021	7892	5732	15049	72	2864	1058	7901	7175		108		236	13269		თ		21			-	39			84		1513	665	569			560
0	0.563	0.939	0.591	0.042	176	0.019	0.001	0	0	0.378	0	5E-04	0.167	0.129	0.033	0	1E-04	109	334.2	89	1.14	0.048	1533	673.6	58	0	20		25	0	47	1211	26.88	902	0.002	0.189	0.046	19	206	0.296
-	• 0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	0	0	-	-	-	0	-	0	-	0	-	-	-		0	0	0	-		0
-	0	0	0	-	0	-	-	-	-	0	-	-	0	0	-	-	-	0	0	0	0	-	0	0	0	-	0		0	-	0	0	0		_	0	-	0		0
10	1445	593	160	2631	19	332	92	22	сл	6	681	15913	4	3532		4243	746	23	6417	7	383	54	62	476		12	6	-		47	-	236	23	181		623	443	50	16	730
-	19	436		47	193	4	21654	3907	4071	42391	22839	407	233	48	2905	315	7317		281	14	8	53804	781	466	9				45		53	-	2124		4110	7				44
0.004	76.05	1.36	160	55.98	0.098	83	0.004	0.006	0.001	1E-04	0.03	39.1	0.017	73.58	0	13.47	0.102	23	22.84	0.5	47.88	0.001	0.079	1.021	0	12	6		0	47	0.019	236	0.011	181	0	89	443	50	16	16.59
4	<u>د</u> د	0	-	-	0	-	0	0	0	0	0	-	0	-	0	-	0	-	-	0	-	0	0	0	0	-	0	0	0	-	0	-	0		0	-	-	-		-
-	0	0	0	0	-	0	-	-	-	-	-	0	-	0	-	0	0	0	0	0	0	-	-	0		0	0	0		0	-	0	-		-	0	0	0		0
40	2647	1806	301	5387		869	8796	1855	1114	18272	9706	28457	135	6269	1533	11373	6825	ъ	54		537	84	7	24		35	15			53	ω	91	ω	244	2816	1007	682	18	62	1016
770	70	39	11	157	431	36	299	40	152	2 400	162	789	2	124	21	346	218	163	5148	31	16	6978-	2073	5175	54			13	23		20	318	4519	ъ	37	41	4	12	1	17
0.124	37.81	46.31	27.36	34.31	0	19.39	29.42	46.38	7.329	45.68	59.91	36.07	67.5	50.56	73	32.87	31.31	0.031	0.001	0	33.56	0.001	0.003	0.005	0	35	15	0	0	53	0.15	0.286	7E-04	48.8	76.11	24.56	170.5	1.5	62	59.76
4	<u>د</u> د	-	-	-	0	-	-	-	-	-	-	-	-	-	-	-	-	0	0	0	-	0	0	0	0	-	-	0	0	-	0	0	0		-	-	-1	0		-
-	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	0	-	-	-	-	0	0	-	-	0	0	0	-		0	0	0	0		0
F																						_						_												-
-	• • •	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1 0	0	1 0	0	0	1	0	0	0	0	0		0	0	20	0		0
ŀ																																						_		F
-	· 1	0	1 0	1 0	1 0	1 0	0	0	0	0	0	1 0	0	1 0	0	1 0	0	2 1	2 1	1 0	1 0	0	1 0	1 0	1 0	1 0	1 0	0	1 0	1 0	1 0	2 1	1 0		0	1 0	1 0	2 1		10
┟																																						_		
	> 2 > 1	1 0	2 1	2 1	000	2 1	1 0	1 0	1 0	1 0	1 0	2 1	1 0	2 1	1 0	2 1	1 0	1 0	1 0	000	2 1	000	0 0	000	000	2 1	1 0	000	0 0	2 1	0 0	1 0	0 0		1 0	2 1	2 1	1 0		2
┝																																	_					_		-
-	• N	1	20	20	1 0	20	1 0	1 0	1	1 0	1	20	1 0	2 0	1	2 0	1 0	20	20	1 0	20	0	1 0	1 0	1 0	20	2 0	0	1 0	20	1	20	1	0 1	-	20	20	2 0	0 1	2
╞																																								
-	· - ·	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	-	-	N	0	-	-		-	-		-	-	-	-		-
Ľ	. 0	0	0	5	0	9	5	0	0	0	0	0	5	0	9	0	0	0	0	5	0	5	0	5	0	5	_	5	5	0	0	0	9		5	0	0	0		5

Table S3. IC_{50} values and potency for neutralization of Wuhan-1 SARS-CoV-2 PSV by bsNb₄-Igs (Class 2 nanobody as HC/LM18 as LC, top and Class 4 nanobody as HC/LM18 as LC, bottom). Assays were run in duplicate to select for the best constructs to be tested with other PSVs.

Nb HC/Nb LC	IC₅₀ (µg/mL)	IC50 (nM)	% Neut	R^2
109/LM18	0.274	1.825	99	0.97
112/LM18	0.588	3.918	88	0.97
115/LM18	0.194	1.291	101	0.96
118/LM18	0.230	1.532	99	0.98
121/LM18	0.056	0.374	96	1.00
124/LM18	0.285	1.903	101	0.99
127/LM18	1.709	11.393	87	0.97
130/LM18	0.138	0.922	99	0.99
133/LM18	0.306	2.041	89	0.96
136/LM18	0.126	0.837	99	0.97
139/LM18	0.234	1.561	98	0.99
142/LM18	0.112	0.744	96	0.98
145/LM18	0.023	0.154	95	0.98
148/LM18	0.170	1.135	97	0.98
154/LM18	1.914	12.760	91	0.98
157/LM18	0.200	1.334	92	0.98
160/LM18	3.250	21.667	92	0.98
163/LM18	0.044	0.295	94	0.99
166/LM18	0.165	1.099	99	0.99
169/LM18	1.703	11.353	88	0.96
				2
Nb HC/Nb LC	IC₅₀ (µg/mL)	IC50 (nM)	% Neut	R
186/LM18	0.189	1.260	97	0.98
189/LM18	0.106	0.707	97	0.99
192/LM18	1.084	7.227	65	0.89
195/LM18	0.273	1.820	99	0.97
198/LM18	0.029	0.193	99	1.00
201/LM18	4.373	29.153	45	0.90
204/LM18	1.506	10.040	92	0.98
207/LM18	4.122	27.480	61	0.87
210/LM18	0.157	1.047	99	0.98
213/LM18	0.240	1.600	96	0.98
216/LM18	1.932	12.880	66	0.91
219/LM18	0.130	0.867	97	0.99
222/LM18	4.280	28.533	55	0.93
225/LM18	0.070	0.467	97	0.97
228/LM18	7.972	53.147	77	0.91
231/LM18	3.377	22.513	83	0.94
234/LM18	0.427	2.847	101	0.97
237/LM18	0.021	0.140	97	0.89
240/LM18	0.194	1.293	95	0.93
243/LM18	0.466	3.107	98	0.97
246/LM18	3.874	25.827	79	0.88
249/LM18	38.720	258.133	88	0.81
252/LM18	1.096	7.307	64 07	0.74
255/LIVI18	0.037	0.247	97	0.96

Table S4. IC₅₀ values and potency for neutralization of SARS-CoV-2 PSVs by a selection of Nb-C2/LM18 and
Nb-C4/LM18 bsNb₄-Igs . No notable difference for neutralization between bsNb₄-Igs with LM18 either as a HC
or LC could be observed. Assays were run in duplicate. wt =Wuhan-1, NN = non-neutralizing, nd = not
determined, n.a = not applicable.

