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1. Generalized social norms

In this section, we derive the expressions for PGC , PGD, PBC and PBD used in the main text.
We begin by generalizing the “big four” social norms, which occur as special cases of a two-parameter family of norms.

We suppose that cooperation with a bad individual yields a good reputation with probability p (barring errors) and
defecting with a bad individual yields a good reputation with probability q (again barring errors). We recover Stern
Judging, Simple Standing, Scoring, and Shunning with (p, q) = (0, 1), (1, 1), (1, 0), (0, 0), respectively.

In the presence of errors of execution and assessment, an individual can obtain a good reputation in the following
ways. They may be observed:

1. interacting with an individual with a good reputation and intending to cooperate.

(a) With probability 1− ux, they successfully cooperate. With probability 1− ua, they are successfully assigned a
good reputation.

(b) With probability ux, they accidentally defect. With probability ua, they are accidentally assigned a good
reputation.

Thus,
PGC = (1− ux)(1− ua) + uxua = ε.

2. interacting with an individual with a good reputation and intending to defect. This is always considered a bad
action, so such an individual can only achieve a good reputation on accident. Thus,

PGD = ua.

3. interacting with an individual with a bad reputation and intending to cooperate.

(a) With probability 1− ux, they successfully cooperate. With probability p, this is considered a “good reputation”
action. With probability 1− ua, they are successfully assigned a good reputation.

(b) With probability 1−ux, they successfully cooperate. With probability 1−p, this is considered a “bad reputation”
action. With probability ua, they are accidentally assigned a good reputation.

(c) With probability ux, they accidentally defect. With probability q, this is considered a “good reputation” action.
With probability 1− ua, they are successfully assigned a good reputation.

(d) With probability ux, they accidentally defect. With probability 1 − q, this is considered a “bad reputation”
action. With probability ua, they are accidentally assigned a good reputation.

Thus, the total probability is

PBC = (1− ux)[p(1− ua) + (1− p)ua] + ux[q(1− ua) + (1− q)ua]
= (1− ux)[p− 2pua + ua] + ux[q − 2qua + ua]
= p− 2pua + ua − pux + 2puxua − uxua + qux − 2quxua + uxua

= p(1− 2ua − ux + 2uaux) + q(ux − 2uxua) + ua

= p(ε− ua) + q(1− ε− ua) + ua.

[1]
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4. interacting with an individual with a bad reputation and intending to defect.

(a) With probability q, this is considered a “good reputation” action. They defect and successfully obtain a good
reputation with probability 1− ua.

(b) With probability 1− q, this is considered a “bad reputation” action. They defect and accidentally obtain a good
reputation with probability ua.

Thus, the total probability is

PBD = q(1− ua) + (1− q)ua = q(1− 2ua) + ua. [2]

We recover the traditional four social norms in the following limits:

1. when (p, q) = (0, 1) (Stern Judging), Eq. [1] becomes 1− ε and Eq. [2] becomes 1− ua.

2. when (p, q) = (1, 1) (Simple Standing), Eq. [1] becomes 1− ua and Eq. [2] becomes 1− ua.

3. when (p, q) = (1, 0) (Scoring), Eq. [1] becomes ε and Eq. [2] becomes ua.

4. when (p, q) = (0, 0) (Shunning), Eq. [1] becomes ua and Eq. [2] becomes ua.

The values of PBC , PGC , PGD, and PBD for these four norms are summarized in SI Table S1.

observer view of recipient good good bad bad
donor intent cooperate defect cooperate defect

good reputation probability PGC PGD PBC PBD

general expression ε ua p(ε− ua) + q(1− ε− ua) + ua q(1− 2ua) + ua

Shunning (p = 0, q = 0) ε ua ua ua

Stern Judging (p = 0, q = 1) ε ua 1− ε 1− ua

Scoring (p = 1, q = 0) ε ua ε ua

Simple Standing (p = 1, q = 1) ε ua 1− ua 1− ua

Table S1. Probability that an observer will assign a donor a good reputation based on the donor’s action and the observer’s view
of the recipient, under various social norms. Here, ε = (1 − ua)(1 − ux) + uaux is the probability that an individual who intends
to cooperate with a recipient who has a good reputation is ultimately themselves assigned a good reputation. They may either
successfully cooperate and be correctly assigned a good reputation (first term) or accidentally defect and be wrongly assigned a
good reputation (second term).

1.1. Average reputations. Before continuing, we define several types of “average” reputations in terms of the strategy-
and group-specific reputations gsI,J . We begin with

gI,J =
∑
s

fsI g
s
I,J ,

which is the average reputation of group I in the eyes of group J , or equivalently the probability that group J considers a
randomly chosen individual in group I to be good. We also define

g•,J =
∑
L

νLgL,J ,

which is group J ’s average view of the entire population, or the probability that group J considers a randomly chosen
individual in the whole population to be good. We continue by defining averages over the population’s group structure to
obtain the average reputation of individuals following strategy s ∈ {X,Y, Z}:

gs =
∑
I

∑
J

νIνJg
s
I,J . [3]

And we finally define the “grand” population-wide average reputation

g =
∑
I

∑
J

νIνJ
∑
s

fsI g
s
I,J =

∑
I

∑
J

νIνJgI,J , [4]

which is also the probability that one randomly chosen individual considers another randomly chosen individual to be
good.

4



1.2. Reputation dynamics for cooperators, defectors, and discriminators. Given the expressions for PBC , PGC , PGD,
and PBD derived above, we now consider what portion of each strategic type will be assigned a good reputation, and by
whom.

A cooperator in group I can be assigned a good reputation in the eyes of group J in two ways. J can observe the I
cooperator’s interaction:

1. with someone group J sees as good (probability g•,J); the I member intends to cooperate, which yields a good
reputation with probability PGC .

2. with someone group J sees as bad (probability 1− g•,J); the I member intends to cooperate, which yields a good
reputation with probability PBC .

We thus have
gXI,J = g•,JP

GC + (1− g•,J)PBC = g•,J(PGC − PBC) + PBC .

Similar reasoning for defectors yields

gYI,J = g•,JP
GD + (1− g•,J)PBD = g•,J(PGD − PBD) + PBD.

Discriminators vary their behavior according to the reputation of the recipient, but discriminators in different groups are
not guaranteed to have the same views of each recipient’s reputation. Thus, discriminators will be viewed differently by
their in-group versus their out-group. A discriminator in group I can gain a good reputation in the eyes of group I (their
in-group) in two ways. I can observe the I discriminator’s interaction:

1. with someone group I sees as good (probability g•,I); the I discriminator intends to cooperate, which yields a good
reputation with probability PGC .

2. with someone group I sees as bad (probability 1− g•,I); the I discriminator intends to defect, which yields a good
reputation with probability PBD.

A discriminator in group I can gain a good reputation in the eyes of group J 6= I (their out-group) in four ways. J can
observe the I discriminator’s interaction:

1. with someone in an arbitrary group L following strategy s (probability νLfsL) whom I sees as good (probability
gsL,I) and whom J also sees as good (probability gsL,J); the I discriminator intends to cooperate, which yields a
good reputation with probability PGC .

2. with someone in an arbitrary group L following strategy s (probability νLfsL) whom I sees as bad (probability
1− gsL,I) but whom J sees as good (probability gsL,J); the I discriminator intends to defect, which yields a good
reputation with probability PGD.

3. with someone in an arbitrary group L following strategy s (probability νLfsL) whom I sees as good (probability
gsL,I) but whom J sees as bad (probability 1− gsL,J); the I discriminator intends to cooperate, which yields a good
reputation with probability PBC .

4. with someone in an arbitrary group L following strategy s (probability νLfsL) whom I sees as bad (probability
1− gsL,I) and whom J also sees as bad (probability 1− gsL,J); the I discriminator intends to defect, which yields a
good reputation with probability PBD.

Defining
GI,J =

∑
L

νL
∑
s

fsLg
s
L,Ig

s
L,J ,

we can sum over all groups and strategy combinations to obtain∑
L

νL
∑
s

fsLg
s
L,Ig

s
L,J = GI,J ,∑

L

νL
∑
s

fsL(1− gsL,I)gsL,J = g•,J −GI,J ,∑
L

νL
∑
s

fsLg
s
L,I(1− gsL,J) = g•,I −GI,J ,∑

L

νL
∑
s

fsL(1− gsL,I)(1− gsL,J) = 1− g•,J − g•,I +GI,J .
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Thus,

gZI,J = δI,J
[
g•,JP

GC + (1− g•,J)PBD
]

+ (1− δI,J)
[
GI,JP

GC + (g•,J −GI,J)PGD + (g•,I −GI,J)PBC + (1− g•,J − g•,I +GI,J)PBD
]

= δI,J
[
g•,JP

GC + (1− g•,J)PBD
]

+ (1− δI,J)
[
GI,J(PGC − PGD − PBC + PBD) + g•,J(PGD − PBD) + g•,I(PBC − PBD) + PBD

]
.

1.3. Special case: Scoring. Under Scoring (p = 1, q = 0), we have

PGC = PBC = ε,

PGD = PBD = ua.

In this case, the I 6= J term of gZI,J becomes

GI,J(PGC − PGD − PBC + PBD) + g•,J(PGD − PBD) + g•,I(PBC − PBD) + PBD

= g•,I(PBC − PBD) + PBD

= g•,Iε+ (1− g•,I)ua.

Consequently, we have

gXI,J = g•,Jε+ (1− g•,J)ε = ε,

gYI,J = g•,Jua + (1− g•,J)ua = ua,

gZI,J = δI,J
[
g•,Jε+ (1− g•,J)ua

]
+ (1− δI,J)

[
g•,Iε+ (1− g•,I)ua

]
= δI,J

[
g•,Iε+ (1− g•,I)ua

]
+ (1− δI,J)

[
g•,Iε+ (1− g•,I)ua

]
= g•,Iε+ (1− g•,I)ua.

The last line implies that J ’s opinion of I discriminators depends solely on whom I sees as good, not whom J sees as
good. This is reasonable; Scoring is a first-order norm, in which any cooperation is considered good and any defection is
considered bad, meaning that an I discriminator will be considered good as a result of their interactions with those I sees
as good (with whom they therefore cooperate). Likewise, an I discriminator will be considered good as a result of their
interactions with those I sees as bad (with whom they therefore defect). One may note that

g•,I =
∑
L

νLgL,I =
∑
L

νL
∑
s

fsLg
s
L,I

=
∑
L

νL
(
fXL ε+ fYL ua + fZL [g•,Iε+ (1− g•,Iua]

)
= ε
∑
L

νLf
X
L + ua

∑
L

νLf
Y
L + g•,Iε

∑
L

νLf
Z
L + (1− g•,I)ua

∑
L

νLf
Z
L

∴ g•,I =
ε
∑

L
νLf

X
L + ua

∑
L
νL(fYL + fZL )

1−
∑

L
νLfZL (ε− ua)

,

which is independent of I. In this way, under Scoring, the reputation of discriminators does not depend on their group
identity. Moreover, if there is no difference in strategy frequency among groups, we have

g•,I =
ε
∑

L
νLf

X
L + ua

∑
L
νL(fYL + fZL )

1−
∑

L
νLfZL (ε− ua)

=
εfX

∑
L
νL + (fY + fZ)ua

∑
L
νL

1− fZ
∑

L
νL(ε− ua)

= εfX + ua(fY + fZ)
1− fZ(ε− ua) ,

which is independent of the number of groups and their relative sizes. Thus, under Scoring, if strategy frequencies are
equal among groups, imposing a group structure on the population does not affect reputations at all, and hence it does
not affect the strategy dynamics.
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1.4. The “staying” norm. Under the “staying” norm (1), individuals do not change their opinions of a donor who interacts
with a bad recipient at all, irrespective of the donor’s action. In our notation, this is tantamount to replacing PBC and
PBD with gsI,J , where s is the strategy whose reputation is being assessed, since, if the recipient has a bad reputation, the
donor’s reputation is unchanged. Reputations are thus given by

gXI,J = g•,JP
GC + (1− g•,J)gXI,J

gYI,J = g•,JP
BC + (1− g•,J)gYI,J

gZI,J = δI,J
[
g•,JP

GC + (1− g•,J)gZI,J
]

+ (1− δI,J)
[
GI,JP

GC + (g•,J −GI,J)PGD + (g•,I −GI,J)gZI,J + (1− g•,J − g•,I +GI,J)gZI,J
]

= δI,J
[
g•,JP

GC + (1− g•,J)gZI,J
]

+ (1− δI,J)
[
GI,JP

GC + (g•,J −GI,J)PGD + (1− g•,J)gZI,J
]

= δI,J
[
g•,JP

GC + (1− g•,J)gZI,J
]

+ (1− δI,J)
[
GI,J(PGC − PGD) + g•,J(PGD − gZI,J) + g•,I(PBC − gZI,J) + gZI,J

]
.

In equilibrium, this yields

gXI,J = gZI,J |I=J = PGC ,

gYI,J = PGD,

but the out-group version of gZI,J can still be very complicated.

2. Invasibility of discriminators in a single group

When K = 1, there are two stable equilibria: a population consisting entirely of defectors (Y ) and a population consisting
entirely of discriminators (Z). Here, we consider the circumstances under which these equilibria are stable against
invasion.

2.1. Invasibility by defectors. Let f = fZ . Defectors resist invasion by discriminators provided

∂f ḟ
Y |f=0 < 0

∂f [fY (ΠY − Π̄)]|f=0 < 0

∂f [(1− f)(ΠY − (1− f)ΠY − fΠZ)]|f=0 < 0

∂f [(1− f)(ΠY − (1− f)ΠY − fΠZ)]|f=0 < 0

∂f [(f − f2)(ΠZ −ΠY )]|f=0 < 0

[(1− 2f)(ΠZ −ΠY ) + (f − f2)∂f (ΠZ −ΠY )]|f=0 < 0

ΠZ |f=0 < ΠY |f=0

(bfgZ − cg)|f=0 < bfgY |f=0

∴ −cgY < 0.
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Since c and gY are both positive, this condition always obtains: discriminators can never invade a population of defectors.
Likewise, discriminators resist invasion by defectors provided

∂f ḟ
Y |f=1 < 0

∂f [fY (ΠY − Π̄)]|f=1 < 0

∂f [(1− f)(ΠY − (1− f)ΠY − fΠZ)]|f=1 < 0

∂f [(1− f)(ΠY − (1− f)ΠY − fΠZ)]|f=1 < 0

∂f [(f − f2)(ΠZ −ΠY )]|f=1 < 0

[(1− 2f)(ΠZ −ΠY ) + (f − f2)∂f (ΠZ −ΠY )]|f=1 < 0

ΠZ |f=1 > ΠY |f=1

(bfgZ − cg)|f=1 > bfgY |f=1

(bgZ − cgZ)|f=1 > bgY |f=1

b(gZ − gY )|f=1 > cgZ |f=1

bg(PGC − PGD) > cg

∴
b

c
>

1
PGC − PGD = 1

ε− ua
.

This can also be written in terms of g: discriminators resist invasion by defectors provided

ΠZ |fZ =1 > ΠY |fZ =1

bgZ |fZ =1 − cg > bgY |fZ =1

(b− c)g > b[gPGD + (1− g)PBD]

g(b− c− b[PGD − PBD] > bPBD

g(b[1− PGD + PBD]− c) > bPBD

∴ g >
PBD

1− PGD + PBD − c/b .

[5]

We do not need to flip the inequality because b > c and because 1 + PBD − PGD is guaranteed to be greater than or
equal to 1 for every social norm we consider. Finally, there is a third equilibrium between the two which, by the mean
value theorem, is unstable, at (letting f = fZ again)

ḟ = 0

f(ΠZ − Π̄) = 0

ΠZ − fΠZ − (1− f)ΠY = 0

ΠZ = ΠY

bfgZ − cg = bfgY

bf(gPGC + [1− g]PBD)− cg = bf(gPGD + [1− g]PBD)

bfg(PGC − PGD) = cg

∴ f = c

b

1
PGC − PGD = c

b

1
ε− ua

.

An equivalent way to express this is that discriminators rise in frequency provided

fZ(gZ − gY ) > c/b. [6]

If there is no value of fZ for which this is true, then discriminators do not rise in frequency; if it is not true for fZ = 1
even when the inequality is relaxed, discriminators cannot resist invasion by defectors.
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2.2. Invasibility by cooperators. Finally, we consider conditions under which cooperators can invade a population of
discriminators. We proceed by reasoning similar to Eq. [5], noting that the stability of an equilibrium against invasion
is determined by evaluating the fitnesses of the resident and the invader at that equilibrium. Cooperators can invade
discriminators when (letting f = fZ)

ΠX |f=1 > ΠZ |f=1

(bfgX − c)|f=1 > (bfgZ − cg)|f=1

b(gX − g) > c(1− g)

b(gPGC + (1− g)PBC − g) > c(1− g)

b(g[PGC − PBC − 1] + PBC) > c(1− g)

g(b[PGC − PBC − 1] + c) > c− bPBC

∴


g >

c− bPBC

b(PGC − PBC − 1) + c
Shunning, Stern Judging,

g <
c− bPBC

b(PGC − PBC − 1) + c
Scoring, Simple Standing.