Nb121/LM18	IC50 (µg/mL)	IC50 (nM)	% Neut	R^2	LM18/Nb121	IC50 (µg/mL)	IC ₅₀ (nM)	% Neut	R^2
wt	0.082	0.545	95	0.95	wt	0.043	0.286	95	0.97
beta	2.102	14.013	102	0.97	beta	1.280	8.533	104	0.95
gamma	0.779	5.192	104	0.93	gamma	0.396	2.639	102	0.92
kappa	1.114	7.427	45	0.66	kappa	0.560	3.735	70	0.83
delta	3.556	23.707	99	0.93	delta	nd	nd	nd	nd
L452R	2.777	18.513	87	0.90	L452R	1.822	12.147	90	0.95
E484Q	0.791	5.273	96	0.92	E484Q	0.417	2.777	97	0.95
Nb136/LM18	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²	LM18/Nb136	IC50 (µg/mL)	IC50 (nM)	% Neut	R^2
wt	0.177	1.181	100	0.98	wt	0.167	1.112	100	0.96
beta	0.162	1.079	96	0.93	beta	0.087	0.577	96	0.93
gamma	0.120	0.800	99	0.94	gamma	0.051	0.340	97	0.89
delte	0.039	0.000	100	0.92	kappa delta	0.116	0.770 nd	90 nd	0.97
L452R	0.093	0.622	100	0.97	L452R	0.153	1.017	102	0.90
E484Q	0.101	0.673	100	0.92	E484Q	0.455	3.030	96	0.86
Nb139/LM18	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²	LM18/Nb139	IC50 (µg/mL)	ICso (nM)	% Neut	R ²
wt	0.150	0.998	102	0.94	wt	0.013	0.085	101	0.92
alpha	0.150	1.001	100	0.94	alpha	0.021	0.142	104	0.95
beta	0.193	1.284	100	0.93	beta	0.106	0.706	98	0.94
gamma	0.206	1.373	104	0.89	gamma	0.173	1.154	106	0.92
L452R	NN	NN	n.a	n.a	L452R	NN	NN	n.a	n.a
Nb148/LM18	IC50 (µg/mL)	ICso (nM)	% Neut	R ²	LM18/Nb148	IC50 (µg/mL)	ICso (nM)	% Neut	R ²
wt	0.209	1.395	101	0.96	wt	0.057	0.378	105	0.97
alpha	0.188	1.250	97	0.94	alpha	0.056	0.374	101	0.98
beta	0.484	3.223	94	0.95	beta	0.272	1.813	98	0.98
gamma	0.963	6.421	108	0.91	gamma	0.682	4.545	111	0.93
L452R	ININ	ININ	n.a	n.a	L452R	ININ	ININ	n.a	n.a
Nb198/LM18	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²	LM18/Nb198	IC50 (µg/mL)	IC50 (nM)	% Neut	R^2
wt	0.035	0.231	101	1.00	wt	0.046	0.309	100	0.99
beta	0.008	0.053	98	0.94	beta	0.026	0.171	101	0.98
gamma	0.012	0.082	97	0.98	gamma	0.017	0.110	98	0.94
kappa	0.030	0.200	101	0.99	kappa	0.032	0.213	100	0.99
delta	0.018	0.12	100	0.98	delta	nd	nd	nd	nd
L452H	0.048	0.320	102	0.98	L452R	0.082	0.545	104	0.95
L404Q	0.044	0.230	101	0.30	L404Q	0.001	0.008	102	0.33
Nb225/LM18	IC50 (µg/mL)	IC50 (nM)	% Neut	R^2	LM18/Nb225	IC50 (µg/mL)	IC50 (nM)	% Neut	R^2
wt	0.043	0.284	101	0.94	wt	0.042	0.281	98	0.93
beta	0.007	0.046	99	0.98	beta	0.005	0.033	97	0.89
gamma	0.010	0.066	98	0.98	gamma	0.010	0.065	97	0.97
kappa dolta	0.011	0.071	100	0.97	kappa dolto	0.019	0.124	nd	0.95 nd
1452B	0.061	0.007	103	0.90	1452B	0.117	0.781	101	0.87
E484Q	0.027	0.179	99	0.98	E484Q	0.050	0.332	99	0.96
Nb237/LM18	IC50 (µg/mL)	ICso (nM)	% Neut	R ²	LM18/Nb237	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²
wt	0.011	0.074	100	0.97	wt	0.021	0.140	101	0.89
beta	0.008	0.053	101	0.99	beta	0.018	0.120	100	0.88
gamma	0.006	0.038	97	0.97	gamma	0.013	0.087	96	0.79
kappa	0.006	0.042	100	0.98	kappa	0.014	0.093	100	0.90
delta	0.003	0.020	100	1.00	delta	nd	nd	nd	nd
L452R	0.018	0.117	100	1.00	L452R	0.029	0.193	99	0.92
E484Q	0.018	0.121	102	0.99	E484Q	0.027	0.180	99	0.87
Nb240/LM18	IC50 (µg/mL)	ICso (nM)	% Neut	R ²	LM18/Nb240	IC50 (µg/mL)	ICso (nM)	% Neut	R ²
wt	0.367	2.447	104	0.97	wt	0.121	0.803	102	0.99
beta	0.046	0.307	99	0.93	beta	0.063	0.418	102	0.95
gamma	0.024	0.160	98	0.97	gamma	0.028	0.186	98	0.98
карра de#o	0.027	0.493	102	0.98	kappa dolto	0.056	0.372	101	0.97
14520	0.027	1.420	98	0.99	14520	0.282	1 882	101	0.08
E484Q	0.406	2.707	100	0.91	E484Q	0.202	2.084	101	0.96
Nb255/I M18	IC50 (µa/ml.)	IC50 (nM)	% Neut	R ²	LM18/Nh255	IC50 (µa/ml.)	IC50 (nM)	% Neut	B ²
	0.000	0 107	101	0.00		0.004	0.150	100	0.06
WI heta	0.028	0.187	90	0.99	WI	0.024	0.158	98	0.90
ивіа патта	0.006	0.040	99 97	0.90	oeta namma	0.003	0.021	96	0.90
kapna	0.006	0.040	99	0.99	kanna	0.005	0.036	99	0.97
delta	0.010	0.097	100	0.97	delta	nd	nd		nd
	0.013	0.007	100	0.07		-	nu	nu	
L452R	0.013	0.087	99	0.99	L452R	0.024	0.157	98	0.97
L452R E484Q	0.013	0.160	99 99	0.99 0.95	L452R E484Q	0.024 0.014	0.157	98 98	0.97 0.96