For small error rates, this condition is never satisfied under Shunning or Stern Judging (the right hand side is generally
greater than 1), but it can be met under Scoring and Simple Standing. With ux = ua = .02 and b = 2, c = 1, the cutoff is
about 0.92 for both Simple Standing and Scoring; for b = 5, c = 1, the cutoff is about 0.95. This means that if discriminators
do not view each other as having sufficiently good reputations, they become vulnerable to invasion by cooperators!

3. Multiple groups with well-mixed strategic imitation

When individuals choose their comparison partners from the entire population at random, irrespective of group identity,
all strategic frequencies fsI rapidly equilibrate to a common value fs; we show this in SI Section 8.4. We refer to this
scenario as “well-mixed” strategic imitation. Under this scenario, the only interesting dynamical quantities are the “total”
(group-averaged) strategy fitnesses Πs, viz.:

ḟs = fs
[(∑

I

νIΠs
I

)
− Π̄

]
= fs[Πs − Π̄].

When strategic imitation is well-mixed, we can simplify Eq. [4] and write

g =
∑
I

∑
J

νIνJ
∑
s

fsI g
s
I,J

=
∑
I

∑
J

νIνJ
∑
s

fsgsI,J

=
∑
s

fs
∑
I

∑
J

νIνJg
s
I,J

=
∑
s

fsgs.

9



We continue by determining the group-averaged fitnesses. By summing the fitnesses over all groups, we obtain

ΠZ =
∑
I

νIΠZ
I =

∑
I

{
νI(1− ux)

[
b
∑
J

νJ(fXJ + fZJ g
Z
I,J)− cg•,I

]}
= (1− ux)

∑
I

{
νI

[
b
∑
J

νJ(fX + fZgZI,J)− cg•,I
]}

= (1− ux)
[
b(fX + fZ

∑
I

∑
J

νIνJg
Z
I,J)− c

∑
I

νIg•,I

]
= (1− ux)

[
b(fX + fZ

∑
I

∑
J

νIνJg
Z
I,J)− c

∑
I

∑
J

νIνJgJ,I

]
= (1− ux)

[
b(fX + fZgZ)− cg

]
, and likewise

ΠX =
∑
I

νIΠX
I = (1− ux)

[
b(fX + fZgX)− c

]
,

ΠY =
∑
I

νIΠY
I = (1− ux)

[
b(fX + fZgY )

]
.

[7]

The group-averaged strategic reputations are given by

gX =
K∑
I=1

K∑
J=1

νIνJg
X
I,J

=
K∑
I=1

K∑
J=1

νIνJ
[
g•,JP

GC + (1− g•,J)PBC
]

=
K∑
I=1

K∑
J=1

νIνJg•,JP
GC +

K∑
I=1

K∑
J=1

νIνJ(1− g•,J)PBC

=
K∑
I=1

νIgP
GC +

K∑
I=1

νI(1− g)PBC

= gPGC + (1− g)PBC , and likewise

gY = gPGD + (1− g)PBD.

The form of gZ will vary depending on the specific scenario, but we can obtain a couple of general relations. First, note
that Eq. [5] becomes

ΠZ |fZ =1 > ΠY |fZ =1

bgZ |fZ =1 − cg > bgY |fZ =1

(b− c)g > b
[
gPGD + (1− g)PBD

]
g(b− c− b[PGD − PBD]) > bPBD

g(b[1− PGD + PBD]− c) > bPBD

∴ g >
PBD

1− PGD + PBD − c/b ,

[8]

and Eq. [6] becomes
fZ(gZ − gY ) > c/b.

That is, under well-mixed strategic imitation, the conditions for discriminators to resist invasion by defectors and to
increase in frequency over time can be written in terms of average reputations gs, though the value of those reputations
will vary depending on the group structure. An equivalent way to write Eq. [8] is

b

c
>

g

g − gY

∴
b

c
>

g

g(1 + PBD − PGD)− PBD .
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3.1. Groups of identical size. When all K groups have the same size 1/K and strategies spread via well-mixed copying,
we can solve for gZ :

gZ =
K∑
I=1

K∑
J=1

νIνJg
Z
I,J

=
K∑
I=1

K∑
J=1

νIνJ

(
δI,J
[
g•,JP

GC + (1− g•,J)PBD
]

+ (1− δI,J)
[
GI,JP

GC + (g•,J −GI,J)PGD + (g•,I −GI,J)PBC + (1− g•,J − g•,I +GI,J)PBD
])

=
K∑
J=1

(νJ)2[g•,JPGC + (1− g•,J)PBD
]

+
K∑
I=1

K∑
J=1

I 6=J

νIνJ
[
GI,JP

GC + (g•,J −GI,J)PGD + (g•,I −GI,J)PBC + (1− g•,J − g•,I +GI,J)PBD
]
.

The first term simplifies to

K∑
J=1

(νJ)2[g•,JPGC + (1− g•,J)PBD
]

= 1
K

K∑
I=1

νJ
[
g•,JP

GC + (1− g•,J)PBD
]

= 1
K

[
gPGC + (1− g)PBD

]
.

The second becomes

K∑
I=1

K∑
J=1

I 6=J

νIνJ
[
GI,JP

GC + (GI,J − g•,J)PGD + (GI,J − g•,J)PBC + (1− g•,J − g•,I +GI,J)PBD
]

=
K∑
I=1

K∑
J=1

I 6=J

νIνJ
[
GI,J(PGC − PGD − PBC + PBD) + g•,I(PGD − PBD) + g•,J(PBC − PBD) + PBD

]
.

Because all the groups are the same size and strategy frequencies are identical across groups, the values of gsI,J can only
vary depending on whether I = J or not. Define gsin = gsI,I and gsout = gsI,J

∣∣
I 6=J

. We exploit this symmetry to obtain

g•,I =
K∑
L

νLgL,I

= 1
K

K∑
L

gL,I

= 1
K
gin + K − 1

K
gout,

g•,J = 1
K
gin + K − 1

K
gout
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and

GI,J =
∑
L

νL
∑
s

fsLg
s
L,Ig

s
L,J

= 1
K

∑
L

∑
s

fsLg
s
L,Ig

s
L,J

= 1
K

∑
L

∑
s

fsgsL,Ig
s
L,J

= 1
K

∑
s

fsgsing
s
out + 1

K

∑
s

fsgsoutg
s
in + K − 2

K

∑
s

fsgsoutg
s
out

= 2
K

∑
s

fsgsing
s
out + K − 2

K

∑
s

fs(gsout)2.

Thus

gZ =
K∑
I=1

K∑
J=1

νIνJg
Z
I,J

= 1
K

[gPGC + (1− g)PBD]

+ K − 1
K

[( 2
K

∑
s

fsgsing
s
out + K − 2

K

∑
s

fs(gsout)2
)

(PGC − PGD − PBC + PBD)

+
( 1
K
gin + K − 1

K
gout

)
(PGD + PBC − 2PBD) + PBD

]
.

[9]

Observe that setting fZ = 1 in Eq. [9] yields exactly the system of equations one would need to solve in order to obtain g
in a population of equally sized groups, viz.:

g = gin + (K − 1)gout

K
,

gin = gPGC + (1− g)PBD = g(PGC − PBD) + PBD,

gout =
( 2
K
gingout + K − 2

K
(gout)2

)
(PGC − PGD − PBC + PBD),

+
( 1
K
gin + K − 1

K
gout

)
(PGD + PBC − 2PBD) + PBD.

For example, choosing Stern Judging as the norm and setting ux = 0 yields gin = 1− ua, gout = 1/2, consistent with the
reputation expressions from (2).

3.2. Limit of many groups: private reputations. As K approaches infinity, the contribution of gsin to the total average
reputation of s, gs, tends to zero, so that the entirety of gs is due to the gsout terms. We thus have that

lim
K→∞

gZ =
∑
s

fs(gs)2(PGC − PGD − PBC + PBD) + 2g(PGD + PBD − 2PBD) + PBD.

Defining

g? =
∑
s

fs(gs)2,

d? =
∑
s

fsgs(1− gs) = g − g?,

b? =
∑
s

fs(1− gs)2 = 1− 2g + g?

allows us to rewrite this as
lim
K→∞

gZ = g?P
GC + d?(PGD + PBC) + b?P

BD.
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This is the bottom term of Eq. 5 from (3) with empathy parameter E = 0, corresponding to fully private reputation
assessment. This result confirms that, when the number of groups goes to infinity, our model with separate groups is
identical to everyone in the population following independent or private reputation assessment. In this limit, the mean
reputation in a population of discriminators is given by a solution to

0 = g2(PGC − PGD − PBC + PBD) + g(PGD + PBC − 2PBD − 1) + PBD

∴ g =



1−
√

1− 4(ε− ua)ua
2(ε− ua) , Shunning,

1
2 , Stern Judging,

ua
1− ε+ ua

, Scoring,

1− ua −
√

(1− ua)(1− ε)
ε− ua

, Simple Standing.

We have picked out the solutions that are viable for 1 > ux > 0 and 1 > ua > 0. The result for Stern Judging was
previously obtained by (4), which also showed that, in the presence of errors under private assessment, gs = 1/2 for any
strategy s, irrespective of the population’s strategic composition.

3.3. One large group and many small groups. Without loss of generality, suppose that group 1 has size ν and the
remaining K − 1 groups each have size (1− ν)/(K − 1). Starting with Eq. [7], we can unpack gZ . We have

gZ =
∑
I

∑
J

νIνJg
Z
I,J

=
K∑
I=1

K∑
J=1

νIνJ

(
δI,J
[
g•,JP

GC + (1− g•,J)PBD
]

+ (1− δI,J)
[
GI,JP

GC + (g•,J −GI,J)PGD + (g•,I −GI,J)PBC + (1− g•,J − g•,I +GI,J)PBD
])

= ν2
[
g•,1P

GC + (1− g•,1)PBD
]

+ ν
1− ν
K − 1

K∑
I=2

[
GI,1P

GC + (g•,1 −GI,1)PGD + (g•,I −GI,1)PBC + (1− g•,1 − g•,I +GI,1)PBD
]

+ ν
1− ν
K − 1

K∑
J=2

[
G1,JP

GC + (g•,J −G1,J)PGD + (g•,1 −G1,J)PBC + (1− g•,J − g•,1 +G1,J)PBD
]

+
( 1− ν
K − 1

)2
(

K∑
J=2

[
g•,JP

GC + (1− g•,J)PBD
]

+
K∑
I=2

K∑
J=2

I 6=J

[
GI,JP

GC + (g•,J −GI,J)PGD + (g•,I −GI,J)PBC + (1− g•,J − g•,I +GI,J)PBD
])

= ν2
[
g•,1P

GC + (1− g•,1)PBD
]

+ ν(1− ν)
[
GI,1P

GC + (g•,1 −GI,1)PGD + (g•,I −GI,1)PBC + (1− g•,1 − g•,I +GI,1)PBD
]∣∣∣
I 6=1

+ ν(1− ν)
[
G1,JP

GC + (g•,J −G1,J)PGD + (g•,1 −G1,J)PBC + (1− g•,J − g•,1 +G1,J)PBD
]∣∣∣
J 6=1

+ (1− ν)2

K − 1

([
g•,JP

GC + (1− g•,J)PBD
])∣∣∣

J 6=1

+
( (1− ν)(K − 2)

K − 1

)2[
GI,JP

GC + (g•,J −GI,J)PGD

+ (g•,I −GI,J)PBC + (1− g•,J − g•,I +GI,J)PBD
]∣∣∣
I 6=J 6=1

.
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As K → ∞, the I = J elements drop out. What remains is a special case of equation 12 of (5), in which part of the
population consists of adherents to a single institution of reputation assessment and the remainder consists of private
assessors.

4. Switching group membership

We now consider a variant of our model in which individuals can switch gossip group identity depending on their
difference in fitness (with probability given by a Fermi function, as in the rest of our analysis). We assume K = 2 groups,
both of which are fixed for strategy Z.

4.1. Same norm and payoffs. When both groups follow the same social norm and payoffs are group-independent, we
have

ν̇1 = ν1(ΠZ
1 − Π̄),

ν̇2 = ν2(ΠZ
2 − Π̄),with

Π̄ = ν1ΠZ
1 + ν2ΠZ

2 ,

as we show in SI Section 8.2. We expect ν1 to grow if

ν̇1 > 0

∴ ν1(ΠZ
1 − Π̄) > 0

∴ ν1(ΠZ
1 − ν1ΠZ

1 − (1− ν1)ΠZ
2 ) > 0

∴ (ν1 − (ν1)2)(ΠZ
1 −ΠZ

2 ) > 0

∴ ΠZ
1 > ΠZ

2

∴ b(ν1g
Z
1,1 + ν2g

Z
1,2)− cg•,1 > b(ν1g

Z
2,1 + ν2g

Z
2,2)− cg•,2

∴ b(ν1g
Z
1,1 + ν2g

Z
1,2)− c(ν1g

Z
1,1 + ν2g

Z
2,1) > b(ν1g

Z
2,1 + ν2g

Z
2,2)− c(ν1g

Z
1,2 + ν2g

Z
2,2)

∴ ν1(b[gZ1,1 − gZ2,1]− c[gZ1,1 − gZ1,2]) > ν2(b[gZ2,2 − gZ1,2]− c[gZ2,2 − gZ2,1])

∴
ν1

ν2
>
b(gZ2,2 − gZ1,2)− c(gZ2,2 − gZ2,1)
b(gZ1,1 − gZ2,1)− c(gZ1,1 − gZ1,2)

.

[10]

When both groups follow the same social norm and are of the same size, there cannot be any difference between gZ1,1 and
gZ2,2, nor between gZ1,2 and gZ2,1. The last line of Eq. [10] thus simplifies to 1, which at least suggests ν1 = ν2 = 1/2 is
significant. We can show that ν1 grows when it is greater than 1/2 (i.e., the critical value ν∗1 equals 1/2) by explicitly
solving for the ratio ν1/ν2:

ν1

ν2
>
b(gZ2,2 − gZ1,2)− c(gZ2,2 − gZ2,1)
b(gZ1,1 − gZ2,1)− c(gZ1,1 − gZ1,2)

>
b(1 + ν1(PBD − PGC) + ν2(PBC − PGD))− c(1− ν1(PGC + PGD − PBC − PBD))
b(1 + ν2(PBD − PGC) + ν1(PBC − PGD))− c(1− ν2(PGC + PGD − PBC − PBD))

∴
ν1

1− ν1
>

b(1 + ν1(PBD − PGC) + (1− ν1)(PBC − PGD))− c(1− ν1(PGC + PGD − PBC − PBD))
b(1 + (1− ν1)(PBD − PGC) + ν1(PBC − PGD))− c(1− (1− ν1)(PGC + PGD − PBC − PBD)) .

We can collect powers of ν1 to obtain

(ν1)2(b[PGC − PGD + PBC − PBD]− c[PGC + PGD − PBC − PBC ])

+ ν1(b[1− PGC + PBD]− c[1− PGC − PGD + PBC + PBD])

> (ν1)2(b[PBC − PBD + PGC − PGD]− c[PGC + PGD − PBC − PBD])

+ ν1(b[2PGD − PGC +−2PBC + PBD − 1]− c[PBC + PBD − PGC − PGD − 1])

+ b(1 + PBC − PGD)− c.

The quadratic terms cancel, leaving

∴ ν1(b[2 + 2PBC − 2PGD]− 2c) > b(1 + PBC − PGD)− c
∴ ν1 > 1/2.
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4.2. Different norms and payoffs. We now allow social norms and payoffs to differ between groups. Suppose group J
uses a social norm with reputation probabilities PGCJ , PGDJ , PBCJ , PBDJ when assessing others’ reputations, and suppose
an individual in group I who cooperates with an individual in group J conveys a benefit bI,J but pays a cost cI,J .
(A natural application of variable benefits and costs is to allow in-group and out-group interactions to differ, so that
bI,J = δI,Jbin + (1 − δI,J)bout and cI,J = δI,Jcin + (1 − δI,J)cout.) For completeness, we present payoffs for all three
strategic types:

ΠX
I = (1− ux)

{∑
J

νJ
[
bI,J(fXJ + fZJ g

X
I,J)
]
− cI,J

}
ΠY
I = (1− ux)

{∑
J

νJ
[
bI,J(fXJ + fZJ g

Y
I,J)
]}

ΠZ
I = (1− ux)

{∑
J

νJ
[
bI,J(fXJ + fZJ g

Z
I,J)
]
− cI,Jg•,I

}
.