121/255	IC₅₀ (µg/mL)	IC50 (nM)	% Neut	R ²	_	198/121	IC₅₀ (µg/mL)	IC₅₀ (nM)	% Neut	R ²
wt	0.353	2.353	103	0.91	_	wt	0.326	2.173	103	0.98
beta	NN	NN	n.a	n.a		beta	NN	NN	n.a	n.a
gamma	NN	NN	n.a	n.a		gamma	NN	NN	n.a	n.a
kappa	NN	NN	n.a	n.a		kappa	NN	NN	n.a	n.a
L452R	NN	NN	n.a	n.a		L452R	NN	NN	n.a	n.a
E484Q	3.753	25.020	63	0.86		E484Q	NN	NN	n.a	n.a
					_					
136/198	IC₅₀ (µg/mL)	IC50 (nM)	% Neut	R ²	_	198/136	IC₅₀ (µg/mL)	IC₅₀ (nM)	% Neut	R ²
wt	1.035	6.900	104	0.99		wt	0.878	5.856	105	0.98
beta	8.134	54.227	87	0.93		beta	2.579	17.193	79	0.95
gamma	3.852	25.680	96	0.95		gamma	1.302	8.680	93	0.96
kappa	3.553	23.687	88	0.97		kappa	2.840	18.933	90	0.96
delta	5.129	34.193	101	0.93	_	delta	5.194	34.627	108	0.95
106/005	Cre (ug/mL)	IC co. (nM)	9/ Nout	P ²		005/106		10 (* M)	9/ Nout	D ²
130/225	iCol (µg/iiiL)		% Neut	K	-	225/130	10.50 (µg/mL)		% Neut	<u> </u>
wt	0.083	0.556	101	0.99		wt	0.170	1.135	102	0.99
beta	0.251	1.673	89	0.98		beta	2.281	15.207	84	0.98
gamma	0.055	0.365	93	0.99		gamma	0.385	2.564	92	0.99
kappa	0.174	1.159	91	0.99		kappa	0.371	2.471	86	0.99
delta	0.161	1.074	103	0.96		delta	0.724	4.827	98	0.96
					_					
	10 ((10 (14)		2	_			10 (10		2
136/237	IC₅₀ (µg/mL)	IC50 (nM)	% Neut	R ²	_	237/136	IC₅₀ (µg/mL)	IC ₅₀ (nM)	% Neut	R^2
136/237 wt	IC₅₀ (µg/mL) 0.684	IC₅₀ (nM) 4.560	% Neut 103	R ²	=	237/136 wt	IC₅₀ (µg/mL) 0.398	IC₅₀ (nM) 2.653	% Neut 102	R ²
136/237 wt <i>beta</i>	IC₅₀ (µg/mL) 0.684 0.443	IC ₅₀ (nM) 4.560 2.956	% Neut 103 89	R ² 0.98 0.97	=	237/136 wt <i>beta</i>	IC₅₀ (μg/mL) 0.398 0.587	IC₅₀ (nM) 2.653 3.911	% Neut 102 89	R ² 0.99 0.98
136/237 wt beta gamma	IC ₅₀ (μg/mL) 0.684 0.443 0.341	IC₅₀ (nM) 4.560 2.956 2.273	% Neut 103 89 97	R ² 0.98 0.97 0.99	=	237/136 wt beta gamma	IC₅₀ (µg/mL) 0.398 0.587 0.227	IC₅₀ (nM) 2.653 3.911 1.512	% Neut 102 89 95	R ² 0.99 0.98 0.98
136/237 wt beta gamma kappa	IC ₅₀ (μg/mL) 0.684 0.443 0.341 0.691	IC50 (nM) 4.560 2.956 2.273 4.606	% Neut 103 89 97 94	R ² 0.98 0.97 0.99 0.99	=	237/136 wt beta gamma kappa	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409	IC₅₀ (nM) 2.653 3.911 1.512 2.723	% Neut 102 89 95 90	R ² 0.99 0.98 0.98 0.99
136/237 wt beta gamma kappa delta	IC₅₀ (µg/mL) 0.684 0.443 0.341 0.691 0.712	IC50 (nM) 4.560 2.956 2.273 4.606 4.745	% Neut 103 89 97 94 103	R ² 0.98 0.97 0.99 0.99 0.98	=	237/136 wt beta gamma kappa delta	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409 0.811	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403	% Neut 102 89 95 90 104	R ² 0.99 0.98 0.98 0.99 0.99
136/237 wt beta gamma kappa delta	IC ₅₀ (μg/mL) 0.684 0.443 0.341 0.691 0.712	IC₅0 (nM) 4.560 2.956 2.273 4.606 4.745	% Neut 103 89 97 94 103	R ² 0.98 0.97 0.99 0.99 0.99	=	237/136 wt beta gamma kappa delta	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409 0.811	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403	% Neut 102 89 95 90 104	R ² 0.99 0.98 0.98 0.99 0.96
136/237 wt beta gamma kappa delta 136/240	ICso (µg/mL) 0.684 0.443 0.341 0.691 0.712 ICso (µg/mL)	IC50 (nM) 4.560 2.956 2.273 4.606 4.745 IC50 (nM)	% Neut 103 89 97 94 103 % Neut	R ² 0.98 0.97 0.99 0.99 0.98 R ²	=	237/136 wt beta gamma kappa delta 240/136	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409 0.811 IC ₅₀ (μg/mL)	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC ₅₀ (nM)	% Neut	R ² 0.99 0.98 0.98 0.99 0.96 R ²
136/237 wt beta gamma kappa delta 136/240 wt	IC50 (µg/mL) 0.684 0.443 0.341 0.691 0.712 IC50 (µg/mL) 0.413	IC50 (nM) 4.560 2.956 2.273 4.606 4.745 IC50 (nM) 2.752	% Neut 103 89 97 94 103 % Neut 101		=	237/136 wt beta gamma kappa delta 240/136 wt	IC 50 (µg/mL) 0.398 0.587 0.227 0.409 0.811 IC 50 (µg/mL) 0.283	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC ₅₀ (nM) 1.887	% Neut 102 89 95 90 104 % Neut 101	R ² 0.99 0.98 0.98 0.99 0.99 0.99 0.96 R ² 0.99
136/237 wt beta gamma kappa deita 136/240 wt beta	IC50 (µg/mL) 0.684 0.443 0.341 0.691 0.712 IC50 (µg/mL) 0.413 0.808	ICs0 (nM) 4.560 2.956 2.273 4.606 4.745 ICs0 (nM) 2.752 5.385	% Neut 103 89 97 94 103 % Neut 101 86	R ² 0.98 0.97 0.99 0.99 0.98 R ² 0.99 0.99	=	237/136 wt beta gamma kappa delta 240/136 wt beta	IC₅₀ (µg/mL) 0.398 0.587 0.227 0.409 0.811 IC₅₀ (µg/mL) 0.283 1.578	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC ₅₀ (nM) 1.887 10.520	% Neut 102 89 95 90 104 % Neut 101 84	R ² 0.99 0.98 0.99 0.99 0.99 0.96 R ² 0.99 0.95
136/237 wt beta gamma kappa delta 136/240 wt beta gamma	IC50 (µg/mL) 0.684 0.443 0.341 0.691 0.712 IC50 (µg/mL) 0.413 0.808 0.228	ICso (nM) 4.560 2.956 2.273 4.606 4.745 ICso (nM) 2.752 5.385 1.517	% Neut 103 89 97 94 103 % Neut 101 86 92	R ² 0.98 0.97 0.99 0.99 0.98 R ² 0.99 0.99 0.99 0.98	=	237/136 wt beta gamma kappa delta 240/136 wt beta gamma	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409 0.811 IC ₅₀ (μg/mL) 0.283 1.578 0.379	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC ₅₀ (nM) 1.887 10.520 2.529	% Neut 102 89 95 90 104 % Neut 101 84 94 94	R ² 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
136/237 wt beta gamma kappa delta 136/240 wt beta gamma kappa	ICso (µg/mL) 0.684 0.443 0.341 0.691 0.712 ICso (µg/mL) 0.413 0.808 0.228 1.116	ICso (nM) 4.560 2.956 2.273 4.606 4.745 ICso (nM) 2.752 5.385 1.517 7.440	% Neut 103 89 97 94 103 % Neut 101 86 92 92	R ² 0.98 0.97 0.99 0.99 0.98 R ² 0.99 0.99 0.99 0.98 0.99	=	237/136 wt beta gamma kappa delta 240/136 wt beta gamma kappa	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409 0.811 IC ₅₀ (μg/mL) 0.283 1.578 0.379 0.907	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC ₅₀ (nM) 1.887 10.520 2.529 6.045	% Neut 102 89 95 90 104 % Neut 101 84 94 90	R ² 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.95 0.99 0.91
136/237 wt beta gamma kappa delta 136/240 wt beta gamma kappa delta	IC50 (µg/mL) 0.684 0.443 0.341 0.691 0.712 IC50 (µg/mL) 0.413 0.808 0.228 1.116 1.301	ICs0 (nM) 4.560 2.956 2.273 4.606 4.745 ICs0 (nM) 2.752 5.385 1.517 7.440 8.673	% Neut 103 89 97 94 103 97 94 103 % Neut 101 86 92 92 103	R ² 0.98 0.97 0.99 0.99 0.98 R ² 0.99 0.99 0.99 0.99 0.99 0.99 0.99	=	237/136 wt beta gamma kappa delta 240/136 wt beta gamma kappa delta	IC 50 (µg/mL) 0.398 0.587 0.227 0.409 0.811 IC 50 (µg/mL) 0.283 1.578 0.379 0.907 1.606	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC ₅₀ (nM) 1.887 10.520 2.529 6.045 10.707	% Neut 102 89 95 90 104 % Neut 101 84 94 90 102 102	R ² 0.99 0.98 0.98 0.99 0.96 R ² 0.99 0.95 0.99 0.91 0.99
136/237 wt beta gamma kappa delta 136/240 wt beta gamma kappa delta	IC50 (µg/mL) 0.684 0.443 0.691 0.712 IC50 (µg/mL) 0.413 0.808 0.228 1.116 1.301	ICso (nM) 4.560 2.956 2.273 4.606 4.745 ICso (nM) 2.752 5.385 1.517 7.440 8.673	% Neut 103 89 97 94 103 % Neut 101 86 92 92 103 92 103 92	R ² 0.98 0.97 0.99 0.98 R ² 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.96	=	237/136 wt beta gamma kappa delta 240/136 wt beta gamma kappa delta	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409 0.811 IC ₅₀ (μg/mL) 0.283 1.578 0.379 0.907 1.606	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC ₅₀ (nM) 1.887 10.520 2.529 6.045 10.707	% Neut 102 89 95 90 104 % Neut 101 84 94 90 102 102	R ² 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.95 0.99 0.91 0.99
136/237 wt beta gamma kappa delta 136/240 wt beta gamma kappa delta 136/255	IC50 (µg/mL) 0.684 0.443 0.341 0.691 0.712 IC50 (µg/mL) 0.413 0.808 0.228 1.116 1.301 IC50 (µg/mL)	ICso (nM) 4.560 2.956 2.273 4.606 4.745 ICso (nM) 2.752 5.385 1.517 7.440 8.673 ICso (nM)	% Neut 103 89 97 94 103 97 % Neut 101 86 92 92 103 % Neut 103	R ² 0.98 0.97 0.99 0.98 R ² 0.99 0.98 0.99 0.98 0.98 0.98 0.96 R ²	=	237/136 wt beta gamma kappa delta 240/136 wt beta gamma kappa delta 255/136	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409 0.811 IC ₅₀ (μg/mL) 0.283 1.578 0.379 0.907 1.606 IC ₅₀ (μg/mL)	IC₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC₅₀ (nM) 1.887 10.520 2.529 6.045 10.707 IC₅₀ (nM)	% Neut 102 89 95 90 104 90 101 84 94 90 102 % Neut	R ² 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99
136/237 wt beta gamma kappa delta 136/240 wt beta gamma kappa delta 136/255 wt	IC50 (µg/mL) 0.684 0.443 0.691 0.712 IC50 (µg/mL) 0.413 0.808 0.228 1.116 1.301 IC50 (µg/mL) 0.122	ICso (nM) 4.560 2.956 2.273 4.606 4.745 ICso (nM) 2.752 5.385 1.517 7.440 8.673 ICso (nM) 0.813	% Neut 103 89 97 94 103 % Neut % Neut 99 103 % Neut 90 % Neut 99 92 103 % Neut	$ \begin{array}{r} R^{2} \\ 0.98 \\ 0.97 \\ 0.99 \\ 0.98 \\ \hline R^{2} \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.98 \\ 0.99 \\ 0.98 \\ 0.99 \\ 0.98 \\ 0.99 \\ 0.98$	=	237/136 wt beta gamma kappa delta 240/136 wt beta gamma kappa delta 255/136 wt	IC 50 (μg/mL) 0.398 0.587 0.227 0.409 0.811 0.283 1.578 0.379 0.907 1.606 IC 50 (μg/mL) 0.507 0.907	ICs0 (nM) 2.653 3.911 1.512 2.723 5.403 ICs0 (nM) 1.887 10.520 2.529 6.045 10.707 ICs0 (nM) 1.558	% Neut 102 89 95 90 104 % Neut 101 84 94 90 102 % Neut 102 102	R ² 0.99 0.98 0.99 0.99 0.99 0.95 0.99 0.95 0.99 0.91 0.99 0.99 R ²
136/237 wt beta gamma kappa delta 136/240 wt beta gamma kappa delta 136/255 wt beta	IC ₅₀ (μg/mL) 0.684 0.443 0.341 0.691 0.712 IC ₅₀ (μg/mL) 0.413 0.808 0.228 1.116 1.301 IC ₅₀ (μg/mL) 0.122 0.660	ICso (nM) 4.560 2.956 2.273 4.606 4.745 ICso (nM) 2.752 5.385 1.517 7.440 8.673 ICso (nM) 0.813 4.402	% Neut 103 89 97 94 103 % Neut 101 86 92 92 103 % Neut % Neut 99 89 89	$ \begin{array}{r} R^{2} \\ 0.98 \\ 0.97 \\ 0.99 \\ 0.99 \\ 0.98 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.98 \\ 0.99 \\ 0.96 \\ R^{2} \\ R^{2} \\ 0.98 \\ $	=	237/136 wt beta gamma kappa delta 240/136 wt beta gamma kappa delta 255/136 wt beta	IC₅₀ (µg/mL) 0.398 0.587 0.227 0.409 0.811 0.833 IC₅₀ (µg/mL) 0.283 1.578 0.379 0.907 1.606 1.606 IC₅₀ (µg/mL) 0.234 0.961	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC ₅₀ (nM) 1.887 10.520 2.529 6.045 10.707 IC ₅₀ (nM) I.558 6.409	% Neut 102 89 95 90 104 % Neut 101 84 94 90 102 % Neut 103 88	R ² 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
136/237 wt beta gamma kappa delta 136/240 wt beta gamma kappa delta 136/255 wt beta gamma	IC50 (µg/mL) 0.684 0.443 0.341 0.691 0.712 IC50 (µg/mL) 0.413 0.808 0.228 1.116 1.301 IC50 (µg/mL) 0.122 0.660 0.151	ICso (nM) 4.560 2.956 2.273 4.606 4.745 ICso (nM) 2.752 5.385 1.517 7.440 8.673 ICso (nM) 0.813 4.402 1.009	% Neut 103 89 97 94 103 % % Neut 101 86 92 92 103 % Neut 99 89 92 99 89 92 92	R ² 0.98 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.96 R ² 0.98 0.98 0.98 0.98 0.98	=	237/136 wt beta gamma kappa delta 240/136 wt beta gamma kappa delta 255/136 wt beta gamma	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409 0.811 IC ₅₀ (μg/mL) 0.283 1.578 0.379 0.907 1.606 IC ₅₀ (μg/mL) 0.234 0.234 0.961 0.246	IC ₅₀ (nM) 2.653 3.911 1.512 2.723 5.403 IC ₅₀ (nM) 1.887 10.520 2.529 6.045 10.707 IC ₅₀ (nM) 1.558 6.409 1.637	% Neut 102 89 95 90 104 % % Neut 101 84 94 90 102 % Neut 103 88 95	R ² 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
136/237 wt beta gamma kappa delta 136/240 wt beta gamma kappa delta 136/255 wt beta gamma kappa	IC50 (µg/mL) 0.684 0.443 0.691 0.712 IC50 (µg/mL) 0.413 0.808 0.228 1.116 1.301 IC50 (µg/mL) 0.122 0.660 0.151 0.523	ICso (nM) 4.560 2.956 2.273 4.606 4.745 ICso (nM) 2.752 5.385 1.517 7.440 8.673 ICso (nM) 0.813 4.402 1.009 3.489	% Neut 103 89 97 94 103 % % Neut 101 86 92 92 103 % Neut 99 89 92 91 91	R ² 0.98 0.97 0.99 0.98 R ² 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	-	237/136 wt beta gamma kappa delta 240/136 wt beta gamma kappa delta 255/136 wt beta gamma kappa	IC ₅₀ (μg/mL) 0.398 0.587 0.227 0.409 0.811 0.283 1.578 0.379 0.907 1.606 IC ₅₀ (μg/mL) 0.234 0.961 0.246 0.404	IC50 (nM) 2.653 3.911 1.512 2.723 5.403 IC50 (nM) 1.887 10.520 2.529 6.045 10.707 IC50 (nM) 1.558 6.409 1.637 2.695	% Neut 102 89 95 90 104 94 90 101 84 94 90 102 % Neut 103 88 95 89 95	R ² 0.99 0.98 0.99 0.96 R ² 0.99 0.95 0.99 0.95 0.99 0.91 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99

Table S5. IC₅₀ values and potency for neutralization of SARS-CoV-2 PSVs by class 2 and 4 nanobody-based $bsNb_4$ -Igs. Assays were run in duplicate. wt = Wuhan-1, NN = non neutralizing, n.a = not applicable

Table S6. IC_{50} values and potency for neutralization of SARS-CoV-2 *omicron* PSV by LM18- and Nb-C2-136based bsNb₄-lgs. Monoclonal antibodies CC12.1 and CC6.30, as well as the clinical antibody candidates LY-CoV555, REGN-10933 and REGN-10987 were tested for reference. Assays were run in duplicate. NN: not neutralizing, n.a: not applicable

Const	ruct	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²
HC	LC				
Nb-C4-198		NN	NN	n.a	n.a
Nb-C4-225		NN	NN	n.a	n.a
Nb-C4-237	LM18	NN	NN	n.a	n.a
Nb-C4-240		NN	NN	n.a	n.a
Nb-C4-255		NN	NN	n.a	n.a
Nb-C4-198		0.713	4.75	104	0.94
Nb-C4-225		0.418	2.79	103	0.97
Nb-C4-237 N	Nb-C2-136	0.343	2.29	102	0.96
Nb-C4-240		0.670	4.47	103	0.96
Nb-C4-255		0.379	2.53	102	0.96
CC1	2.1	NN	NN	n.a	n.a
CC6	.30	NN	NN	n.a	n.a
LY-Co	V555	NN	NN	n.a	n.a
REGN1	0933	NN	NN	n.a	n.a
REGN1	0987	NN	NN	n.a	n.a

Table S7. IC_{50} values and potency for neutralization of SARS-CoV-2 PSVs by Nb₄-Igs (tetravalent monospecific constructs). Assays were run in duplicate. NN: not neutralizing, n.a: not applicable, nt: not tested. wt = Wuhan-1

tetraLM18	IC50 (µg/mL)	IC50 (nM)	% Neut	R^2	 tetra121	IC₅₀ (µg/mL)	IC ₅₀ (nM)	% Neut	R ²
wt	0.029	0.193	96	0.99	 wt	NN	NN	n.a	n.a
beta	0.025	0.167	99	0.97	beta	NN	NN	n.a	n.a
gamma	0.014	0.093	89	0.98	gamma	NN	NN	n.a	n.a
kappa	0.071	0.473	87	0.96	kappa	NN	NN	n.a	n.a
delta	0.050	0.333	100	0.99	 delta	NN	NN	n.a	n.a
				0					0
tetra136	IC₅₀ (µg/mL)	IC50 (nM)	% Neut	R [∠]	 tetra240	IC₅₀ (µg/mL)	IC50 (nM)	% Neut	R
wt	0.362	2.413	98	0.96	 wt	NN	NN	n.a	n.a
beta	NN	NN	n.a	n.a	beta	NN	NN	n.a	n.a
gamma	NN	NN	n.a	n.a	gamma	NN	NN	n.a	n.a
kappa	NN	NN	n.a	n.a	kappa	NN	NN	n.a	n.a
delta	NN	NN	n.a	n.a	 delta	NN	NN	n.a	n.a
tetra225	IC ₅₀ (µg/mL)	IC ₅₀ (nM)	% Neut	R^2	 tetra246	IC₅₀ (µg/mL)	IC50 (nM)	% Neut	R ²
wt	NN	NN	n.a	n.a	 wt	NN	NN	n.a	n.a
beta	nt	nt	nt	nt	beta	NN	NN	n.a	n.a
gamma	nt	nt	nt	nt	gamma	NN	NN	n.a	n.a
kappa	nt	nt	nt	nt	kappa	NN	NN	n.a	n.a
delta	NN	NN	n.a	n.a	 delta	NN	NN	n.a	n.a