[11]

Group-dependent social norms mean that reputation equations change:

gXI,J = g•,JP
GC
J + (1− g•,J)PBCJ

gYI,J = g•,JP
GD
J + (1− g•,J)PBDJ

gZI,J = δI,J
[
g•,JP

GC
J + (1− g•,J)PBDJ

]
+ (1− δI,J)

[
GI,JP

GC
J + (g•,J −GI,J)PGDJ + (g•,I −GI,J)PBCJ + (1− g•,J − g•,I +GI,J)PBDJ

]
,with

gI,J =
∑
s

fsI g
s
I,J ,

g•,J =
∑
L

νLgL,J ,

GI,J =
∑
L

νL
∑
s

fsgsL,Ig
s
L,J .

[12]

In the main text, we do not vary the bI,J and cI,J , but we simultaneously solve Eqs. [11] and [12] for cases where I and
J follow different social norms and both populations are fixed for Z. The dynamics are at most bistable, with ν1 shrinking
unless it is above a critical frequency ν∗1 . For Stern Judging, this critical frequency is almost always less than 1/2, meaning
groups that follow Stern Judging are likely to grow over a larger region of phase space than any of the second-order norms
we consider.

within-group reputations (g1,1)
SJ SS SC SH

SJ 0.97 0.96 0.96 0.97
SS 0.96 0.96 0.96 0.96
SC 0.73 0.80 0.34 0.09
SH 0.10 0.10 0.06 0.06

between-group reputations (g1,2)
SJ SS SC SH

SJ 0.47 0.75 0.65 0.36
SS 0.83 0.90 0.82 0.38
SC 0.78 0.86 0.34 0.06
SH 0.07 0.07 0.02 0.02

Table S2. In-group and out-group reputations for K = 2 equally sized groups. The social norm used in group 1 is indicated at
the top of each column; the norm used in group 2 is indicated at the left of each row. Darker colors denote more strongly positive
opinions. When group 1 follows Stern Judging, it typically has a high view of itself but a somewhat low view of group 2, so that its
members will often cooperate with each other and are less likely to engage in un-reciprocated cooperation with the opposing group.
No other norm satisfies both of these conditions, which is why Stern Judging tends to outcompete other social norms across a
wide range of costs and benefits c and b (see Main Text Fig. 1). Error rates are ua = ux = 0.02.

The sole exception is when Stern Judging competes against Shunning and b is sufficiently small (e.g., b = 2), in
which case ν∗1 > 1/2. In SI figure S1, we show that this case is distinctive because, as the Shunning group expands, the
population becomes invasible by defectors. This means that, in a model with both group and strategy evolution (i.e.,
0 < τ < 1), it cannot be guaranteed that the population would continue to consist of discriminators; a lucky defector
mutant that invades at the right time might take over the entire population.

4.3. Co-evolution of strategies and norms. Up until now, we have assumed either that strategy frequencies evolve or
group sizes evolve, with the other one being fixed. In this section, we relax this assumption and allow both group sizes
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Fig. S1. Competition between Stern Judging (group 1) and Shunning (group 2) in K = 2 groups. For low values of b we have ν∗1 > 1/2, so
that Shunning (not Stern Judging) can take over the population even when starting from a minority. In this regime, however, as the Shunning
group grows, the population passes through a regime where it becomes vulnerable to invasion by pure defectors (top two plots). Increasing b to
the point where this instability no longer occurs is sufficient to push ν∗1 below 1/2, so that Stern Judging will take over the population when
starting from a minority. And so, in summary, in all regimes where the population resists invasion by defectors, Stern Judging out-competes
Shunning, even when starting in the minority.

16



0.0

0.2

0.4

0.6

0.8

1.0

fZ

Group 2 = Shunning

τ
=
0

0.0

0.2

0.4

0.6

0.8

1.0

fZ

τ
=
0.0
5

0.0

0.2

0.4

0.6

0.8

1.0

fZ

τ
=
0.5

0.0

0.2

0.4

0.6

0.8

1.0

fZ

τ
=
0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ν1

fZ

τ
=
1

0.0

0.2

0.4

0.6

0.8

1.0

fZ

Group 2 = Stern Judging

τ
=
0

0.0

0.2

0.4

0.6

0.8

1.0

fZ
τ
=
0.0
5

0.0

0.2

0.4

0.6

0.8

1.0

fZ
τ
=
0.5

0.0

0.2

0.4

0.6

0.8

1.0

fZ
τ
=
0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ν1

fZ
τ
=
1

0.0

0.2

0.4

0.6

0.8

1.0

fZ

Group 2 = Simple Standing

τ
=
0

0.0

0.2

0.4

0.6

0.8

1.0

fZ

τ
=
0.0
5

0.0

0.2

0.4

0.6

0.8

1.0

fZ

τ
=
0.5

0.0

0.2

0.4

0.6

0.8

1.0

fZ

τ
=
0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ν1

fZ

τ
=
1

Fig. S2. Coevolution of strategy frequencies and group sizes under well-mixed copying, in K = 2 groups. Group 1 follows the Stern Judging
norm, and group 2’s norm is indicated in the column headings at the top. Each plot shows the vector field of replicator dynamics, with the x-axis
indicating the frequency of group 1 versus group 2, and the y-axis indicating the frequency of DISC versus ALLD. The top two rows (τ = 0 and
0.05) correspond to slow dynamics of group imitation relative to strategic imitation; and the bottom rows correspond to rapid dynamics of group
imitation relative to strategic imitation. In all plots, b = 2, c = 1, ua = ux = 0.02.
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and strategy frequencies to co-evolve. In this model, when an individual is chosen to update, they decide to update their
group identity with probability τ or their behavioral strategy with probability 1− τ ; we continue to assume well-mixed
copying. As we show in SI section 8.6, group sizes and strategy frequencies are then governed by the system of differential
equations

ν̇I = νIτ(ΠI − Π̄),
ḟs = fs(1− τ)(Πs − Π̄).

We present numerical solutions to these equations as vector fields in SI Figure S2, showing the co-evolution of group sizes
and strategy frequencies for Stern Judging versus other social norms, for a range of different values of τ . When τ = 0, we
recover the limit of fixed group sizes (i.e., only behavioral strategies evolve); when τ = 1, behavioral strategies are fixed
and only group sizes evolve.

The results are consistent with our prior findings in the limits of pure strategy competition (τ = 0) or pure norm
competition (τ = 1). The analysis also extends some of our results for τ = 1 to cases with intermediate τ : in particular,
even when strategies and norms co-evolve, there remains a large basin of attraction towards Stern-Judging discriminators
in competition with Simple Standing and defectors. And we also find qualitatively new phenomena: there is a large basin
of attraction towards defectors when Stern Judging competes with Shunning while both norms and strategies evolve at
similar rates.

In the case of competition between Simple Standing and Stern Judging (Figure S2, right column), the top edge of each
vector field (fZ = 1) recapitulates the result that Stern Judging can out-compete Simple Standing even when starting
from a minority (consistent with main text Figure 1). The same result is also seen in the bottom row of Figure S2, when
only group membership evolves (τ = 1)–and indeed it holds regardless of the frequency of defectors. Moreover, there is a
substantial basin of attraction towards Stern Judging and DISC, including from initial conditions where Stern Judging
starts in the minority, even when strategies and group membership co-evolve (0 < τ < 1).

In the case of two competing groups that each follow Stern Judging (Figure S2, middle column), we see that a
population undergoing strategic evolution is more vulnerable to eventual domination by defectors when the groups are
equally sized (top row, τ = 0), a result that is consistent with our analysis of pure strategic evolution in the main text
(main text Figure 3, middle column). This result continues to hold when strategies and group membership co-evolve
(τ > 0).

In the case of competition between Shunning and Stern Judging (Figure S2, left column), the results for discriminators
(fZ = 1) are consistent with SI Figure S1; specifically, when the Shunning group begins to overtake the Stern Judging
group, the population becomes vulnerable to invasion by defectors. When strategies and group membership evolve at
similar rates (middle row), there is a small basin of attraction towards Stern Judging and discriminators, a small basin
towards Shunning and discriminators, and a large basin towards ALLD. And when only group membership evolves (τ = 1,
bottom row), Shunning will often overtake Stern Judging when discriminators predominate, and Shunning will always do
so when defectors predominate.

4.4. Switching costs. Hitherto, we have assumed that switching group membership does not incur any kind of fitness
penalty. In the real world, there may be social barriers or initiation costs associated with joining a new group. Such costs
could be “immediate”, thus affecting the perceived fitness change associated with switching group membership, or they
could be transient, requiring time to overcome. In this section, we consider several different “switching cost” models and
show that they do not affect our main results.

We first consider the possibility that individuals regard it as costly to switch groups; in effect, when they compare
themselves with an individual in a different group, they consider the out-group individual to have their fitness lowered by
a value α. This means the Fermi function becomes

φ(ΠJ ,ΠI) = 1
1 + exp[β(ΠJ −ΠI − α)]

for individuals in groups I and J . In SI section 8.7, we show that this has no effect on the dynamics, because the total
rate of change of group I, ν̇I , is given by the difference in the rates at which J individuals switch to I and at which I
individuals switch to J . In the weak selection limit, the switching cost penalizes both of these rates equally.

We then consider a more sophisticated switching cost model, in which individuals who are “new” to a group have their
fitness penalized by α until some amount of time has elapsed; they transition out of the “new” state (with fitness penalty
α) and into the “old” state (no fitness penalty) at rate σ. We limit ourselves to the case of two groups, so that

Πnew
1 = Πold

1 − α,

Πnew
2 = Πold

2 − α;
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the expressions for Πold
1 and Πold

2 are the standard expressions for discriminator fitnesses.
We assume, further, that individuals who are “new” to their group may still switch back to their former group without

penalty and be regarded as “old” in that group. We use νnew
1 , νold

1 , νnew
2 , and νold

2 to denote the fraction of the population
that is “new” in group 1, “old” in group 1, and so on.

In SI Section 8.8, we exploit separation of timescales to show that the fraction of “new” individuals in each group, ρ1
and ρ2, rapidly equilibrates to a value

ρ1 = 1− ν1

1 + σ
, ρ2 = ν1

1 + σ
;

the dynamics then follow
ν̇1 = ν1(Π̄1 − Π̄), ν̇2 = ν2(Π̄2 − Π̄),

in which

Π̄1 = (νnew
1 Πnew

1 + νold
1 Πold

1 )/ν1,

Π̄2 = (νnew
2 Πnew

2 + νold
2 Πold

2 )/ν2.

Note that, while ρ1 and ρ2 feature no explicit dependence on the switching cost α, the cost appears in Π̄1 and Π̄2. We
then explore the effects of changing parameter values on ν̇1. It is worth noting that

ν̇1 = ν1(Π̄1 − Π̄)

= ν1([νnew
1 Πnew

1 + νold
1 Πold

1 ]/ν1 − νnew
1 Πnew

1 − νold
1 Πold

1 − νnew
2 Πnew

2 − νold
2 Πold

2 )

= ν1(ρ1Πnew
1 + (1− ρ1)Πold

1 − ν1[ρ1Πnew
1 + (1− ρ1)Πold

1 ]− ν2[ρ2Πnew
2 + (1− ρ2)Πold

2 ])

= ν1([1− ν1][ρ1Πnew
1 + (1− ρ1)Πold

1 ]− [1− ν1][ρ2Πnew
2 + (1− ρ2)Πold

2 ])

= ν1(1− ν1)[ρ1Πnew
1 + (1− ρ1)Πold

1 − ρ2Πnew
2 − (1− ρ2)Πold

2 ]

= ν1(1− ν1)[Πold
1 + ρ1(Πnew

1 −Πold
1 )−Πold

2 − ρ2(Πnew
2 −Πold

2 )]

= ν1(1− ν1)[Πold
1 − ρ1α−Πold

2 + ρ2α].

This will have zeros at ν1 = 0, ν1 = 1, and Πold
1 − ρ1α = Πold

2 − ρ2α.
We can then wonder whether there is ever a value of ν1 such that Πold

1 > Πold
2 (i.e., ν̇1 would be positive in the “null”

case, with no switching cost) but Πold
1 − ρ1α < Πold

2 − ρ2α (i.e., ν̇1 becomes negative once the switching cost is imposed).
Using the separation of timescales argument above, we obtain

Πold
1 −

1− ν1

1 + σ
α < Πold

2 −
ν1

1 + σ
α

∴ Πold
1 −Πold

2 <
1− ν1

1 + σ
α− ν1

1 + σ
α

∴ Πold
1 −Πold

2 <
1− 2ν1

1 + σ
α

∴
1 + σ

α
(Πold

1 −Πold
2 ) < 1− 2ν1

∴
1
2 −

1 + σ

2α (Πold
1 −Πold

2 ) > ν1.

Since the subtrahend on the left hand side is positive, this implies a switching cost can only cause ν̇1 to switch from
positive to negative for ν1 < 1/2. If ν∗1 , the critical size below which ν1 shrinks and above which it grows, is less than
1/2, then ν1 is positive everywhere on the interval (ν∗1 , 1/2]. The above argument demonstrates that it is only possible
to switch ν1 from positive to negative in the interval (ν∗1 , 1/2). By the mean value theorem, imposing a switching cost
therefore cannot move the non-trivial zero of ν̇1 from a value less than 1/2 to a value greater than or equal to 1/2. A
similar argument shows that, if ν∗1 = 1/2, it will still be 1/2 after a switching cost is imposed; likewise, if ν∗1 > 1/2, it will
still be 1/2 with a switching cost.

We verify this result in SI Figure S3. Note that if either the switching cost is small (α near 0), or if the rate of
establishment in a new group is fast (σ large), then the dynamics are quantitatively similar to a model without any
switching cost whatsoever. Nonetheless, regardless of the switching cost (α) or the length of time an individual must pay
the cost after switching groups (1/σ), which one of two competing norms is “stronger” (i.e., which norm can win even
when starting from a minority of the population) remains unchanged.

In summary, while a switching cost can quantitatively affect competition between norms, it cannot affect which norm is
“stronger” in the sense of being able to overtake the population starting from a minority.
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Fig. S3. Norm competition with a switching cost. In all plots, ua = ux = 0.02, b = 2, c = 1, group 1 follows Stern Judging, and group 2 follows
Simple Standing. The rate σ at which individuals “establish” in their new groups (and thus are absolved of the switching cost) is indicated along
the top of each plot. Each plot shows curves for three different values of the switching cost, including the case α = 0 which reduces to the
model without costs. When the switching cost α is high and the establishment rate σ is low, the critical value ν∗1 above which group 1 grows
increases. But regardless of the cost α or rate σ, ν∗1 never exceeds 1/2, meaning that Stern Judging is always the stronger norm – consistent
with the general result we derive analytically.
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4.5. Private reputations. We briefly consider what happens when two groups each adhere to private reputation assessment
but follow different norms. We assume both groups are fixed for discriminators. In that case,

gI,J =
∑
L

νL
(
gI,LgJ,LP

GC
J + gI,L[1− gJ,L]PBCJ + [1− gI,L]gJ,LPGDJ + [1− gI,L][1− gJ,L]PBDJ

)
= GI,JP

GC
J + (g•,I −GI,J)PBCJ + (g•,J −GI,J)PGDJ + (1− g•,I − g•,J +GI,J)PBDJ .

An important difference between this expression and gZI,J in Eq. [12] is that individuals in the same group are not
guaranteed to share reputational views of anyone else in the population, meaning that the I = J term does not have a
different form. Thus, for two groups, we have

g1,1 = G1,1P
GC
1 + (g•,1 −G1,1)(PGD1 + PBC1 ) + (1− 2g•,1 +G1,1)PBD1

g1,2 = G1,2P
GC
2 + (g•,1 −G1,2)PBC2 + (g•,2 −G1,2)PGD2 + (1− g•,1 − g•,2 +G1,2)PBD2

g2,1 = G2,1P
GC
1 + (g•,2 −G2,1)PBC1 + (g•,1 −G2,1)PGD1 + (1− g•,2 − g•,1 +G2,1)PBD1

g2,2 = G2,2P
GC
2 + (g•,2 −G2,2)(PGD2 + PBC2 ) + (1− 2g•,2 +G2,2)PBD1 .