Constructs	HC/LC	Туре	Method	Fit Model	<i>k</i> a1	<i>k</i> _d 1	<i>K</i> D1	k a 2	k d 2	K d 2
LM18	-	Nb	Direct, RBD conj.	1:1 Binding	2.41E+05	9.44E-02	3.91E-07	-	-	-
LM18.1.17	-	Nb	Direct, RBD conj.	1:1 Binding	5.51E+05	5.19E-02	9.42E-08	-	-	-
Nb121	-	Nb	Direct, RBD conj.	1:1 Binding	2.07E+05	2.09E-01	1.01E-06	-		-
Nb136	-	Nb	Direct, RBD conj.	1:1 Binding	8.37E+04	3.20E-02	3.82E-07	-	-	-
Nb198	-	Nb	Direct, RBD conj.	1:1 Binding	6.93E+04	1.87E-01	2.96E-06	-		-
Nb225	-	Nb	Direct, RBD conj.	1:1 Binding	3.99E+04	5.70E-03	1.43E-07	-	-	-
Nb237	-	Nb	Direct, RBD conj.	1:1 Binding	1.09E+05	5.69E-02	5.21E-07	-	-	-
Nb240	-	Nb	Direct, RBD conj.	1:1 Binding	9.11E+05	9.69E-01	1.06E-06	-	-	-
Nb255	-	Nb	Direct, RBD conj.	1:1 Binding	9.99E+04	2.95E-01	2.95E-06	-		-
Ab122	121/LM18	Ab	Fc-cap, multi-cycle	1:1 Binding	1.57E+06	4.13E-03	2.63E-09	-	-	-
Ab122.1	121/LM18.1.17	Ab	Fc-cap, multi-cycle	1:1 Binding	1.82E+06	1.60E-03	8.76E-10	-	-	-
Ab123	LM18/121	Ab	Fc-cap, multi-cycle	1:1 Binding	1.79E+06	5.24E-03	2.94E-09	-		-
Ab137	136/LM18	Ab	Fc-cap, multi-cycle	1:1 Binding	7.45E+05	4.25E-04	5.70E-10	-		-
Ab137.1	136/LM18.1.17	Ab	Fc-cap, multi-cycle	1:1 Binding	1.11E+06	3.29E-04	2.96E-10	-	-	-
Ab138	LM18/136	Ab	Fc-cap, multi-cycle	1:1 Binding	7.08E+05	3.54E-04	4.99E-10	-	-	-
Ab199	198/LM18	Ab	Fc-cap, multi-cycle	1:1 Binding	6.37E+05	1.76E-02	2.76E-08	-		-
Ab199.1	198/LM18.1.17	Ab	Fc-cap, multi-cycle	1:1 Binding	3.15E+06	3.34E-02	1.06E-08	-	-	-
Ab200	LM18/198	Ab	Fc-cap, multi-cycle	1:1 Binding	6.12E+05	1.59E-02	2.60E-08	-	-	-
Ab226	225/LM18	Ab	Fc-cap, multi-cycle	Het. Ligand	1.22E+06	2.40E-01	1.97E-07	7.67E+04	9.48E-04	1.24E-08
Ab226.1	225/LM18.1.17	Ab	Fc-cap, multi-cycle	Het. Ligand	3.03E+06	1.20E-01	3.96E-08	8.31E+04	2.71E-04	3.26E-09
Ab227	LM18/225	Ab	Fc-cap, multi-cycle	Het. Ligand	2.90E+06	2.15E-01	7.42E-08	6.91E+04	1.32E-03	1.91E-08
Ab238	237/LM18	Ab	Fc-cap, multi-cycle	Het. Ligand	3.77E+05	1.04E-01	2.75E-07	5.61E+04	1.74E-04	3.10E-09
Ab238.1	237/LM18.1.17	Ab	Fc-cap, multi-cycle	1:1 Binding	4.85E+05	3.54E-02	7.31E-08	-		-
Ab239	LM18/237	Ab	Fc-cap, multi-cycle	Het. Ligand	4.12E+05	1.05E-01	2.56E-07	7.22E+04	1.19E-04	1.64E-09
Ab241	240/LM18	Ab	Fc-cap, multi-cycle	Het. Ligand	9.32E+05	1.35E-01	1.45E-07	8.54E+04	4.41E-04	5.17E-09
Ab241.1	240/LM18.1.17	Ab	Fc-cap, multi-cycle	Het. Ligand	1.47E+06	7.89E-02	5.36E-08	1.17E+05	9.00E-05	7.66E-10
Ab242	LM18/240	Ab	Fc-cap, multi-cycle	Het. Ligand	1.24E+06	1.95E-01	1.58E-07	5.99E+04	4.97E-04	8.29E-09
Ab256	255/LM18	Ab	Fc-cap, multi-cycle	Het. Ligand	1.09E+06	2.06E-01	1.89E-07	5.82E+04	3.95E-04	6.80E-09
Ab256.1	255/LM18.1.17	Ab	Fc-cap, multi-cycle	Het. Ligand	2.17E+06	1.36E-01	6.27E-08	9.94E+04	3.53E-05	3.55E-10
Ab257	LM18/255	Ab	Fc-cap, multi-cycle	Het. Ligand	1.51E+06	2.32E-01	1.54E-07	5.41E+04	7.38E-04	1.36E-08
TetraLM18	LM18/LM18	Ab	Fc-cap, multi-cycle	Het. Ligand	5.59E+05	1.38E-01	2.47E-07	6.33E+04	2.99E-04	4.72E-09
Fab123	LM18/121	Fab ⊑-⊨	RBD-biotin-CAP, single-cycle	1:1 Binding	1.14E+06	2.11E-02	1.85E-08	-	-	-
Fab138	LM18/136	Fab	RBD-blotin-CAP, single-cycle	1:1 Binding	4.17E+05	6.78E-05	1.63E-10	-	-	-
Fab200	LIVITO/190	Fab	RBD-biotin-CAP, single-cycle	1:1 Binding	2.10E+00	5.39E-02	2.37E-00	-	-	-
Fab227	LW18/237	Fab	RBD-biotin-CAP single-cycle	Het Linand	6.11E+06	4.12F-02	6.74F-09	- 3.33E+05	- 1.93E-03	- 5 80E-09
Fab242	L M18/240	Fab	BBD-biotin-CAP single-cycle	1.1 Binding	2 49E+06	7.01E-02	2.81E-08	-		-
Fab257	LM18/255	Fab	RBD-biotin-CAP, single-cycle	Het. Ligand	6.43E+06	5.01E-02	7.80E-09	2.26E+05	2.88E-03	1.27E-08

Table S8. Summarized results of Wuhan-1 SARS-CoV-2-RBD binding to nanobodies, Fabs and antibodies. Association and dissociation rate constants calculated through a 1:1 Langmuir binding model when possible or heterologous ligand binding model using the BIAevaluation software.

Table S9. Summarized results of Wuhan-1 SARS-CoV-2-Spike binding to Fabs or antibodies. Association and dissociation rate constants calculated through a 1:1 Langmuir binding model using the BIAevaluation software.

Constructs	HC/LC	Туре	Method	Fit Model	<i>k</i> a1	<i>k</i> _d 1	<i>K</i> d1
Ab123	LM18/121	Ab	Fc-cap, multi-cycle	1:1 Binding	5.83E+05	6.29E-04	1.08E-09
Ab138	LM18/136	Ab	Fc-cap, multi-cycle	1:1 Binding	5.09E+05	3.23E-04	6.35E-10
Ab200	LM18/198	Ab	Fc-cap, multi-cycle	1:1 Binding	5.25E+05	6.77E-04	1.29E-09
Ab227	LM18/225	Ab	Fc-cap, multi-cycle	1:1 Binding	1.50E+06	1.74E-03	1.16E-09
Ab239	LM18/237	Ab	Fc-cap, multi-cycle	1:1 Binding	3.45E+05	6.45E-04	1.87E-09
Ab242	LM18/240	Ab	Fc-cap, multi-cycle	1:1 Binding	4.85E+05	1.77E-03	3.65E-09
Ab257	LM18/255	Ab	Fc-cap, multi-cycle	1:1 Binding	1.00E+06	9.80E-04	9.77E-10
TetraLM18	LM18/LM18	Ab	Fc-cap, multi-cycle	1: 1 Binding	5.77E+05	1.09E-03	1.88E-09
Fab123	LM18/121	Fab	S-Biotin-CAP, single-cycle	1:1 Binding	1.18E+06	1.44E-02	1.22E-08
Fab138	LM18/136	Fab	S-Biotin-CAP, single-cycle	1:1 Binding	7.28E+05	3.06E-05	4.20E-11
Fab200	LM18/198	Fab	S-Biotin-CAP, single-cycle	1:1 Binding	3.09E+06	2.09E-02	6.75E-09
Fab227	LM18/225	Fab	S-Biotin-CAP, single-cycle	1:1 Binding	4.58E+06	2.96E-02	6.47E-09
Fab239	LM18/237	Fab	S-Biotin-CAP, single-cycle	1:1 Binding	2.63E+06	1.63E-03	6.19E-10
Fab242	LM18/240	Fab	S-Biotin-CAP, single-cycle	1:1 Binding	1.18E+06	2.13E-02	1.80E-08
Fab257	LM18/255	Fab	S-Biotin-CAP, single-cycle	1:1 Binding	3.56E+06	9.60E-03	2.69E-09

Table S10. Neutralization of SARS-CoV-2 PSVs by matured LM18-based bsNb₄-lgs. Assays were run in duplicate. wt = Wuhan-1

Abs122.1 121/LM18.1.17	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²	Abs137.1 136/LM18.1.17	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²
WT	0.007	0.047	95	0.95	WT	0.042	0.280	97	0.95
P.1	0.060	0.398	96	0.97	P.1	0.038	0.250	98	0.95
B.1.351	0.117	0.781	94	0.94	B.1.351	0.047	0.314	98	0.97
B.1.617	0.649	4.329	90	0.85	B.1.617	0.027	0.183	94	0.97
B.1.617.2	0.201	1.340	98	0.97	B.1.617.2	0.104	0.693	103	0.96
E484Q	0.021	0.138	96	0.84	E484Q	0.107	0.710	100	0.95
L452R	0.187	1.247	96	0.94	L452R	0.029	0.194	101	0.98
Abs199.1 198/LM18.1.17	IC50 (µg/mL)	IC₅₀ (nM)	% Neut	R ²	Abs226.1 225/LM18.1.17	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²
WT	0.009	0.060	101	0.99	WT	0.007	0.047	101	0.97
P.1	0.005	0.033	99	1.00	P.1	0.001	0.007	94	0.90
B.1.351	0.008	0.053	101	0.98	B.1.351	0.003	0.020	101	0.99
B.1.617	0.011	0.073	100	0.99	B.1.617	0.004	0.027	100	0.99
B.1.617.2	0.129	0.863	101	1.00	B.1.617.2	0.004	0.026	100	1.00
E484Q	0.010	0.067	101	0.99	E484Q	0.060	0.400	101	1.00
L452R	0.015	0.100	102	0.96	L452R	0.008	0.053	101	1.00
Abs238.1 	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²	Abs241.1 240/LM18.1.17	IC50 (µg/mL)	IC50 (nM)	% Neut	R ²
Abs238.1 237/LM18.1.17 WT	IC₅₀ (µg/mL)	IC50 (nM)	% Neut	R ²	Abs241.1 240/LM18.1.17 WT	IC₅₀ (µg/mL) 0.015	IC50 (nM)	% Neut 102	R ²
Abs238.1 237/LM18.1.17 WT P.1	IC₅₀ (µg/mL) 0.006 0.002	IC50 (nM) 0.040 0.013	% Neut 102 97	R ² 0.96 0.85	Abs241.1 240/LM18.1.17 WT P.1	IC₅₀ (µg/mL) 0.015 0.002	IC50 (nM) 0.100 0.013	% Neut 102 97	R ² 0.98 0.98
Abs238.1 237/LM18.1.17 WT P.1 B.1.351	IC ₅₀ (μg/mL) 0.006 0.002 0.003	IC50 (nM) 0.040 0.013 0.020	% Neut 102 97 101	R ² 0.96 0.85 0.93	Abs241.1 240/LM18.1.17 WT P.1 B.1.351	IC₅₀ (µg/mL) 0.015 0.002 0.004	IC50 (nM) 0.100 0.013 0.027	% Neut 102 97 100	R ² 0.98 0.98 0.99
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617	IC ₅₀ (μg/mL) 0.006 0.002 0.003 0.004	IC50 (nM) 0.040 0.013 0.020 0.027	% Neut 102 97 101 100	R ² 0.96 0.85 0.93 0.91	Abs241.1 240/LM18.1.17 WT P.1 B.1.351 B.1.617	IC ₅₀ (μg/mL) 0.015 0.002 0.004 0.007	IC50 (nM) 0.100 0.013 0.027 0.047	% Neut 102 97 100 100	R ² 0.98 0.98 0.99 1.00
Abs238.1 237/LM18.1.17 P.1 B.1.351 B.1.617 B.1.617.2	IC ₅₀ (μg/mL) 0.006 0.002 0.003 0.004 0.004	IC₅₀ (nM) 0.040 0.013 0.020 0.027 0.028	% Neut 102 97 101 100 101	R ² 0.96 0.85 0.93 0.91 1.00	Abs241.1 240/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2	IC ₅₀ (μg/mL) 0.015 0.002 0.004 0.007 0.017	IC50 (nM) 0.100 0.013 0.027 0.047 0.111	% Neut 102 97 100 100 102	R ² 0.98 0.99 1.00 0.96
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q	IC50 (µg/mL) 0.006 0.002 0.003 0.004 0.004 0.003	IC50 (nM) 0.040 0.013 0.020 0.027 0.028 0.020	% Neut 102 97 101 100 101 101	R ² 0.96 0.85 0.93 0.91 1.00 0.93	Abs241.1 240/LM18.1.17 P.1 B.1.351 B.1.617 B.1.617.2 E484Q	IC₅₀ (µg/mL) 0.015 0.002 0.004 0.007 0.017 0.010	IC50 (nM) 0.100 0.013 0.027 0.047 0.111 0.067	% Neut 97 100 100 102 99	R ² 0.98 0.99 1.00 0.96 0.99
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R	IC50 (µg/mL) 0.006 0.002 0.003 0.004 0.004 0.003 0.003	IC50 (nM) 0.040 0.020 0.027 0.028 0.020 0.020	% Neut 97 101 100 101 101 101 100	R ² 0.96 0.85 0.93 0.91 1.00 0.93 0.97	Abs241.1 240/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R	IC₅₀ (µg/mL) 0.015 0.002 0.004 0.007 0.017 0.010 0.010	IC50 (nM) 0.100 0.013 0.027 0.047 0.111 0.067 0.067	% Neut 97 100 100 102 99 99	R ² 0.98 0.99 1.00 0.96 0.99 0.98
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R Abs256.1 255/LM18.1.17	IC50 (µg/mL) 0.006 0.002 0.003 0.004 0.004 0.003 0.003 IC50 (µg/mL)	IC50 (nM) 0.040 0.013 0.020 0.027 0.028 0.020 0.020 IC50 (nM)	% Neut 102 97 101 100 101 101 100 % Neut	R ² 0.96 0.85 0.93 0.91 1.00 0.93 0.97 R ²	Abs241.1 240/LM18.1.17 P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R	IC ₅₀ (µg/mL) 0.015 0.002 0.004 0.007 0.017 0.010 0.010	IC50 (nM) 0.100 0.013 0.027 0.047 0.111 0.067 0.067	% Neut 102 97 100 100 102 99 99	R ² 0.98 0.99 1.00 0.96 0.99 0.98
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R Abs256.1 255/LM18.1.17 WT	IC50 (µg/mL) 0.006 0.002 0.003 0.004 0.004 0.003 0.003 IC50 (µg/mL) 0.004	IC50 (nM) 0.040 0.013 0.020 0.027 0.028 0.020 0.020 IC50 (nM) 0.027	% Neut 102 97 101 100 101 101 100 % Neut 101	R ² 0.96 0.85 0.93 0.91 1.00 0.93 0.97 R ² 0.93	Abs241.1 240/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R	IC50 (µg/mL) 0.015 0.002 0.004 0.007 0.017 0.010 0.010	IC50 (nM) 0.100 0.013 0.027 0.047 0.111 0.067 0.067	% Neut 102 97 100 100 102 99 99	R ² 0.98 0.99 1.00 0.96 0.99 0.98
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R Abs256.1 255/LM18.1.17 WT P.1	ICso (µg/mL) 0.006 0.002 0.003 0.004 0.004 0.003 ICso (µg/mL) 0.004 0.004 0.002	IC50 (nM) 0.040 0.013 0.020 0.027 0.028 0.020 0.020 IC50 (nM) 0.027 0.013	% Neut 102 97 101 100 101 101 100 % Neut 101 99	R ² 0.96 0.85 0.93 0.91 1.00 0.93 0.97 R ² 0.93 0.90	Abs241.1 240/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R	IC50 (µg/mL) 0.015 0.002 0.004 0.007 0.017 0.010 0.010	IC50 (nM) 0.100 0.013 0.027 0.047 0.111 0.067 0.067	% Neut 102 97 100 100 102 99 99 99	R ² 0.98 0.99 1.00 0.96 0.99 0.98
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R Abs256.1 255/LM18.1.17 P.1 B.1.351	IC50 (µg/mL) 0.006 0.002 0.003 0.004 0.004 0.003 0.003 IC50 (µg/mL) 0.004 0.002 0.001	IC50 (nM) 0.040 0.013 0.020 0.027 0.028 0.020 0.020 IC50 (nM) 0.027 0.013 0.007	% Neut 102 97 101 100 101 101 100 % Neut 101 99 101	R ² 0.96 0.85 0.93 0.91 1.00 0.93 0.97 R ² 0.93 0.90 0.93	Abs241.1 240/LM18.1.17 P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R	IC ₅₀ (µg/mL) 0.015 0.002 0.004 0.007 0.017 0.010 0.010	IC50 (nM) 0.100 0.013 0.027 0.047 0.111 0.067 0.067	% Neut 102 97 100 100 102 99 99 99	R ² 0.98 0.99 1.00 0.96 0.99 0.98
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617.2 E484Q L452R Abs256.1 255/LM18.1.17 WT P.1 B.1.351 B.1.617	IC50 (µg/mL) 0.006 0.002 0.003 0.004 0.004 0.003 IC50 (µg/mL) 0.004 0.002 0.001 0.001	ICso (nM) 0.040 0.013 0.020 0.027 0.028 0.020 0.020 ICso (nM) 0.027 0.013 0.007	% Neut 102 97 101 100 101 101 % Neut 101 99 101 100	R ² 0.96 0.85 0.93 0.91 1.00 0.93 0.97 R ² 0.93 0.90 0.93 0.94	Abs241.1 240/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R	IC50 (µg/mL) 0.015 0.002 0.004 0.007 0.017 0.010 0.010	IC50 (nM) 0.100 0.013 0.027 0.047 0.111 0.067 0.067	% Neut 102 97 100 100 102 99 99	R ² 0.98 0.99 1.00 0.96 0.99 0.98
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R Abs256.1 255/LM18.1.17 WT P.1 B.1.351 B.1.617.2	IC50 (µg/mL) 0.006 0.002 0.003 0.004 0.004 0.003 IC50 (µg/mL) 0.004 0.002 0.001 0.001 0.001 0.002	IC50 (nM) 0.040 0.013 0.020 0.027 0.028 0.020 IC50 (nM) 0.027 0.013 0.007 0.007 0.013	% Neut 102 97 101 100 101 101 100 % Neut 101 99 101 100 100	R ² 0.96 0.85 0.93 0.91 1.00 0.93 0.97 R ² 0.93 0.90 0.93 0.94 0.97	Abs241.1 240/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R	IC50 (µg/mL) 0.015 0.002 0.004 0.007 0.017 0.010 0.010	IC50 (nM) 0.100 0.013 0.027 0.047 0.111 0.067 0.067	% Neut 102 97 100 100 102 99 99 99	R ² 0.98 0.99 1.00 0.96 0.99 0.98
Abs238.1 237/LM18.1.17 WT P.1 B.1.351 B.1.617.2 E484Q L452R Abs256.1 255/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q	IC50 (µg/mL) 0.006 0.002 0.003 0.004 0.004 0.003 IC50 (µg/mL) 0.004 0.002 0.001 0.001 0.002 0.003	IC50 (nM) 0.040 0.013 0.027 0.028 0.020 0.020 IC50 (nM) 0.027 0.013 0.007 0.013 0.020	% Neut 102 97 101 100 101 101 00 % Neut 101 99 101 100 100 100	R ² 0.96 0.85 0.93 0.91 1.00 0.93 0.97 R ² 0.93 0.90 0.93 0.94 0.95	Abs241.1 240/LM18.1.17 WT P.1 B.1.351 B.1.617 B.1.617.2 E484Q L452R	IC50 (µg/mL) 0.015 0.002 0.004 0.007 0.017 0.010 0.010	IC50 (nM) 0.100 0.013 0.027 0.047 0.111 0.067 0.067	% Neut 102 97 100 100 102 99 99 99	R ² 0.98 0.99 1.00 0.96 0.99 0.98