When ν1 → 1 (i.e., there is only one group), this reduces to

g = g?P
GC + (g − g?)(PGD + PBC) + (1− 2g + g?)PBD,

which is the standard expression for one group with private reputations. When information about reputations is shared
within a group, individuals can benefit both by choosing a more socially beneficial norm (one that minimizes their risk of
unreciprocated cooperation) and by aligning themselves with the reputational assessments of a larger group. When both
groups rely solely on private assessments, the second advantage is weakened, because merely following the same norm as
a given group is not sufficient to ensure a good reputation in the eyes of that group: this is especially true of Stern Judging
and Shunning, which are relatively intolerant of disagreement.

We consider competition between social norms under private assessment in SI figure S4, by allowing individuals
to switch group identity and, thus, which norm they use in assessing others. A murkier picture emerges than under
group-wise public assessment. Stern Judging and Shunning are both capable of “beating” other norms, in the sense of
growing in size even when their group is less than half the population, under certain circumstances. However, the fact
that they are themselves vulnerable to invasion by defectors (whereas Simple Standing is not) means it is difficult to draw
a general conclusion about the “strength” of these norms. Simple Standing emerges as a “strong” norm that can generally
outcompete other norms, especially for high values of b, and is itself capable of fomenting a high level of cooperation
under private assessment.

5. Insular social interactions

We now consider the possibility that, instead of interacting equally with everyone in the population, individuals have
different interaction rates with their in-group versus their out-group. With probability ωI,J , a possible interaction between
individuals in groups I and J happens (for simplicity we assume ωI,J = ωJ,I). We average fitnesses over all interactions
that actually happen; for an individual in group I, this will be given by

MI =
∑
L

νLωI,L,

and the total number of interactions an individual in group I engages in with someone in group J will be given by νJωI,J
(times N , which we divide out).

5.1. Reputations and fitnesses. Before writing down fitnesses, it is instructive to consider how reputations change. We
need to consider the fact that interactions that do not happen cannot be observed and therefore cannot factor into
updating someone’s reputation. We thus assume that an observer is equally likely to observe any of the donor’s actions
that actually happened, which means that when they consider a random interaction of a group I individual, it is with an
individual in arbitrary group L with probability νLωI,L/MI .
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Fig. S4. Group size dynamics for K = 2 groups and varying values of the benefit b, with private (individually held) reputations rather than public
reputations shared among group members. The norm used in group 1 is along the top: the norm used in group 2, along the left. In all plots,
c = 1, ua = ux = 0.02. Values of b are as inset in the Scoring-Scoring figure.
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5.1.1. Cooperator reputation. A cooperator in group I can be assigned a good reputation in the eyes of group J in two ways.
J can observe the I cooperator’s interaction:

1. with someone in arbitrary group L (probability νLωL,I/MI) whom group J sees as good (probability gL,J); the I
group member cooperates, which yields a good reputation with probability PGCJ .

2. with someone in arbitrary group L (probability νLωL,I/MI) whom group J sees as bad (probability 1− gL,J); the
I group member cooperates, which yields a good reputation with probability PBCJ .

If we define

γI,J = 1
MI

∑
L

νLωL,IgL,J ,

the average reputation (in J ’s eyes) of the component of the population I interacted with, then

gXI,J = γI,JP
GC
J + (1− γI,J)PBCJ = γI,J(PGC − PBC) + PBC .

This is different from the classical case of uniform population-wide interaction, because how many interactions, and with
whom, a member of I engages in now depends on I. That is, γI,J could be thought of as g•,J , corrected for the fact that I
no longer interacts uniformly with the entire population: J can only judge I based on whom I actually interacted with.
Setting all ωI,J = 1 yields γI,J = g•,J ,MI = 1, and γI,J = GI,J .

5.1.2. Defector reputation. A defector in group I can be assigned a good reputation in the eyes of group J in two ways. J
can observe the I defector’s interaction:

1. with someone in arbitrary group L (probability νLωL,I/MI) whom group J sees as good (probability gL,J); the I
group member defects, which yields a good reputation with probability PGDJ .

2. with someone in arbitrary group L (probability νLωL,I/MI) whom group J sees as bad (probability 1− gL,J); the
I group member defects, which yields a good reputation with probability PBDJ .

Thus,
gYI,J = γI,JP

GD
J + (1− γI,J)PBDJ = γI,J(PGD − PBD) + PBD. [13]

5.1.3. Discriminator reputation. A discriminator in group I can gain a good reputation in the eyes of group I (their in-group)
in two ways. I can observe the I discriminator’s interaction:

1. with someone in arbitrary group L (probability νLωL,I/MI) whom group I sees as good (probability gL,I); the I
discriminator cooperates, which yields a good reputation with probability PGCJ .

2. with someone in arbitrary group L (probability νLωL,I/MI) whom group I sees as bad (probability 1− gL,I); the
I discriminator defects, which yields a good reputation with probability PBDJ .

A discriminator in group I can gain a good reputation in the eyes of group J 6= I (their out-group) in four ways. J can
observe the I discriminator’s interaction:

1. with someone in an arbitrary group L following strategy s (probability νLωL,IfsL/MI) whom I sees as good
(probability gsL,I) and whom J also sees as good (probability gsL,J); the I discriminator cooperates, which yields a
good reputation with probability PGC .

2. with someone in an arbitrary group L following strategy s (probability νLωL,If
s
L/MI) whom I sees as bad

(probability 1− gsL,I) but whom J sees as good (probability gsL,J); the I discriminator defects, which yields a good
reputation with probability PGD.

3. with someone in an arbitrary group L following strategy s (probability νLωL,IfsL/MI) whom I sees as good
(probability gsL,I) but whom J sees as bad (probability 1− gsL,J); the I discriminator cooperates, which yields a
good reputation with probability PBC .

4. with someone in an arbitrary group L following strategy s (probability νLωL,If
s
L/MI) whom I sees as bad

(probability 1− gsL,I) and whom J also sees as bad (probability 1− gsL,J); the I discriminator defects, which yields
a good reputation with probability PBD.
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We can sum over all groups and strategy combinations to obtain

1
MI

∑
L

νLωL,I
∑
s

fsLg
s
L,Ig

s
L,J = ΓI,J ,

1
MI

∑
L

νLωL,I
∑
s

fsL(1− gsL,I)gsL,J = γI,J − ΓI,J ,

1
MI

∑
L

νLωL,I
∑
s

fsLg
s
L,I(1− gsL,J) = γI,I − ΓI,J ,

1
MI

∑
L

νLωL,I
∑
s

fsL(1− gsL,I)(1− gsL,J) = 1− γI,J − γI,I + ΓI,J .

Thus,

gZI,J = δI,J
[
γI,JP

GC
J + (1− γI,J)PBDJ

]
+ (1− δI,J)

[
ΓI,JPGCJ + (γI,J − ΓI,J)PGDJ + (γI,I − ΓI,J)PBCJ + (1− γI,J − γI,I + ΓI,J)PBDJ

]
= δI,J

[
γI,JP

GC
J + (1− γI,J)PBDJ

]
+ (1− δI,J)

[
ΓI,J(PGCJ − PGDJ − PBCJ + PBDJ ) + γI,J(PGDJ − PBDJ ) + γI,I(PBCJ − PBDJ ) + PBDJ

]
.

5.1.4. Group-averaged reputations. When individuals in different groups do not assuredly interact but rather interact only
with probability ωI,J , Eq. [3] generalizes to

gs =
∑
I

νI
1
MI

∑
J

νJωI,Jg
s
I,J . [14]

Here, we have simply re-weighted gsI,J by the probability ωI,J that potential interactions actually occur; setting all
ωI,J = 1 reduces to Eq. [3]. The population-averaged reputation is likewise given by

g =
∑
I

νI
1
MI

∑
J

νJωI,JgI,J ,

which we can also write as
g =

∑
I

νIγI,I .

This expression reduces to Eq. [4] when all ωI,J = 1. Furthermore, we can define the related term

ĝ =
∑
I

νI
1
MI

∑
J

νJωI,JgJ,I ,

which is a weighted average of an arbitrary individual’s view of the rest of the population. Note that ĝ = g if all the νI are
equal or all the ωI,J are equal.

5.1.5. Fitnesses. We can now write down fitnesses. An individual in group I acquires a payoff bI,J for each group J
interaction either with a cooperator or with a discriminator who sees them as good. In group I, a cooperator pays cost cI,J
in each interaction they engage in, and a discriminator pays cost cI,J in each interaction with someone whom they see as
good. An arbitrary individual in group I engages inMI interactions. If the individual is a discriminator, then of these,
νJωJ,I interactions will be with someone in group J , and the discriminator will regard them as good with probability gJ,I .

Finally, we average the payoffs differently. In the no-insularity case, we divide payoffs by all N interactions an
individual engages in. With insularity, individuals engage inMI interactions (times N), so we normalize byMI to obtain
their interaction-averaged payoff. Thus, the average payoff for each of the three strategic types in an arbitrary group I is

ΠX
I = 1

MI
(1− ux)

{∑
J

νJωI,J
[
bI,J(fXJ + fZJ g

X
I,J)− cI,J

]}
ΠY
I = 1

MI
(1− ux)

{∑
J

νJωI,J
[
bI,J(fXJ + fZJ g

Y
I,J)
]}

ΠZ
I = 1

MI
(1− ux)

{∑
J

νJωI,J
[
bI,J(fXJ + fZJ g

Z
I,J)− cI,JgJ,I

]}
.
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5.1.6. Hybrid strategies. The above treatment makes it trivial to write down reputations for strategies that distinguish
explicitly between in-group and out-group, for example, cooperate with one’s in-group and discriminate with one’s
out-group. These “hybrid” strategies were prominently featured in, e.g., (6). As an example, we present the strategy of
discriminating with one’s in-group and defecting with one’s out-group, which we denote ZY . We have

gI,JZY = δI,J
[
γI,JP

GC
J + (1− γI,J)PBDJ

]
+ (1− δI,J)

[
γI,JP

GD
J + (1− γI,J)PBDJ

]
= δI,J

[
γI,JP

GC
J + (1− γI,J)PBDJ

]
+ (1− δI,J)

[
γI,JP

GD
J + (1− γI,J)PBDJ

]
.

The fitness term is easily written down depending on the other strategies in the population; a ZY individual accrues a
benefit from cooperators, from discriminators who see them as good, and from other ZY individuals in the same group
who see them as good, and they pay the cost for any individuals in the same group whom their group sees as good.

5.1.7. Favoring of in-group interactions. Suppose we have

ωI,J = δI,J + (1− δI,J)ω,

i.e., individuals always interact with their in-group, but out-group interactions only happen with probability ω. Suppose,
also, that benefits and costs do not vary by group. We can study this numerically: see main text figure 3.

When ω → 0, we have

MI =
∑
L

νLωI,L = νI ,

γI,J = 1
MI

∑
L

νLωL,IgL,J = 1
MI

νIgI,J = gI,J ,

ΠX
I = 1

MI
(1− ux)

{∑
J

νJωI,J
[
b(fXJ + fZJ g

X
I,J)− c

]}
= (1− ux)[b(fXI + fZI g

X
I,I)− c],

ΠY
I = 1

MI
(1− ux)

{∑
J

νJωI,J
[
b(fXJ + fZJ g

Y
I,J)
]}

= (1− ux)[b(fXI + fZI g
Y
I,I)],

ΠZ
I = 1

MI
(1− ux)

{∑
J

νJωI,J
[
b(fXJ + fZJ g

Z
I,J)− cgJ,I

]}
= (1− ux)[b(fXI + fZI g

Z
I,I)− cgI,I ].

Thus, when groups are completely insular, they only accrue payoffs from (and pay costs for) interactions with their own
group: K groups effectively behave as K completely disjoint, independent populations.

5.2. Average fitnesses under well-mixed copying. In SI Section 3, we saw that it was possible to study the dynamics of
strategy evolution solely by considering the group-averaged fitnesses and reputations. Here, we show that this is likewise
possible when insularity is introduced. We have

ΠZ =
∑
I

νIΠZ
I

= (1− ux)
∑
I

νI
1
MI

∑
J

νJωI,J
[
b(fX + fZgZI,J)− cgJ,I

]
= (1− ux)

{
b
∑
I

νI
1
MI

∑
J

νJωI,J(fX + fZgZI,J)−
∑
I

νI
1
MI

∑
J

νJωI,JgJ,I

}
= (1− ux)

[
bfX

∑
I

νI
1
MI

∑
J

νJωI,J + bfZ
∑
I

νI
1
MI

∑
J

νJωI,Jg
Z
I,J −

∑
I

νI
1
MI

∑
J

νJωI,JgJ,I

]
= (1− ux)

[
bfX

∑
I

νI
1∑

J
νJωI,J

∑
J

νJωI,J + bfZ
∑
I

νI
1∑

J
νJωI,J

∑
J

νJωI,Jg
Z
I,J

−
∑
I

νI
1∑

J
νJωI,J

∑
J

νJωI,JgJ,I

]
= (1− ux)

[
b(fX + fZgZ)− cĝ

]
.
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By identical reasoning we will have

ΠX = (1− ux)
[
b(fX + fZgX)− c

]
,

ΠY = (1− ux)
[
b(fX + fZgY )

]
.

5.3. Equally sized groups. Suppose now that every group has the same size 1/K and the insularities are given by
ωI,J = δI,J + (1− δI,J)ω, i.e., individuals always interact with fellow in-group members but only interact with out-group
individuals with probability ω. By symmetry, reputational views will only differ depending on whether the observer is in
the donor’s in-group or out-group. Define gin = gI,I and gout = gI,J |I 6=J , i.e., gin is an individual’s view of their in-group
and gout their out-group. The average reputation g (Eq. [14]) can be expanded out thus:

g =
∑
I

νI
1
MI

∑
J

νJωI,JgI,J =
( 1
K

)2 1
1/K + ω(K − 1)/K

∑
I

∑
J

ωI,JgI,J

=
( 1
K

)2 K

1 + ω(K − 1) (Kgin + ωK(K − 1)gout)

= gin + ω(K − 1)gout

1 + ω(K − 1) .

[15]

In a population of discriminators, gin and gout can be expanded out:

gin = γI,I(PGC − PBD) + PBD

= 1
MI

∑
L

νLωL,IgL,I(PGC − PBD) + PBD

= 1
1 + ω(K − 1)

∑
L

ωL,IgL,I(PGC − PBD) + PBD

= 1
1 + ω(K − 1)

[
gin + (K − 1)ωgout

]
(PGC − PBD) + PBD

[16]

and

gout = γI,J(PGC − PGD − PBC + PBD) + γI,J(PGD − PBD) + γI,I(PBC − PBD) + PBD

= 1
MI

∑
L

νLωL,IgL,IgL,J(PGC − PGD − PBC + PBD)

+ 1
MI

∑
L

νLωL,IgL,J(PGD − PBD)

+ 1
MI

∑
L

νLωL,IgL,I(PBC − PBD)

+ PBD

= 1
1 + ω(K − 1)

[
(1 + ω)gingout + (K − 2)ω(gout)2)

]
(PGC − PGD − PBC + PBD)

+ 1
1 + ω(K − 1)

[
ωgin +

(
1 + (K − 2)ω

)
gout
]
(PGD − PBD)

+ 1
1 + ω(K − 1)

[
gin + (K − 1)ωgout

]
(PBC − PBD)

+ PBD.

[17]

These equations can be solved, but their general solution is not very informative. Note that sending ux → 0 and defining
θ = 1/[1 + ω(K − 1)] yields the corresponding expressions from (2); see SI table S3. A useful simplification is to send
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ω → 0:

gin|ω→0 = PBD

1− PGC + PBD

=


ua

1− ε+ ua
= ua

2ua + ux − 2uxua
Shunning, Scoring,

1− ua
2− ε+ ua

= 1− ua
1 + ux − 2uxua

Stern Judging, Simple Standing,

gout|ω→0 = PBD(1 + PBC − PGC)
PBD(2 + PBC − 2PGC) + (1− PGC)(1− PGD)

=



ua(1 + ua − ε)
ua(2 + ua − 2ε) + (1− ε)(1− ua) = ua[2ua(1− ux) + ux]

ua(1 + 2ua)(1− ux) + ux
Shunning,

ua
1− ε+ ua

= ua
2ua(1− ux) + ux

Scoring,

(1− ua)(2− 2ε)
(1− ua)(4− 4ε) = 1

2 Stern Judging,

(1− ua)(2− ua − ε)
(1− ua)(3− ua − 2ε) + (1− ε)(1− ua) = 1 + ux − 2uaux

1 + 2ua + 3ux − 6uaux
Simple Standing.