	Nb225 + SARS-CoV-2 RBD + CC12.1 Fab	Nb240 + SARS-CoV-2 RBD + CC12.1 Fab	Nb255 + SARS-CoV-2 RBD + CC12.1 Fab	
Data collection				
Beamline	SSRL 12-1	SSRL 12-2	APS 23-IDB	
Wavelength (Å)	0.97946	0.97946	1.03317	
Space group	C 2 2 2 ₁	C 2 2 2 ₁	C 2 2 2 ₁	
Unit cell parameters				
a, b, c (Å)	88.7, 143.1, 147.7	90.2, 114.7, 148.1	78.5, 140.4, 142.1	
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	
Resolution (Å) ^a	50.0-2.70 (2.75-2.70)	50.0-2.83 (2.92-2.83)	50.0 –2.20 (2.24–2.20)	
Unique reflections ^a	24,814 (1221)	22,701 (1431)	38,288 (1884)	
Redundancy ^a	4.1 (4.1)	3.9 (3.5)	6.5 (6.3)	
Completeness (%) ^a	96.9 (97.5)	98.0 (96.4)	96.4 (96.1)	
<l ol=""> a</l>	10.8 (1.3)	6.3 (1.0)	12.5 (1.3)	
R _{sym} ^b (%) ^a	11.7 (>100)	18.4 (80.1)	13.1 (>100)	
R _{pim} ^b (%) ^a	6.1 (64.3)	10.3 (49.2)	5.4 (43.0)	
CC _{1/2} ^c (%) ^a	99.2 (46.7)	97.6 (49.2)	99.2 (68.1)	
Refinement statistics				
Resolution (Å)	38.0-2.72	43.2–2.83	49.9-2.21	
Reflections (work)	22,063	21,427	29,803	
Reflections (test)	1215	1198	1150	
R _{cryst} ^d / R _{free} ^e (%)	22.0/26.1	23.3/28.2	23.7/28.6	
No. of atoms	5,655	5,728	5,831	
Macromolecules	5,641	5,714	5,751	
Glycans	14	14	14	
Solvent	-	-	66	
Average B-value (Å ²)	55	41	37	
Macromolecules	55	41	37	
Nanobody	85	74	37	
Fab	49	35	39	
RBD	49	33	35	
Glycans	77	59	51	
Solvent	-	-	33	
Wilson B-value (Å ²)	36	35	30	
RMSD from ideal geometry				
Bond length (Å)	0.002	0.002	0.002	
Bond angle (°)	0.60	0.56	0.53	
Ramachandran statistics (%)				
Favored	97.8	98.1	98.0	
Outliers	0.0	0.0	0.0	
PDB code	8ELO	8ELP	8ELQ	

^a Numbers in parentheses refer to the highest resolution shell. ^b $R_{sym} = \sum_{hkl} \sum_{i} |h_{kl,i} - \langle h_{kl} \rangle | \sum_{hkl} \sum_{i} |h_{kl,i} | and R_{pim} = \sum_{hkl} (1/(n-1))^{1/2} \sum_{i} |h_{kl,i} - \langle h_{kl} \rangle | \sum_{hkl} \sum_{i} |h_{kl,i}|$, where $|h_{kl,i}|$ is the scaled intensity of the ith measurement of reflection h, k, l, $\langle h_{kl} \rangle$ is the average intensity for that reflection, and *n* is the redundancy. ^c CC1/2 = Pearson correlation coefficient between two random half datasets. ^d $R_{cryst} = \sum_{hkl} |F_o - F_c| / \sum_{hkl} |F_o| \times 100$, where F_o and F_c are the observed and calculated structure factors, respectively. ^e R_{cryst} = $\sum_{hkl} |F_o - F_c| / \sum_{hkl} |F_o| \times 100$, where F_o and F_c are the observed and calculated structure factors, respectively. ^e $R_{cryst} = \sum_{hkl} |F_o - F_c| / \sum_{hkl} |F_o| \times 100$, where F_o and F_c are the observed and calculated structure factors, respectively.

^f From MolProbity.

 Table S12. Cryo-EM data collection, processing, model refinement and validation statistics.

Мар	LM18/Nb136 bsNb₄-lg + CoV-2 6P-Mut7 S (focused refinement)	LM18/Nb136 bsNb₄-lg + CoV-2 6P-Mut7 S (global refinement)	
EMDB	EMD-27692	EMD-27693	
Data collection			
Microscope	Thermo Fisher Titan	Thermo Fisher Titan	
	Krios	Krios	
Voltage (kV)	300	300	
Detector	Gatan K2 Summit	Gatan K2 Summit	
Recording mode	Counting	Counting	
Nominal magnification	130,000x	130,000x	
Movie micrograph pixelsize (Å)	1.045	1.045	
Dose rate (e ⁻ /[(camera pixel)*s])	6.02	6.02	
Number of frames per movie micrograph	36	36	
Frame exposure time (ms)	250	250	
Movie micrograph exposure time (s)	9.0	9.0	
Total dose (e /Å ²)	49.6	49.6	
Defocus range (µm)	-0.5 to -1.8	-0.5 to -1.8	
EM data processing			
Number of movie micrographs	4,296	4,296	
Number of molecular projection images in map	50,160	61,539	
Symmetry	C1	C1	
Map resolution (FSC 0.143; Å)	3.3	3.1	
Map sharpening B-factor (Å ²)	-52.2	-67.4	
Structure building and validation			
Number of atoms in deposited model		•	
CoV-2 6Pmut7 S	20,691	n/a	
LM18/Nb136 bsNb₄-lg	1,923	n/a	
glycans	182	n/a	
MolProbity score	0.98	n/a	
Clashscore	1.13	n/a	
Map correlation coefficient	0.82	n/a	
EMRinger score	2.81	n/a	
d FSC model (0.5; Å)	3.4	n/a	
RMSD from ideal			
Bond length (Å)	0.005	n/a	
Bond angles (*)	0.967	n/a	
Ramachandran plot			
Favored (%)	97.15	n/a	
Allowed (%)	2.85	n/a	
Outliers (%)	0.00	n/a	
Side chain rotamer outliers (%)	0.20	n/a	
Cβ outliers (%)	0.00	n/a	
PDB	8dt8	n/a	

 Table S13. Amino acid frequencies used to generate the trimer phosphoramidite mixtures for the construction of the naïve library.

Codon	AA	[TriMix1]	[TriMix2]	[TriMix3]	[TriMix4]	[TriMix5]
AAA (Lys)	К	0.5	0.6	1	0.6	0.9
AAC (Asn)	N	1.5	1.9	1.5	1.6	1.8
ACT (Thr)	Т	5.1	5.4	6.2	4.6	5
ATC (Ile)	1	2.5	2.5	3	2.7	3.4
ATG (Met)	М	0	0	0	0	0
CAG (Gln)	Q	3	2.4	2.1	2.2	2.6
CAT (His)	н	2.5	1.7	1.4	1.8	2
CCG (Pro)	Р	4.7	5.8	5.7	6.5	7.6
CGT (Arg)	R	6.3	7.2	5	8	9.4
CTG (Leu)	L	4.8	4	3.5	4.3	5.3
GAA (Glu)	E	4.3	2.7	1.6	2.2	2.4
GAC (Asp)	D	6.4	9	2.8	6.2	6.3
GCT (Ala)	А	6.7	6	7.5	5.2	5.8
GGT (Gly)	G	18.1	15.3	12	13.4	12.2
GTT (Val)	V	5.4	5.2	9.9	5.1	6.4
TAC (Tyr)	Y	8.9	13.8	22.2	17.6	13.5
TCT (Ser)	S	11.6	8.5	7.4	7.8	7.4
TGC (Cys)	С	0	0	0	0	0
TGG (Trp)	W	4.5	5	3.6	6.9	5
TTC (Phe)	F	3.1	2.9	3.6	3.3	2.9

Table S14. Primer sequences used in this study.

Name	5'-3' sequence			
CDRH3_L10	AGCTGTCTACTACTACGCGCCAGG[TriMix1][TriMix5][TriMix1][TriMix2]TTCGACTACTACGGGACAAGGTACGTTGGTC			
CDRH3_L11	AGCTGTCTACTACTGCGCCAGG[TriMix1][TriMix5][TriMix2][TriMix2][TriMix2][TriMix5]TTCGACTACTGGGGACAAGGTACGTTGGTC			
CDRH3_L12	AGCTGTCTACTACTGCGCCAGG[TriMix1][TriMix5][TriMix5][TriMix5][TriMix5][TriMix5][TriMix5]TriGACTACTGGGGACAAGGTACGT GGTC			
CDRH3_L13	AGCTGTCTACTACTGCGCCAGG[TriMix1][TriMix5][TriMix2][TriMix2][TriMix2][TriMix2][TriMix5]TTCGACTACTGGGGACAAGG TAC TTGGTC			
CDRH3_L14	AGCTGTCTACTACTGCGCCAGG[TriMix1][TriMix5][TriMix5][TriMix4][TriMix4][TriMix4][TriMix2][TriMix2][TriMix3]TTCGACTACTGGGGA CAAGGTACGTTGGTC			
CDRH3_L15	AGCTGTCTACTACTGCGCCAGG[TriMix1][TriMix5][TriMix5][TriMix4][TriMix4][TriMix4][TriMix4][TriMix4][TriMix4][TriMix3]TTCGACTACT GGGGACAAGGTACGTTGGTC			
CDRH3_L16	AGCTGTCTACTACTGCGCCAGG[TriMix1][TriMix2][TriMix2][TriMix5][TriMix5][TriMix4][TriMix4][TriMix4][TriMix2][TriMix2][TriMix1][TriMix3			
CDRH3_L17	AGCTGTCTACTACTGCGCCAGG[TriMix1][TriMix2][TriMix5][TriMix5][TriMix4][TriMix4][TriMix4][TriMix4][TriMix4][TriMix5][TriMix1][TriMix3]][TriMix5][TriMix			
CDRH3_L18	AGCTGTCTACTACTGCGCCAGG[TniMix1][TniMix2][TniMix5][TniMix5][TniMix4][TniMix5][TniMix4			
CDRH3_L19	AGCTGTCTACTACTGCGCCAGG[TnMix1][TnMix5][TnMix5][TnMix5][TnMix4][TnMix2][TnMix2][TnMix2][TnMix2][TnMix4][TnMix5][TnMix4][TnMix4][TnMix5][TnMix4][TnMix5][TnMix4][TnMix5][TnMix5][TnMix4][TnMix5]			
CDRH3_L20	AGCTGTCTACTACTGCGCCAGG[TnMix1][TnMix2][TnMix4][TnMix4][TnMix4][TnMix4][TnMix2][TnMix2][TnMix2][TnMix2][TnMix2][TnMix2][TnMix2][TnMix2][TnMix4][TnMix2][TnMix4][TnMix2][TnMix4][TnMix2][TnMix4]			
NbSS_AmpF1	CGGTTTGTCATCTACAAATACAACAATCGCATCC			
NB_Ramp1	CTAGGAGTTCAGGTGCTGGTGATGGAG			
hNb323_NGSSeq_Fa	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTGATTCTGTTAAAGGTAGATTTACTTGTTCTAGAG			
hNb323_NGSSeq_Fb	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGHHCTGATTCTGTTAAAGGTAGATTTACTTGTTCTAGAG			
hNb323_NGSSeq_Fc	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGHHHHCTGATTCTGTTAAAGGTAGATTTACTTGTTCTAGAG			
hNb323_NGSSeq_Ra	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGTGACCTGCGTACCTTGTCC			
hNb323_NGSSeq_Rb	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGHHCAGTGACCTGCGTACCTTGTCC			
hNb323_NGSSeq_Rc	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGHHHHCAGTGACCTGCGTACCTTGTCC			

SI References

- 1. F. Zhao, *et al.*, Broadening a SARS-CoV-1 neutralizing antibody for potent SARS-CoV-2 neutralization through directed evolution *bioRxiv* [preprint] doi.org/10.1101/2021.05.29.443900 (2021). Accessed February 9 2022.
- 2. S. A. Sievers, L. Scharf, A. P. West Jr, P. J. Bjorkman, Antibody engineering for increased potency, breadth and half-life. *Curr. Opin. HIV AIDS* **10**, 151–159 (2015).
- 3. Y. Xu, *et al.*, Addressing polyspecificity of antibodies selected from an in vitro yeast presentation system: a FACS-based, high-throughput selection and analytical tool. *Protein Eng. Des. Sel.* **26**, 663–670 (2013).
- 4. A. Simons, *A quality control tool for high throughput sequence data*. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- 5. B. Bushnell, J. Rood, E. Singer, BBMerge Accurate paired shotgun read merging via overlap. *PLoS One* **12**, e0185056 (2017).
- 6. T. Rognes, T. Flouri, B. Nichols, C. Quince, F. Mahé, VSEARCH: a versatile open-source tool for metagenomics. *PeerJ* **4**, e2584 (2016).
- 7. T. F. Rogers, *et al.*, Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. *Science* **369**, 956–963 (2020).
- 8. Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* **276**, 307–326 (1997).
- 9. A. J. McCoy, et al., Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
- 10. P.-A. Koenig, *et al.*, Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. *Science* **371**, eabe6230 (2021).
- 11. M. Yuan, *et al.*, Structural basis of a shared antibody response to SARS-CoV-2. *Science* **369**, 1119–1123 (2020).
- 12. P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. *Acta Crystallogr. D Biol. Crystallogr.* **60**, 2126–2132 (2004).
- 13. P. D. Adams, *et al.*, PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 213–221 (2010).
- 14. A. Cheng, et al., Leginon: New features and applications. Protein Sci. 30, 136–150 (2021).
- 15. S. Q. Zheng, *et al.*, MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat. Methods* **14**, 331–332 (2017).
- 16. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. *Nat. Methods* **14**, 290–296 (2017).
- 17. K. Zhang, Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
- 18. A. Punjani, H. Zhang, D. J. Fleet, Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. *Nat. Methods* **17**, 1214–1221 (2020).
- 19. J. Zivanov, T. Nakane, S. H. W. Scheres, Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in -3.1. *IUCrJ* **7**, 253–267 (2020).

- 20. E. F. Pettersen, *et al.*, UCSF Chimera a visualization system for exploratory research and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).
- 21. J. Dunbar, *et al.*, SAbPred: a structure-based antibody prediction server. *Nucleic Acids Res.* **44**, W474–8 (2016).
- A. Casañal, B. Lohkamp, P. Emsley, Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data. *Protein Sci.* 29, 1069–1078 (2020).
- 23. P. V. Afonine, *et al.*, Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta Crystallogr D Struct Biol* **74**, 531–544 (2018).
- 24. B. A. Barad, *et al.*, EMRinger: side chain-directed model and map validation for 3D cryoelectron microscopy. *Nat. Methods* **12**, 943–946 (2015).
- 25. C. J. Williams, *et al.*, MolProbity: More and better reference data for improved all-atom structure validation. *Protein Sci.* **27**, 293–315 (2018).
- 26. P.-S. Huang, *et al.*, RosettaRemodel: a generalized framework for flexible backbone protein design. *PLoS One* **6**, e24109 (2011).
- 27. F. Zhao, *et al.*, Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways. *iScience* **25**, (9) (2022)