[18]

The expressions for gin|ω→0 are the same as the main text expressions for g with K = 1 and fZ = 1.

5.4. Invasibility of equally sized groups by defectors. Given Eqs. [16] and [17], we can determine when discriminators
resist invasion by defectors. We require (when fZ = 1)

ΠZ > ΠY

bgZ − cĝ > bgY

(b− c)g > bgY

∴
b

c
>

g

g − gY ,with

gY =
∑
I

νI
1
MI

∑
J

νJωI,J
[
γI,J(PGD − PBD) + PBD

]
.

[19]

Solving for gY requires that we compute the sum at the end of Eq. [19]. Let ωout be the out-group interaction parameter and
ωin the probability of in-group interactions (these are ω and 1 respectively; these terms are used solely for bookkeeping).
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norm gin gout

Stern Judging
(K ≥ 3)

2(1− ua)(1 + [K − 1]ω)− ux(2 + [K − 1]ω)
2(1 + [K − 1]ω)

K − 2− ux

2(K − 2)

Stern Judging
(K = 2, ux > 0)

1−
2ux + (2 + ω)ua

2
√

1 + ω

1
4ω
√

1 + ω

×
{

4(1 + ω −
√

1 + ω) + 2ux(2 + ω − 2
√

1 + ω)

+ua[8− 8
√

1 + ω + ω(8 + ω − 4
√

1 + ω)]
}

Stern Judging
(K = 2, ux = 0)

1− ua 1/2

Simple Standing 1− ua − ux 1− (ua + ux)[2 + (K − 1)ω]

Shunning
ua(1 + 2[K − 1]ω)

(K − 1)ω
ua

Table S3. In-group and out-group reputations for all-discriminator populations consisting of K equally sized groups, to first order
in ua and ux. These agree with the expressions provided in (2) given θ = 1/[1 + ω(K − 1)] and ux → 0. The expression for
Shunning is novel to our analysis: in their notation, the Shunning in-group reputation is (2− θ)ua/(1− θ), and both the in-group
and out-group reputations include O(u2

a) terms that we ignore. The Shunning in-group approximation breaks down as ω → 0; it
appears to be valid only for ωr � ux. Otherwise, the exact ω = 0 expression (Eq. [18]) is a useful approximations for gin. Likewise,
the Stern Judging (K = 2, ux > 0) out-group term fails when ω � ux. The ux = 0 out-group expression is a better approximation.
Finally, Scoring is omitted from this table because the exact expression g = ua/(1 − ε + ua) is always valid irrespective of group
structure and insularity.
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The sum is

∑
I

νI
1
MI

∑
J

νJωI,JγI,J =
∑
I

νI
1
MI

∑
J

νJωI,J
∑
I

νI
1
MI

∑
L

νLωL,IgL,J

=
∑
I

∑
I

∑
J

∑
L

(νI)2
( 1
MI

)2
νJνLωI,JωL,IgL,J

=
( 1
K

)4( 1
1/K + ω(K − 1)/K

)2∑
I

∑
I

∑
J

∑
L

ωI,JωL,IgL,J

=
( 1
K

)4( K

1 + ω(K − 1)

)2

×
∑
I

[
K(K − 1)(K − 2)ωoutωoutgout +K(K − 1)ωinωoutgout

+K(K − 1)ωoutωingout +K(K − 1)ωoutωoutgin +Kωinωingin

=
( 1
K

)4( K

1 + ω(K − 1)

)2

×
∑
I

[
K(K − 1)(K − 2)ω2gout + 2K(K − 1)ωgout

+K(K − 1)ω2gin +Kgin

]
=
( 1
K

)3( K

1 + ω(K − 1)

)2

×
[
K(K − 1)(K − 2)ω2gout + 2K(K − 1)ωgout +K(K − 1)ω2gin +Kgin

]
=
( 1

1 + ω(K − 1)

)2

×
[
(K − 1)(K − 2)ω2gout + 2(K − 1)ωgout + (K − 1)ω2gin + gin

]
= goutω(K − 1)[(K − 2)ω + 2] + gin[(K − 1)ω2 + 1]

[1 + ω(K − 1)]2 .

[20]

Thus,

gY = goutω(K − 1)[(K − 2)ω + 2] + gin[(K − 1)ω2 + 1]
[1 + ω(K − 1)]2 (PGD − PBD) + PBD. [21]

Substituting Eqs. [21], [15], [16], and [17] into Eq. [19] yields the condition that b/c must be greater than a fraction
whose numerator is given by

[1 + (K − 1)ω][gin + gout(K − 1)ω]

and denominator by

gin

[(
(K − 1)ω2 + 1

)
(PBD − PGD) + (K − 1)ω + 1

]
+ gout(K − 1)ω

[(
(K − 2)ω + 2

)
(PBD − PGD) + (K − 1)ω + 1

]
− PBD

[
(K − 1)ω + 1

]2
.
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These are consistent with the expressions from (2). The b/c condition can also be expressed in terms of the weighted
average reputation g. We solve for gin and gout self-consistently via

gin|fZ =1 = γI,I(PGC − PBD) + PBD

=
( 1
MI

∑
L

νLωL,IgL,I

)
(PGC − PBD) + PBD

= K

1 + ω(K − 1)

( 1
K
gin + ω

K − 1
K

gout

)
(PGC − PBD) + PBD

= gin + ω(K − 1)gout

1 + ω(K − 1) (PGC − PBD) + PBD

∴ gin

(
1− 1

1 + ω(K − 1)

)
= ω(K − 1)gout

1 + ω(K − 1) (PGC − PBD) + PBD

∴ gin
ω(K − 1)

1 + ω(K − 1) = ω(K − 1)gout

1 + ω(K − 1) (PGC − PBD) + PBD

∴ gin = gout(PGC − PBD) + 1 + ω(K − 1)
ω(K − 1) PBD

[22]

or, equivalently,
gin = g(PGC − PBD) + PBD.

Likewise

gin + ω(K − 1)gout

1 + ω(K − 1) = g

∴
ω(K − 1)gout

1 + ω(K − 1) = g − gin

1 + ω(K − 1)

∴ gout = g[1 + ω(K − 1)]− gin

ω(K − 1)

= g[1 + ω(K − 1)− PGC + PBD]− PBD

ω(K − 1)

Combining Eqs. [22], [20], and [13] yields

(b− c)g > b
[
goutω(K − 1)[(K − 2)ω + 2] + gin[(K − 1)ω2 + 1]

[1 + ω(K − 1)]2 (PGD − PBD) + PBD
]

∴
b− c
b

g >
{g[1 + ω(K − 1)− PGC + PBD]− PBD}[(K − 2)ω + 2] + [g(PGC − PBD) + PBD][(K − 1)ω2 + 1]

[1 + ω(K − 1)]2

×
(
PGD − PBD

)
+ PBD

∴
b− c
b

g > g
[2− PGC + PBD + ω(K − 2 + PGC − PBD)](PGD − PBD)

1 + ω(K − 1) + (1− ω)PBD(PGD − PBD)
1 + ω(K − 1) + PBD.

This can be rearranged to yield

g
(

1− c

b
+ [2− PGC + PBD + ω(K − 2 + PGC − PBD)](PBD − PGD)

1 + ω(K − 1)

)
>

(1− ω)PBD(PGD − PBD)
1 + ω(K − 1) + PBD.

Thus, discriminators resist invasion by defectors provided

g >
(1− ω)PBD(PBD − PGD) + [1 + ω(K − 1)]PBD

[2− PGC + PBD + ω(K − 2 + PGC − PBD)](PBD − PGD) + (1− c/b)[1 + ω(K − 1)] , or

g >
PBD[Kω + (1− ω)(1− PGD + PBD)]

[2− PGC + PBD + ω(K − 2 + PGC − PBD)](PBD − PGD) + (1− c/b)[1 + ω(K − 1)] .

Setting ω = 1 yields Eq. [5].
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5.5. Invasibility of equally sized groups by cooperators. Bolstered by our preceding analysis, we also consider when
discriminators resist invasion by cooperators; such invasion can occur, e.g., under Simple Standing. We require

ΠZ > ΠX

(b− c)g > bgX − c
b

c
>

g − 1
g − gX ,with

gX =
∑
I

νI
1
MI

∑
J

νJωI,J
[
γI,J(PGC − PBC) + PBC

]
= goutω(K − 1)[(K − 2)ω + 2] + gin[(K − 1)ω2 + 1]

[1 + ω(K − 1)]2 (PGC − PBC) + PBC .

The critical b/c value thus simplifies to a fraction whose numerator is given by

[1 + (K − 1)ω][gin + (gout − 1)(K − 1)ω − 1]

and denominator by

gin

[(
(K − 1)ω2 + 1

)
(PBC − PGC) + (K − 1)ω + 1

]
+ gout(K − 1)ω

[(
(K − 2)ω + 2

)
(PBC − PGC) + (K − 1)ω + 1

]
− PBC

[
(K − 1)ω + 1

]2
,

which again is consistent with (2). We can likewise express this condition in terms of g:

(b− c)g > b
[
goutω(K − 1)[(K − 2)ω + 2] + gin[(K − 1)ω2 + 1]

[1 + ω(K − 1)]2 (PGC − PBC) + PBC
]
− c

∴
b− c
b

g >
{g[1 + ω(K − 1)− PGC + PBD]− PBD}[(K − 2)ω + 2] + [g(PGC − PBD) + PBD][(K − 1)ω2 + 1]

[1 + ω(K − 1)]2

×
(
PGC − PBC

)
+ PBC − c

b

∴
b− c
b

g > g
[2− PGC + PBD + ω(K − 2 + PGC − PBD)](PGC − PBC)

1 + ω(K − 1) + (1− ω)PBD(PGC − PBC)
1 + ω(K − 1) + PBC − c

b
.

This can be rearranged to yield

g
(

1− c

b
+ [2− PGC + PBD + ω(K − 2 + PGC − PBD)](PBC − PGC)

1 + ω(K − 1)

)
>

(1− ω)PBD(PGC − PBC)
1 + ω(K − 1) + PBC − c

b
.

Thus, discriminators resist invasion by cooperators provided

g >
(1− ω)PBD(PGC − PBC) + [1 + ω(K − 1)](PBC − c/b)

[2− PGC + PBD + ω(K − 2 + PGC − PBD)](PBC − PGC) + (1− c/b)[1 + ω(K − 1)]
for Stern Judging and Shunning. For Scoring and Simple Standing, the sign of the inequality is reversed, as the denominator
is negative.

5.6. Norm competition with insularity and variable costs and benefits. If benefits and costs vary, so that bin and cin are
the benefit and cost associated with an intra-group interaction and bout and cout are the cost associated with an inter-group
interaction, then ν1 grows if

ν̇1 > 0

∴ ΠZ
1 > ΠZ

2

∴
1
M1

[
ν1(bing1,1 − cing1,1) + ν2ω(boutg1,2 − coutg2,1)

]
>

1
M2

[
ν1ω(boutg2,1 − coutg1,2) + ν2(bing2,2 − cing2,2)

]
∴ ν1

[ 1
M1

(bing1,1 − cing1,1)− 1
M2

ω(boutg2,1 − coutg1,2)
]
> ν2

[ 1
M2

(bing2,2 − cing2,2)− 1
M1

ω(boutg1,2 − coutg2,1)
]

∴ ν1
[
M2(bing1,1 − cing1,1)−M1ω(boutg2,1 − coutg1,2)

]
> ν2

[
M1(bing2,2 − cing2,2)−M2ω(boutg1,2 − coutg2,1)

]
∴
ν1

ν2
>
M1(bing2,2 − cing2,2)−M2ω(boutg1,2 − coutg2,1)
M2(bing1,1 − cing1,1)−M1ω(boutg2,1 − coutg1,2)
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When we hold cin and cout constant but set bout > bin, it becomes harder for Stern Judging (group 1) to beat Shunning
(group 2). When ν1 = 1/2, we have (for ua = ux = .02) g1,1 = .96, g2,1 = .42, g1,2 = .09, g2,2 = .13. What this means is
that group 1 cooperates with group 2 more than the reverse, so increases in bout are not reciprocated. Thus, raising bout

rather than bin increases the rate of unreciprocated fitness gain by group 2, allowing it to outcompete group 1.

5.7. Dependence of group fitness on insularity. In this section, we consider how the fitness of a group of discriminators
depends on the insularity parameter ω, under the assumptions of well-mixed copying, K equally sized groups, and
ωI,J = δI,J + (1− δI,J)ω. This can shine light on how insularity might be expected to evolve in a group-level selection
scenario, in which an entire group can be replaced by a group with a different level of insularity. (The problem of how
insularity might evolve at the individual level is deferred to Section 5.8.) We have

MI =
∑
L

νLωI,L

= 1 + ω(K − 1)
K

=M (no dependence on I)

∴ ΠZ =
∑
I

νIΠZ
I

=
∑
I

νI
1
MI

{∑
J

νJωI,J
[
bgI,J − cgJ,I

]}
(dropping the (1− ux) prefactor)

= 1
M

1
K

[
bgin − cgin + (K − 1)ω(bgout − cgout)

]
= 1

1 + ω(K − 1) (b− c)
[
gin + ω(K − 1)gout

]
= (b− c)gin

1 + ω(K − 1)gout/gin

1 + ω(K − 1) .

We have written this in a suggestive form. Because the ω(K − 1) term in the numerator has a factor gout/gin attached
to it, and because this factor is (for every social norm besides Scoring) less than 1, the numerator will generally shrink
relative to the denominator as ω increases and grow as ω decreases. The fitness of a group thus generally increases with
decreasing ω. This sensitively depends on our decision to normalize by dividing byM, which is necessary to ensure that
interactions that do not happen make no contribution to fitness (instead of, e.g., contributing zero fitness, which would be
indistinguishable from mutual defection). If we did not divide byM, we would instead have

ΠZ = b− c
K

[
gin + ω(K − 1)gout

]
=
( (b− c)gin

K

)[
1 + ω(K − 1)gout/gin

]
,

which is monotonically increasing in ω. Finally, if we allow out-group and in-group interactions to have different payoffs,
we have

ΠZ = 1
M

1
K

[
bingin − cingin + ω(K − 1)(boutgout − coutgout)

]
= 1

1 + ω(K − 1)
[
(bin − cin)gin + ω(K − 1)(bout − cout)gout

]
= (bin − cin)gin + ω(K − 1)(bout − cout)gout

1 + ω(K − 1)

= (bin − cin)gin
1 + ω(K − 1)(bout − cout)gout/[(bin − cin)gin]

1 + ω(K − 1)

The relevant ratio is now (bout − cout)gout/[(bin − cin)gin]. If this ratio is greater than 1 (for example, because out-group
interactions are more rewarding than in-group interactions), it is possible for insularity to be selected against at the group
level, as higher ω results in increased fitness.

5.8. Evolution of insularity. When groups are fixed and only strategies evolve, we saw that insularity can defray the
destabilizing effects of group structure on cooperation. This raises the question of how insularity itself will evolve, in this
setting. To study this, we first analyze the effects of a fixed level of insularity on fitness in a group-structured population,

32



finding that more insular populations which prefer in-group interactions generally enjoy greater mean fitness in each
group. This happens because high insularity increases the rate of interactions with in-group members who are most likely
to share reputational views. We also performed an invasibility analysis to determine whether a mutant with a higher level
of insularity can spread in a resident population that is less insular. For all norms in which fitness has any dependence on
group identity, we find that a more insular mutant can always invade a less insular resident, so that a population will
always evolve towards greater insularity. However, if out-group social interactions are potentially more rewarding than
in-group interactions (e.g., bout > bin), then we will see that a population may resist invasion by insular types, or it may
evolve to stable intermediate levels of insularity.

To study the evolution of insularity, we consider a population fixed for discriminators, but the resident population
is facing potential invasion by a mutant discriminator with a different level of insularity. Residents have out-group
interaction parameter ωr, and mutants have out-group interaction parameter ωm; both mutants always interact with their
in-groups. We set ωm < ωr, i.e., the mutant is more insular (less likely to engage in out-group interactions) than the
resident, and we posit that potential interactions between out-group mutants and residents occur only with probability
ψ(ωr, ωm). Two natural forms for ψ(ωr, ωm) are

ψ(ωr, ωm) = ωr + ωm

2 (the arithmetic mean)

ψ(ωr, ωm) =
√
ωrωm (the geometric mean).

The geometric mean formulation has the advantage that
√
ωs can be thought of as the probability that an individual of

type s proposes an out-group interaction and
√
ωs′ the probability that their out-group partner accepts; however, it is

more difficult to work with than the arithmetic mean. Thus, we use the arithmetic mean for the remainder of this analysis;
using the geometric mean instead effects minor quantitative but not qualitative changes.

norm gm
in

Stern Judging
(K ≥ 3)

2(1− ux − ua) + (K − 1)(2− 2ua − ux)ψ(ωr , ωm)
2(1 + [K − 1]ψ(ωr , ωm))

Stern Judging
(K = 2, ux > 0)

2(1− ua − ux)ωr + [2(ux[1−
√

1 + ωr ] + ωr) + ua(2− (2 + ωr)
√

1 + ωr)]ψ(ωr , ωm)
2ωr(1 + ψ(ωr , ωm))

Stern Judging
(K = 2, ux = 0) 1− ua

Simple Standing 1− ua − ux

Shunning
ua(1 + 3[K − 1]ωr + 2ωrψ(ωr , ωm)[K − 1]2)

(K − 1)ωr(1 + [K − 1]ψ(ωr , ωm))

Table S4. Approximate in-group reputations for a mutant with different out-group interaction parameter ωm from the resident;
in this scenario, the mutant is invading a population consisting of K equally sized groups under well-mixed strategic imitation.
Expressions are to first order in ua and ux. See the caveats in the caption of table S3.

We assume well-mixed copying and K groups of equal size 1/K. Let fr be the frequency of the resident and fm the
frequency of the mutant; because we are concerned with the invasibility of the mutant, we will set fr = 1. The total
number of interactions the two types engage in is

Mr
I =

∑
J

νJ
[
frωrI,J + fmψ(ωrI,J , ωmI,J)

]
= 1 + ωr(K − 1)

K
,

Mm
I =

∑
J

νJ
[
fr
[
ψ(ωrI,J , ωmI,J) + fmωmI,J

]
= 1 + ψ(ωr, ωm)(K − 1)

K
.

We will drop the I subscript moving forward, as there is no dependence on I. The fitnesses of the resident and mutant are
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norm gm
out

Stern Judging
(K ≥ 3)

K − 2− ux

2(K − 2)

Stern Judging
(K = 2, ux > 0)

1
4ω
√

1 + ωr(1 + ψ(ωr , ωm))
×
{

4(1 + ωr −
√

1 + ωr) + ua(8(1−
√

1 + ωr) + ωr(4− ωr))

+ux(4(1−
√

1 + ωr + ωr(4
√

1 + ωr − 2)
+
[
4(1 + ωr −

√
1 + ωr) + 2ux(4(1−

√
1 + ωr) + ωr)

+uaωr(10 + ωr − 4
√

1 + ωr) + 12ua(1−
√
ωr)
]
ψ(ωr , ωm)

}
Stern Judging

(K = 2, ux = 0) 1/2

Simple Standing
1− 2(ua + ux) + (K − 1)[1− 3ux − 3ua − (K − 1)(ux + ua)ωr ]ψ(ωr , ωm)

1 + (K − 1)ψ(ωr , ωm)
Shunning ua

Table S5. Approximate out-group reputations for a mutant with different out-group interaction parameter ωm from the resident;
in this scenario, the mutant is invading a population consisting of K equally sized groups under well-mixed strategic imitation.
Expressions are to first order in ua and ux. See the caveats in the caption of table S3.

given respectively by

Πr|fr=1 = (1− ux)
∑
I

1
Mr

{∑
J

νJ
∑
s

fsJψ(ωrI,JωsI,J)
[
bI,Jg

r
I,J − cgsJ,I

]}∣∣∣
fr=1

= (1− ux) 1
1 + ωr(K − 1)

∑
I

{∑
J

ωrI,J
[
bI,Jg

r
I,J − cgrJ,I

]}
= (1− ux) bing

r
in − cing

r
in + (K − 1)ωr(boutg

r
out − coutg

r
out)

1 + ωr(K − 1)

Πm|fr=1 = (1− ux)
∑
I

1
Mm

{∑
J

νJ
∑
s

fsJψ(ωmI,J , ωsI,J)
[
bI,Jg

m
I,J − cI,JgsJ,I

]}∣∣∣
fr=1

= (1− ux) 1
1 + ψ(ωm, ωr)(K − 1)

∑
I

{∑
J

ψ(ωmI,J , ωsI,J)
[
bI,Jg

m
I,J − cI,JgrJ,I

]}
= (1− ux) bing

m
in − cing

r
in + (K − 1)ψ(ωm, ωr)(boutg

m
out − coutg

r
out)

1 + ψ(ωm, ωr)(K − 1) .

When fr = 1, reputations are given by

grin = 1
Mr

1
K

(grin + ωr(K − 1)grout)(PGC − PBD) + PBD,

grout = 1
Mr

1
K

{[
(1 + ωr)gringrout + (K − 2)ωr(grout)2](PGC − PGD − PBC + PBD)

+
[
ωrgrin + (1 + (K − 2)ωr)grout

]
(PGD − PBD)

+
[
grin + (K − 1)ωrgrout

]
(PBC − PBD)

}
+ PBD,

gmin = 1
Mm

1
K

(grin + ψ(ωm, ωr)(K − 1)grout)(PGC − PBD) + PBD,

gmout = 1
Mm

1
K

{[
(1 + ψ(ωm, ωr)(K − 1))gringrout

+ (K − 2)ψ(ωm, ωr)(grout)2](PGC − PGD − PBC + PBD)

+
[
ψ(ωm, ωr)grin + (1 + (K − 2)ψ(ωm, ωr))grout

]
(PGD − PBD)

+
[
grin + (K − 1)ψ(ωm, ωr)grout

]
(PBC − PBD)

}
+ PBD.
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Mutant invasibility requires that Πm|fr=1 − Πr|fr=1 > 0. Dropping the (1 − ux) prefactor allows us to rewrite this
invasibility condition as

Πm|fr=1 −Πr|fr=1 > 0

bout(gmout − grout) + (bout − cout)grout − (bin − cin)grin
1 + ωr(K − 1) + bing

m
in − boutg

m
out − cing

r
in + coutg

r
out

1 + ψ(ωr, ωm)(K − 1) > 0.
[23]

The first term in Eq. [23] is the difference in mutant and resident fitness due to being on the receiving end of out-group
cooperation events. The second term is the difference in the fitness the resident accrues as a result of out-group versus
in-group interactions. The third is the difference in the fitness the mutant accrues as a result of in-group versus out-group
interactions. And so in summary, for the mutant to invade the resident, some combination of the following must be true:

1. The mutant must be targeted by more (and potentially more rewarding) out-group cooperation events than the
resident.

2. The resident must, on net, suffer as a result of out-group cooperation events (which may be more rewarding but are
less likely to be reciprocated: consider that, in general, grout < grin).

3. The mutant must, on net, benefit as a result of forgoing out-group cooperation events.

These three conditions establish that, in general, more rewarding out-group interactions favor less insularity (i.e.,
higher ω) and thus make it harder for more insular mutants to invade. How much harder will depend on the social norm,
in particular the values of grin, grout, g

m
in , and gmout. The first two can be read off of SI table S3 (with ω = ωr); the provided

expressions are valid for grin and grout. The latter two can be found in SI tables S4 and S5.
Simplifying Eq. [23] in a useful way is difficult, but we can show that, in general, it will be possible for insular mutants

to invade unless out-group cooperation is much more rewarding than in-group cooperation. This is intuitive, as insular
mutants forgo out-group interactions; for insularity to be selected against, the interactions they forgo must be especially
rewarding. Moreover, because it is generally easier to be seen as good by one’s in-group than by one’s out-group, we
expect that if bin = bout and cin = cout, it will not be possible for populations to resist invasion by more insular mutants.

We demonstrate that, when interactions’ costs and benefits do not depend on group identity, insular mutants can
essentially always invade. To do so, we expand [23] in ua and ux; we drop terms that are O(u2

a), O(u2
x), and O(uaux).

(We do not address Scoring here, as insularity does not affect reputations, and therefore it does not affect fitnesses.) For
Shunning, we obtain the following condition for a mutant with out-group interaction parameter ωm to invade a resident
with parameter ωr:

0 < ua(ωr − ωm)
ωr[1 + (K − 1)ωr][2 + (K − 1)(ωr + ωm)]2

×
(

(ωr − ωm)ua
[
(bin − cin)[1 + 2(K − 1)ωr][2 + (K − 1)(ωr + ωm)]

+ 2bin[1 + (K − 1)ωr]− (bout − cout)(K − 1)ωr[2 + (K − 1)(ωr + ωm)]
)
.

When in-group and out-group interactions are indistinguishable, we have

ua(ωr − ωm)
[
(b− c)[2 + (K − 1)(ωr + ωm)] + 2b

]
ωr[2 + (K − 1)(ωr + ωm)]2 ,

which is always positive for ωr > ωm.
For Simple Standing,

0 < (K − 1)(ωr − ωm)
[1 + (K − 1)ωr][2 + (K − 1)(ωr + ωm)]2

×
(

(bin − cin)(1− ua − ux)[2 + (K − 1)(ωr + ωm)]

− (bout − cout)[2 + (K − 1)(ωr + ωm)][1− 2ux − 2ua − (ux + ua)(K − 1)ωr]

+ bout(K − 1)[1 + (K − 1)ωr](ua + ux)(ωm + ωr)
)
.

For identical in- and out-group interactions, this becomes

(ωr − ωm)(K − 1)(ua + ux)
[
(b− c)[2 + (K − 1)(ωr + ωm)] + b(K − 1)(ωm + ωr)

]
[2 + (K − 1)(ωr + ωm)]2
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This, too, is always positive provided ωr > ωm.
For Stern Judging, a general expression can be obtained for K > 2:

0 < (K − 1)(ωr − ωm)
2[1 + (K − 1)ωr]2[2 + (K − 1)(ωr + ωm)]2(K − 2)×(
(bin − cin)(K − 2)[2 + (K − 1)(ωr + ωm)][(K − 1)ωr(2− 2ua − ux) + 2(1− ua − ux)]

− 2bin(K − 2)ux[1 + (K − 1)ωr]

− (bout − cout)(K − ux − 2)[2 + (K − 1)(ωr + ωm)]
)
.

[24]

We can gain a better understanding of how in-group and out-group interactions affect the invasion of insular mutants by
taking the limit ux → 0:

[2(1− ua)(bin − cin)− (bout − cout)](K − 1)(ωr − ωm)
2[1 + (K − 1)ωr][2 + (K − 1)(ωr + ωm)] > 0, [25]

which is always satisfied for ωr > ωm unless

bout − cout > 2(1− ua)(bin − cin).

That is, residents resist invasion by higher-insularity mutants only when out-group interactions are much more rewarding
than in-group interactions. It is intriguing to note that this agrees perfectly with the condition in SI section 5.7 for group
fitness, i.e., (bout − cout)gout/[(bin − cin)gin] > 1, since (under Stern Judging and with ux = 0) we have gin = 1− ua and
gout = 1/2. (Evaluating the left hand side of Eq. [23] numerically reveals that this approximation slightly underestimates
the value of the ratio (bout − cout)/(bin − cin) required for a population to resist invasion.)

Setting in-group and out-group costs and benefits equal to each other in Eq. [24] yields

0 < (K − 1)(ωr − ωm)
2[1 + (K − 1)ωr]2[2 + (K − 1)(ωr + ωm)]2(K − 2)×(
(b− c)[2 + (K − 1)(ωr + ωm)]

[
(K − 1)ωr{(K − 2)(1− 2ua)− (K − 3)ux}

+K(1− 2ux − 2ua) + 4ua + 5ux − 2
]
− 2bux[1 + (K − 1)ωr]

)
.

Sending ux → 0 reduces this to a specific form of Eq. [25]:

(b− c)(K − 1)(1− 2ua)(ωr − ωm)
2[1 + (K − 1)ωr][2 + (K − 1)(ωr + ωm)] > 0.

This condition is always satisfied provided ωr > ωm and ua < 1/2, meaning that, when interactions’ costs and benefits do
not depend on group membership, a higher-insularity mutant (i.e., one that interacts less with its out-group) can always
invade the resident population under Stern Judging, just as we found with Shunning and Simple Standing.

Finally, for Stern Judging, the condition for an insular mutant to invade when K = 2 is different from the general case:

0 < ωr − ωm

4ωr(1 + ωr)3/2(2 + ωr + ωm)2

×
(

2ωr(bin − cin)(2 + ωr + ωm)(2
√

1 + ωr − ua(2 + ωr)− 2ux)

+ 4bin(1 + ωr)[uaωr − 2(ua + ux)(
√

1 + ωr − 1)]

− (bout − cout)(2 + ωr + ωm)
[
ua(ωr2 − 4ωr

√
1 + ωr + 8{1 + ωr −

√
1 + ωr})

+ 2ux(2 + ωr − 2
√

1 + ωr) + 4(1 + ωr −
√

1 + ωr)
]

− 2bout(1 + ωr)(ωr + ωm)(uaωr − 2(ux + ua)(
√

1 + ωr − 1)
)
.

[26]

Sending both error rates to zero is informative:

(ωr − ωm)
[
(bin − cin)ωr − (bout − cout)(

√
1 + ωr − 1)

]
ωr(1 + ωr)(2 + ωm + ωr) > 0.
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This condition is satisfied for ωr > ωm provided

(bin − cin)ωr > (bout − cout)(
√

1 + ωr − 1)

∴
bin − cin

bout − cout
>

√
1 + ωr − 1

ωr
.

The ratio on the right is between 1/2 (for ωr → 0) and
√

2− 1 ≈ .41 (for ωr → 1), meaning that insular mutants can
invade unless out-group cooperation is a little more than twice as beneficial as in-group cooperation, a condition similar
to the K > 2 case.

For equal in-group and out-group costs and benefits, Eq. [26] becomes

0 < ωr − ωm

4ωr(1 + ωr)3/2(2 + ωr + ωm)2×(
(b− c)(2 + ωr + ωm)

[
4(1 + ωr)(

√
1 + ωr − 1)− ua(3[ωr]2 − 4ωr

√
1 + ωr + 8ωr − 8

√
1 + ωr + 8)

− ux(6ωr − 4
√

1 + ωr + 4)
]

+ 2b(1 + ωr)(2− ωr − ωm)(uaωr − 2(ua + ux)(
√

1 + ωr − 1)
)

Sending the error rates to zero allows us to show that this is, in general, positive for ωr > ωm:

(ωr − ωm)(b− c)(
√

1 + ωr − 1)
ωr
√

1 + ωr(2 + ωr + ωm)
> 0.

In general, out-group reputations compared to in-group reputations are very low, middling, and fairly high under
Shunning, Stern Judging, and Simple Standing respectively. We thus expect that, if we hold bin, cin, and cout constant,
we will need to raise bout more under Shunning than under Stern Judging, and more under Stern Judging than under
Simple Standing, for a population to resist invasion by insular mutants. We verify this numerically by checking the sign
of Eq. [23]. Results are shown in SI figure S5. In white areas, the difference between mutant and resident fitness is
positive, meaning that the mutant can invade; in black areas, the difference is negative. We find that when bout = bin, it is
impossible to resist invasion by successively more insular mutants, irrespective of the social norm. For Simple Standing,
this situation reverses quickly with increased bout; it reverses more slowly for Stern Judging and Shunning. Some norm
and parameter combinations can support stable intermediate values of the out-group interaction parameter ω, but in most
cases the population will either evolve to be fully mixed or fully insular (ω = 1 or 0, respectively).

6. Third-order norms and the remaining “leading eight” norms

All of our analysis hitherto has focused on second-order norms. We now turn to the interesting question of third-order
norms, in which the reputation of a donor may be updated according to not only the donor’s action and the recipient’s
reputation, but also the donor’s current reputation. In this space there are not 4 but 16 possible behavioral strategies,
which can be represented as four bits, corresponding to the donor’s action when both their reputation and the recipient’s is
good, when their own reputation is good but the donor’s is bad, and so on. We first consider the simplest case of publicly
shared reputations, then we generalize to group-wise reputations.

6.1. Properties of the leading eight. The “leading eight” social norms consist of reputation dynamics (assessment rules,
i.e., rules for assigning “good” and “bad” reputations) and behavioral strategies (action rules, i.e., rules for deciding
whether to defect or cooperate based on one’s own reputation and that of the recipient) that satisfy the following
conditions (7):

1. Either good or bad cooperating with good is good.

2. Either good or bad defecting with good is bad.

3. Good defecting with bad is good.

4. Either good or bad individuals will cooperate with good.

5. Good individuals will defect with bad.

6. Iff bad cooperating with bad is good and bad defecting with bad is bad, then bad will cooperate with bad: otherwise,
bad will defect with bad.
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Fig. S5. The invasibility of a resident population with out-group interaction parameter ωr by a mutant with parameter ωm under different norms
and out-group benefits. The value of bout is along the right side of each row: other parameter values are K = 2, ua = ux = 0.02, bin = 2, and
cin = cout = 1. White corresponds to the mutant being able to invade: black corresponds to the resident resisting invasion. For Stern Judging
at bout = 3, an intermediate value of ω can be achieved by successive invasion of mutants. For Shunning at bout = 10, there is bistability. For
all other norms and parameter combinations shown, the population evolves either toward full mixing (ω = 1) or full insularity (ω = 0).

38



There are eight such combinations of reputation dynamics and action rule (behavioral strategy), summarized in
table S6. The action rule is represented by cUV , which are the probabilities that an individual with reputation U
cooperates against an individual with reputation V . These values are always either 1 − ux (because individuals who
intend to cooperate can accidentally defect with probability ux) or 0 (because individuals who intend to defect can never
accidentally cooperate). The reputation dynamics are specified by the values nUAV , which are the probability of earning a
good reputation by having reputation U and performing action A against an individual with reputation V . These values
are always either 1− ua or ua, allowing for assessment error. (This notation is slightly different from our treatment of
second-order social norms, where PAV is the probability of earning a good reputation by intending to perform action A
against a recipient with reputation V . The difference is that PCV includes the possibility of both successful cooperation
and accidental defection against an individual with reputation V , whereas nUCV does not: successful cooperation and
accidental defection are treated separately.)

6.2. Public reputations. When the whole population follows the same reputation dynamics and is fixed for the same
action rule, the mean proportion of individuals with good reputations is given by

g = g2(cGGnGCG + [1− cGG]nGDG) + g(1− g)(cGBnGCB + [1− cGB ]nGDB + cBGnBCG + [1− cBG]nBDG)

+ (1− g)2(cBBnBCB + [1− cBB ]nBDB).
[27]

Under Stern Judging, we will have

cGG = cBG = 1− ux,

cGB = cBB = 0,

nGCG = nBCG = 1− ua,

nGCB = nBCB = ua,

nGDG = nBDG = ua,

nGDB = nBDB = 1− ua,

so Eq. [27] simplifies to

g = g2([1− ux][1− ua] + uxua) + g(1− g)(1− ua + [1− ux][1− ua] + uxua) + (1− g)2(1− ua)
= g([1− ux][1− ua] + uxua) + (1− g)(1− ua),

as expected; this equation is also the same under Simple Standing (where nGCB = nBCB = 1− ua rather than ua, but
this term does not appear in the reputation dynamics, because cGB = cBB = 0). Note that Stern Judging and Simple
Standing are norms s6 and s3 (respectively) in table S6.

Under Scoring, we have

cGG = cBG = 1− ux,

cGB = cBB = 0,

nGCG = nBCG = 1− ua,

nGCB = nBCB = 1− ua,

nGDG = nBDG = ua,

nGDB = nBDB = ua,

so Eq. [27] is

g = g2([1− ux][1− ua] + uxua) + g(1− g)(ua + [1− ux][1− ua] + uxua) + (1− g)2ua

= g([1− ux][1− ua] + uxua) + (1− g)ua,

again as expected: it would be the same under Shunning, for which the only difference is nGCB = nBCB = ua. (Scoring
and Shunning are not part of the “leading eight”: we present those equations only for completeness.)
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norm nGCG nGDG nGCB nGDB nBCG nBDG nBCB nBDB cGG cGB cBG cBB

s1 1− ua ua 1− ua 1− ua 1− ua ua 1− ua ua 1− ux 0 1− ux 1− ux

s2 1− ua ua ua 1− ua 1− ua ua 1− ua ua 1− ux 0 1− ux 1− ux

s3 1− ua ua 1− ua 1− ua 1− ua ua 1− ua 1− ua 1− ux 0 1− ux 0
s4 1− ua ua 1− ua 1− ua 1− ua ua ua 1− ua 1− ux 0 1− ux 0
s5 1− ua ua ua 1− ua 1− ua ua 1− ua 1− ua 1− ux 0 1− ux 0
s6 1− ua ua ua 1− ua 1− ua ua ua 1− ua 1− ux 0 1− ux 0
s7 1− ua ua 1− ua 1− ua 1− ua ua ua ua 1− ux 0 1− ux 0
s8 1− ua ua ua 1− ua 1− ua ua ua ua 1− ux 0 1− ux 0

Table S6. The “leading eight” social norms and action rules, modeled after table 2 of (8). Here, nUAV is the probability that a
donor with reputation U , who performs action A against a recipient with reputation V , earns a good reputation, and cUV is the
probability that a donor with reputation U will cooperate with a recipient with reputation V . As elsewhere in our model, we allow
for assessment error with probability ua and asymmetric execution error with probability ux (individuals can accidentally defect
but not accidentally cooperate). Norm s3 is Simple Standing, and norm s6 is Stern Judging; both are symmetric with respect to the
reputation of the donor and, thus, are second-order norms.
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6.3. Group-wise reputations. We now consider the possibility that the population is divided into groups, which each
follow their own third-order social norm, i.e., each group has its own rule for assigning reputations and is fixed for its own
particular behavioral strategy. We assume that an individual in group I acts according to their own view of themselves
and the recipient, as well as their own action rule, but that J judges them according to J ’s reputation dynamics and J ’s
view of the recipient. Thus, when I = J , we will have

gI,J = gI,Ig•,J(cGGI nGCGJ + [1− cGGI ]nGDGJ ) + gI,I(1− g•,J)(cGBI nGCBJ + [1− cGBI ]nGDBJ )

+ (1− gI,I)g•,J(cBGI nBCGJ + [1− cBGI ]nBDGJ ) + (1− gI,I)(1− g•,J)(cBBI nBCBJ + [1− cBBI ]nBDBJ ).

When I 6= J , we account for the fact that I and J may have different views of both the donor I and recipient L. We
enumerate these possibilities. When group J observes an interaction by an individual from group I, they can form a good
reputation of I in the following ways. With probability νL, an interaction between I and L is observed, and:

1. with probability gI,IgL,I , the donor sees themselves and the recipient as good.

(a) with probability gI,JgL,J , the observer thinks the donor and recipient are both good. If the donor cooperates
(probability cGGI ), the observer considers that good with probability nGCGJ . If the donor defects (probability
1− cGGI ), the observer considers that good with probability nGDGJ .

(b) with probability gI,J(1− gL,J), the observer thinks the donor is good but the recipient is bad. If the donor
cooperates (probability cGGI ), the observer considers that good with probability nGCBJ . If the donor defects
(probability 1− cGGI ), the observer considers that good with probability nGDBJ .

(c) with probability (1− gI,J)gL,J , the observer thinks the donor is bad but the recipient is good. If the donor
cooperates (probability cGGI ), the observer considers that good with probability nBCGJ . If the donor defects
(probability 1− cGGI ), the observer considers that good with probability nBDGJ .

(d) with probability (1− gI,J)(1− gL,J), the observer thinks the donor and recipient are both bad. If the donor
cooperates (probability cGGI ), the observer considers that good with probability nBCBJ . If the donor defects
(probability 1− cGGI ), the observer considers that good with probability nBDBJ .

2. with probability gI,I(1− gL,I), the donor sees themselves as good and the recipient as bad.

(a) with probability gI,JgL,J , the observer thinks the donor and recipient are both good. If the donor cooperates
(probability cGBI ), the observer considers that good with probability nGCGJ . If the donor defects (probability
1− cGBI ), the observer considers that good with probability nGDGJ .

(b) with probability gI,J(1− gL,J), the observer thinks the donor is good but the recipient is bad. If the donor
cooperates (probability cGBI ), the observer considers that good with probability nGCBJ . If the donor defects
(probability 1− cGBI ), the observer considers that good with probability nGDBJ .

(c) with probability (1− gI,J)gL,J , the observer thinks the donor is bad but the recipient is good. If the donor
cooperates (probability cGBI ), the observer considers that good with probability nBCGJ . If the donor defects
(probability 1− cGBI ), the observer considers that good with probability nBDGJ .

(d) with probability (1− gI,J)(1− gL,J), the observer thinks the donor and recipient are both bad. If the donor
cooperates (probability cGBI ), the observer considers that good with probability nBCBJ . If the donor defects
(probability 1− cGBI ), the observer considers that good with probability nBDBJ .

3. with probability (1− gI,I)gL,I , the donor sees themselves as bad and the recipient as good.

(a) with probability gI,JgL,J , the observer thinks the donor and recipient are both good. If the donor cooperates
(probability cBGI ), the observer considers that good with probability nGCGJ . If the donor defects (probability
1− cBGI ), the observer considers that good with probability nGDGJ .

(b) with probability gI,J(1− gL,J), the observer thinks the donor is good but the recipient is bad. If the donor
cooperates (probability cBGI ), the observer considers that good with probability nGCBJ . If the donor defects
(probability 1− cBGI ), the observer considers that good with probability nGDBJ .

(c) with probability (1− gI,J)gL,J , the observer thinks the donor is bad but the recipient is good. If the donor
cooperates (probability cBGI ), the observer considers that good with probability nBCGJ . If the donor defects
(probability 1− cBGI ), the observer considers that good with probability nBDGJ .

(d) with probability (1− gI,J)(1− gL,J), the observer thinks the donor and recipient are both bad. If the donor
cooperates (probability cBGI ), the observer considers that good with probability nBCBJ . If the donor defects
(probability 1− cBGI ), the observer considers that good with probability nBDBJ .
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4. with probability (1− gI,I)(1− gL,I), the donor sees themselves and the recipient as bad.

(a) with probability gI,JgL,J , the observer thinks the donor and recipient are both good. If the donor cooperates
(probability cBBI ), the observer considers that good with probability nGCGJ . If the donor defects (probability
1− cBBI ), the observer considers that good with probability nGDGJ .

(b) with probability gI,J(1− gL,J), the observer thinks the donor is good but the recipient is bad. If the donor
cooperates (probability cBBI ), the observer considers that good with probability nGCBJ . If the donor defects
(probability 1− cBBI ), the observer considers that good with probability nGDBJ .

(c) with probability (1− gI,J)gL,J , the observer thinks the donor is bad but the recipient is good. If the donor
cooperates (probability cBBI ), the observer considers that good with probability nBCGJ . If the donor defects
(probability 1− cBBI ), the observer considers that good with probability nBDGJ .

(d) with probability (1− gI,J)(1− gL,J), the observer thinks the donor and recipient are both bad. If the donor
cooperates (probability cBBI ), the observer considers that good with probability nBCBJ . If the donor defects
(probability 1− cBBI ), the observer considers that good with probability nBDBJ .

Summing over all possible groups L yields

gI,J = δI,J

{
gI,Ig•,J(cGGI nGCGJ + [1− cGGI ]nGDGJ ) + gI,I(1− g•,J)(cGBI nGCBJ + [1− cGBI ]nGDBJ )

+ (1− gI,I)g•,J(cBGI nBCGJ + [1− cBGI ]nBDGJ ) + (1− gI,I)(1− g•,J)(cBBI nBCBJ + [1− cBBI ]nBDBJ )

}

+ (1− δI,J)

{∑
L

νL

(
gI,IgL,I

[
gI,JgL,J(cGGI nGCGJ + [1− cGGI ]nGDGJ ) + gI,J(1− gL,J)(cGGI nGCBJ + [1− cGGI ]nGDBJ )

+ (1− gI,J)gL,J(cGGI nBCGJ + [1− cGGI ]nBDGJ ) + (1− gI,J)(1− gL,J)(cGGI nBCBJ + [1− cGGI ]nBDBJ )

]

+ gI,I(1− gL,I)

[
gI,JgL,J(cGBI nGCGJ + [1− cGBI ]nGDGJ ) + gI,J(1− gL,J)(cGBI nGCBJ + [1− cGBI ]nGDBJ )

+ (1− gI,J)gL,J(cGBI nBCGJ + [1− cGBI ]nBDGJ ) + (1− gI,J)(1− gL,J)(cGBI nBCBJ + [1− cGBI ]nBDBJ )

]

+ (1− gI,I)gL,I

[
gI,JgL,J(cBGI nGCGJ + [1− cBGI ]nGDGJ ) + gI,J(1− gL,J)(cBGI nGCBJ + [1− cBGI ]nGDBJ )

+ (1− gI,J)gL,J(cBGI nBCGJ + [1− cBGI ]nBDGJ ) + (1− gI,J)(1− gL,J)(cBGI nBCBJ + [1− cBGI ]nBDBJ )

]

+ (1− gI,I)(1− gL,I)

[
gI,JgL,J(cBBI nGCGJ + [1− cBBI ]nGDGJ ) + gI,J(1− gL,J)(cBBI nGCBJ + [1− cBBI ]nGDBJ )

+ (1− gI,J)gL,J(cBBI nBCGJ + [1− cBBI ]nBDGJ ) + (1− gI,J)(1− gL,J)(cBBI nBCBJ + [1− cBBI ]nBDBJ )

])}
.

[28]

We now allow individuals to switch between gossip groups. We assume that, when an individual switches groups, it
adopts both the reputation dynamics and action rule (behavioral strategy) of that group. The fitness of group I can be
expressed as

ΠI = b
∑
J

νJ
[
gJ,JgI,Jc

GG
J + gJ,J(1− gI,J)cGBJ + (1− gJ,J)gI,JcBGJ + (1− gJ,J)(1− gI,J)cBBJ

]
− c
∑
J

νJ
[
gI,IgJ,Ic

GG
I + gI,I(1− gJ,I)cGBI + (1− gI,I)gJ,IcBGI + (1− gI,I)(1− gJ,I)cBBI

]
.
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When there are two equally sized groups following different norms, fitnesses are given by (dropping the 1/2 prefactor)

Π1 = b
[
(g1,1)2cGG1 + g1,1(1− g1,1)(cGB1 + cBG1 ) + (1− g1,1)2cBB1

+ g2,2g1,2c
GG
2 + g2,2(1− g1,2)cGB2 + (1− g2,2)g1,2c

BG
2 + (1− g2,2)(1− g1,2)cBB2

]
− c
[
(g1,1)2cGG1 + g1,1(1− g1,1)(cGB1 + cBG1 ) + (1− g1,1)2cBB1

+ g1,1g2,1c
GG
1 + g1,1(1− g2,1)cGB1 + (1− g1,1)g2,1c

BG
1 + (1− g1,1)(1− g2,1)cBB1

]
Π2 = b

[
g1,1g2,1c

GG
1 + g1,1(1− g2,1)cGB1 + (1− g1,1)g2,1c

BG
1 + (1− g1,1)(1− g2,1c

BB
1

+ (g2,2)2cGG2 + g2,2(1− g2,2)(cGB2 + cBG2 ) + (1− g2,2)2cBB2
]

− c
[
g2,2g1,2c

GG
2 + g2,2(1− g1,2)cGB1 + (1− g2,2)g1,2c

BG
1 + (1− g2,2)(1− g1,2)cBB1

+ (g2,2)2cGG2 + g2,2(1− g2,2)(cGB2 + cBG2 + (1− g2,2)2cBB2
]
.

The fitness gain of group 1 due to self-interactions is given by

π1,1 = b
[
(g1,1)2cGG1 + g1,1(1− g1,1)(cGB1 + cBG1 ) + (1− g1,1)2cBB1

]
− c
[
(g1,1)2cGG1 + g1,1(1− g1,1)(cGB1 + cBG1 ) + (1− g1,1)2cBB1

]
= (b− c)

[
(g1,1)2cGG1 + g1,1(1− g1,1)(cGB1 + cBG1 ) + (1− g1,1)2cBB1

]
.

The fitness gain of group 1 due to interactions with group 2 is

π1,2 = b
[
(g2,2g1,2c

GG
2 + g2,2(1− g1,2)cGB2 + (1− g2,2)g1,2c

BG
2 + (1− g2,2)(1− g1,2)cBB2

]
− c
[
g1,1g2,1c

GG
1 + g1,1(1− g2,1)cGB1 + (1− g1,1)g2,1c

BG
1 + (1− g1,1)(1− g2,1)cBB1

]
.

Likewise,

π2,2 = (b− c)
[
(g2,2)2cGG2 + g2,2(1− g2,2)(cGB2 + cBG2 ) + (1− g2,2)2cBB2

]
,

π2,1 = b
[
g1,1g2,1c

GG
1 + g1,1(1− g2,1)cGB1 + (1− g1,1)g2,1c

BG
1 + (1− g1,1)(1− g2,1c

BB
1
]

− c
[
g2,2g1,2c

GG
2 + g2,2(1− g1,2)cGB1 + (1− g2,2)g1,2c

BG
1 + (1− g2,2)(1− g1,2)cBB1

]
We thus have

Π1 > Π2

Π1 −Π2 > 0
π1,1 + π1,2 − π2,1 − π2,2 > 0

∴ (b− c)
([

(g1,1)2cGG1 + g1,1(1− g1,1)(cGB1 + cBG1 ) + (1− g1,1)2cBB1
]

−
[
(g2,2)2cGG2 + g2,2(1− g2,2)(cGB2 + cBG2 ) + (1− g2,2)2cBB2

])
+ (b+ c)

([
(g2,2g1,2c

GG
2 + g2,2(1− g1,2)cGB2 + (1− g2,2)g1,2c

BG
2 + (1− g2,2)(1− g1,2)cBB2

]
−
[
g1,1g2,1c

GG
1 + g1,1(1− g2,1)cGB1 + (1− g1,1)g2,1c

BG
1 + (1− g1,1)(1− g2,1c

BB
1
])

> 0.

This is a form very similar to Eq. (3) from the main text: the (b− c) term is the difference in the fitnesses of groups 1
and 2 due to within-group interactions, and the (b + c) term is the difference in their fitnesses due to between-group
interactions, i.e., fitness differences due to unreciprocated between-group cooperation.

Next, we consider competition between groups following different norms in a manner similar to the main text. We
focus on the two “leading eight” norms that happen to be second-order, namely Stern Judging and Simple Standing. The
results can be seen in figure S6. While Simple Standing is readily out-competed by most of the other leading eight, Stern
Judging is not: for Stern Judging, we have ν∗1 < 1/2 in almost every scenario, with the exception of competition against
s8, for which it is greater than 1/2 for small values of b and never moves far below 1/2. s8 is very similar to Stern Judging,
with the exception that it regards bad individuals who defect against other bad individuals as bad, not good.
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Fig. S6. Group size dynamics for K = 2 groups and varying values of the benefit b, when one group follows a second-order norm (either Stern
Judging or Simple Standing) and the other follows a different “leading eight” norm, which may be third-order. In each pair of columns, the norm
used in group 1 is along the top: the norm used in group 2, along the right. Values of b are as inset in the s6 − s3 figure. In all plots, c = 1,
ua = ux = 0.02.
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6.4. The many-group limit: private reputations. If the number of groups gets large (K →∞), all groups follow the same
norm, and all groups are of the same size 1/K, then we can reason similarly to subsection 3.1: self-interactions almost
never occur, so the I = J term of Eq. [28] drops out, and the remaining gI,J converge to a common value g. This yields

g = g2(g2[cGGnGCG + (1− cGG)nGDG] + g(1− g)[cGG(nGCB + nBCG)

+ (1− cGG)(nGDB + nBDG)] + (1− g)2[cGGnBCB + (1− cGG)nBDB ]
)

+ g(1− g)
(
g2[(cGB + cBG)nGCG + (2− cGB − cBG)nGDG] + g(1− g)[(cGB + cBG)(nGCB + nBCG)

+ (2− cGB − cBG)(nGDB + nBDG)] + (1− g)2[(cGB + cBG)nBCB + (2− cGB − cBG)nBDB ]
)

+ (1− g)2(g2[cBBnGCG + (1− cBB)nGDG] + g(1− g)[cBB(nGCB + nBCG)

+ (1− cBB)(nGDB + nBDG)] + (1− g)2[cBBnBCB + (1− cBB)nBDB ]
)
.

If we specify that the action rule does not depend on the reputation of the actor, we have cGG = cBG = cG and
cGB = cBB = cB . We obtain a familiar expression:

g = g2(g2[cGnGCG + (1− cG)nGDG] + g(1− g)[cG(nGCB + nBCG)

+ (1− cG)(nGDB + nBDG)] + (1− g)2[cGnBCB + (1− cG)nBDB ]
)

+ g(1− g)
(
g2[(cB + cG)nGCG + (2− cB − cG)nGDG] + g(1− g)[(cB + cG)(nGCB + nBCG)

+ (2− cB − cG)(nGDB + nBDG)] + (1− g)2[(cB + cG)nBCB + (2− cB − cG)nBDB ]
)

+ (1− g)2(g2[cBnGCG + (1− cB)nGDG] + g(1− g)[cB(nGCB + nBCG)

+ (1− cB)(nGDB + nBDG)] + (1− g)2[cBnBCB + (1− cB)nBDB ]
)

= g3(cG[nGCG − nGCB − nBCG + nBCB − nGDG + nGDB + nBDG − nBDB ]

− cB [nGCG − nGCB − nBCG + nBCB − nGDG + nGDB + nBDG − nBDB ]
)

+ g2(cG[nGCB + nBCG − 2nBCB − nGDB − nBDG + 2nBDB ]

+ cB [nGCG − 2nGCB − 2nBCG + 3nBCB − nGDG + 2nGDB + 2nBDG − 3nBDB ]

+ nGDG − nGDB − nBDG + nBDB
)

+ g
(
cG(nBCB − nBDB) + cB(nGCB + nBCG − 3nBCB − nGDB − nBDG + 3nBDB)

+ nGDB + nBDG − 2nBDB
)

+ cB(nBCB − nBDB) + nBDB .

This expression is equivalent to equation 20 from the supplement of (9), which considered third-order norms with private
information but only one action rule (the classic “discriminator” strategy: cooperate with good and defect with bad,
irrespective of one’s own reputation).

7. Multiple groups with disjoint strategic imitation

In the preceding analyses, we have assumed that individuals freely copy strategies across groups (well-mixed copying), so
that the impact of population structure was to partition reputation information and game play into distinct groups. In this
section we consider a model in which, in addition, strategic imitation occurs only within groups, disallowing imitation
between groups (disjoint copying). Even when strategic updates are constricted in this manner, game play interactions
between groups mean that the strategic composition of one group may shape the composition in another group. Here we
consider the case of K = 2 groups, disallowing strategic imitation across groups. This model requires that we keep track
of the strategy frequencies in each of the groups separately.
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7.1. Strategic type dynamics. When strategies cannot be copied between groups, we must independently track the
frequencies and fitnesses of types within each group. We zero in on the case of two groups. Fitnesses are given by

ΠX
1 = (1− ux)

[
b
(
ν1[fX1 + fZ1 g

X
1,1] + ν2[fX2 + fZ2 g

X
1,2])

)
− c
]

ΠY
1 = (1− ux)

[
b
(
ν1[fX1 + fZ1 g

Y
1,1] + ν2[fX2 + fZ2 g

Y
1,2])

)]
ΠZ

1 = (1− ux)
[
b
(
ν1[fX1 + fZ1 g

Z
1,1] + ν2[fX2 + fZ2 g

Z
1,2])

)
− cg•,1

]
ΠX

2 = (1− ux)
[
b
(
ν1[fX1 + fZ1 g

X
2,1] + ν2[fX2 + fZ2 g

X
2,2])

)
− c
]

ΠY
2 = (1− ux)

[
b
(
ν1[fX1 + fZ1 g

Y
2,1] + ν2[fX2 + fZ2 g

Y
2,2])

)]
ΠZ

2 = (1− ux)
[
b
(
ν1[fX1 + fZ1 g

Z
2,1] + ν2[fX2 + fZ2 g

Z
2,2])

)
− cg•,2

]
.

Armed with these fitness expressions, we can study how the strategic composition of one group affects the other. We
first consider the behavior of strategies in group 1, when group 2 is exogenously fixed for either DISC or ALLD. Figure
S7 shows the dynamics that arise in these cases, for one choice of parameter values: ν1 = ν2 = 1/2, b = 2, c = 1, and
ua = ux = .02. When strategic types are copied in a well-mixed manner (top row), Shunning cannot sustain cooperation,
whereas Stern Judging and Simple Standing both maintain sizeable basins of attraction toward cooperation. When group
2 is exogenously fixed for DISC, this remains the case, as good behavior in group 1 from the perspective of group 2 is
rewarded. When group 2 is exogenously fixed for ALLD, none of the three norms we consider can sustain cooperation, as
discriminators waste fitness on cooperative acts with group 2 that will never be repaid in kind.

In the subsequent section (7.2), we show that under disjoint copying, when group 2 is fixed for defectors, the
all-discriminator equilibrium in group 1 is stable against invasion by defectors provided

b

c
>

1
ν1(PGC − PGD) = 1

ν1(ε− ua) .

(This reduces to the one-group case in the limit ν1 → 1.) In the example shown in Figure S7, we have b = 2 and c = 1.
The critical b/c value is slightly greater than 2, meaning that the all-discriminator equilibrium just barely fails to be stable
(bottom row). When groups are partitioned in this manner and copying is disjoint, discriminators in one group “waste”
effort on defectors in the other group: the other group contains no discriminators, so they can only accrue a payoff due
to discriminators in their own group. This wasted effort manifests as a lower average payoff for discriminators, which
increases the temptation to defect.

When group 2 is fixed for discriminators, however, this can help group 1 discriminators resist invasion by defectors
(middle row of Figure S7). How much help is provided by group 2 depends sensitively on the social norm, specifically
how likely discriminators in one group are to look kindly upon discriminators with different reputational views. Under
Shunning, any interaction with an individual with a bad reputation yields a bad reputation; under Simple Standing, any
such interaction yields a good reputation; and Stern Judging is intermediate between the two. This helps explain the
behavior of equilibria along the Y − Z edge of the simplex seen in Figure S7. Under Shunning, the all-Z equilibrium is
unstable; under Stern Judging and Simple Standing, it is stable, and there exists an unstable mixed Y − Z equilibrium,
corresponding to a slice of phase space that is drawn to the all-Z stable equilibrium. This slice of phase space is larger
under Simple Standing than under Stern Judging, as expected.

When strategies are freely copied across groups (well-mixed copying), strategy frequencies equilibrate quickly, and
their dynamics can be understood in terms of group-averaged reputations. What we have shown here is that even in
the polar opposite copying scenario (disjoint copying), the fact that individuals freely interact across group lines causes
their dynamics to be linked. The general tendency is that discriminators in one group make it easier for discriminators to
proliferate in the other group, whether by making the other group’s discriminators stable against invasion or even by
making defectors vulnerable to invasion by discriminators. Conversely, defectors in one group can render another group
more vulnerable to invasion by defectors. And so even without direct strategy copying, gameplay between disjoint groups
can cause their strategic compositions to resemble each other.

7.2. Behavior of equilibria. We now turn to an analytical treatment of the equilibria seen in Figure S7, specifically those
along the DISC-ALLD edge; this will allow us to glean some insight into under what circumstances group 1 can be invaded
when group 2’s strategic composition is fixed. When DISC and ALLD are the only two strategic types present, their
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Fig. S7. Strategy frequency dynamics for one of two equally-sized groups (ν1 = ν2 = 1/2) under Shunning, Stern Judging, and Simple
Standing. In all panels, the dynamics of strategy frequencies in group 1 are shown. The top row corresponds to well-mixed copying; the bottom
two rows correspond to disjoint copying, with group 2 fixed for either DISC or ALLD. Under Stern Judging of Simple Standing, fixing group 2 for
DISC increases the basin of attraction for cooperation in group 1, whereas fixing group 2 for ALLD reduces the cooperative basin in group 1. In
all panels, b = 2, c = 1, ua = ux = 0.02.

fitnesses are given by

ΠY
1 = (1− ux)

[
b
(
ν1f

Z
1 g

Y
1,1 + ν2f

Z
2 g

Y
1,2
)]

ΠZ
1 = (1− ux)

[
b
(
ν1f

Z
1 g

Z
1,1 + ν2f

Z
2 g

Z
1,2
)
− cg•,1

]
ΠY

2 = (1− ux)
[
b
(
ν1f

Z
1 g

Y
2,1 + ν2f

Z
2 g

Y
2,2
)]

ΠZ
2 = (1− ux)

[
b
(
ν1f

Z
1 g

Z
2,1 + ν2f

Z
2 g

Z
2,2
)
− cg•,2

]
.

7.2.1. Both groups fixed for ALLD. Let f = fZ1 be the frequency of Z in group 1. For DISC to invade ALLD in group 1, we
would require

(∂f ḟ)|f=0 > 0

ΠZ
1 |fY

1 =1,fY
2 =1 > ΠY

1 |fY
1 =1,fY

2 =1

∴ −cg•,1 > 0.

Since c and g•,2 are both positive numbers, Z cannot invade.
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7.2.2. Both groups fixed for DISC. Assume now that both groups are fixed for DISC. For ALLD to invade DISC in group 1, we
would require

ΠY
1 |fZ

1 =1,fZ
2 =1 > ΠZ

1 |fZ
1 =1,fZ

2 =1

b
(
ν1g

Y
1,1 + ν2g

Y
1,2
)
|fZ

1 =1,fZ
2 =1 > b

(
ν1g

Z
1,1 + ν2g

Z
1,2
)
|fZ

1 =1,fZ
2 =1 − cg•,1|fZ

1 =1,fZ
2 =1

b

c
<

g•,1

ν1
(
gZ1,1 − gY1,1

)
+ ν2

(
gZ1,2 − gY1,2

)
∴
b

c
<

g•,1

G1,2ν2(PGC − PGD − PBC + PBD) + g•,1
[
ν1(PGC − PGD) + ν2(PBC − PBD)

] .
This is less stringent than the standard condition b/c < 1/(PGC − PGD) = 1/(ε− ua) for one group. Discriminators in
group 1 contribute much more weakly to the fitness of discriminators in group 2 and thus offer limited protection against
invasion by defectors.

7.2.3. One group fixed for ALLD, other for DISC. Suppose that group 1 is fixed for DISC and 2 is fixed for ALLD. We now
investigate whether ALLD can invade 1 and DISC can invade 2, respectively.

In the first case, let f be the frequency of ALLD in group 1 (that is, fY1 ). ALLD can invade 1 provided

(∂f ḟ)|f=0 > 0

∴ (∂f [f(ΠY
1 − Π̄1)])|f=0 > 0

∴ (∂f [f(ΠY
1 − fΠY

1 − (1− f)ΠZ
1 )])|f=0 > 0

∴ (∂f [(f − f2)ΠY
1 − (f − f2)ΠZ

1 )])|f=0 > 0

∴ (∂f [f − f2][ΠY
1 −ΠZ

1 )])|f=0 > 0

∴ ([1− 2f ][ΠY
1 −ΠZ

1 )])|f=0

∴ ΠY
1 |f=0 > ΠZ

1 |f=0

∴ b
(
ν1f

Z
1 g

Y
1,1 + ν2f

Z
2 g

Y
1,2
)∣∣∣
fY

1 =0,fY
2 =1

>
[
b
(
ν1f

Z
1 g

Z
1,1 + ν2f

Z
2 g

Z
1,2
)
− cg•,1

]∣∣∣
fY

1 =0,fY
2 =1

∴ bν1g
Y
1,1 > bν1g

Z
1,1 − cg•,1

∣∣∣
fY

1 =0,fY
2 =1

∴ bν1(gZ1,1 − gY1,1) < cg•,1

∴
b

c
<

g•,1
ν1(gZ1,1 − gY1,1)

∴
b

c
<

g•,1
ν1[g•,1PGC + (1− g•,1)PBD − g•,1PGD − (1− g•,1)PBD]

∴
b

c
<

g•,1
ν1g•,1(PGC − PGD)

∴
b

c
<

1
ν1(PGC − PBD) = 1

ν1(ε− ua) .

Letting ν1 → 1 allows us to recover the one-group condition, b/c < 1/(PGC − PGD) = 1/(ε− ua). Since ν1 < 1, this is
generally less strict than the one-group condition: the fact that the second group consists entirely of defectors makes it
more difficult for the first group to resist invasion by defectors.

We now consider the second case, i.e., whether DISC can invade 2, which is fixed for ALLD. Let f now be the frequency
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of DISC in group 2 (that is, fZ2 ). DISC being able to invade requires

(∂f ḟ)|f=0 > 0

∴ ΠZ
2 |f=0 > ΠY

2 |f=0

∴ b
[(
ν1f

Z
1 g

Z
2,1 + ν2f

Z
2 g

Z
2,2 − cg•,2

)]∣∣∣
fZ

1 =1,fZ
2 =0

> b
(
ν1f

Z
1 g

Y
2,1 + ν2f

Z
2 g

Z
2,2
)∣∣∣
fZ

1 =1,fZ
2 =0

∴ bν1(gZ2,1 − gY2,1) > cg•,1|fZ
1 =1,fZ

2 =0

∴
b

c
>

g•,1
ν1(gZ2,1 − gY2,1)

∴
b

c
>

g•,1

ν1
[
G2,1(PGC − PGD − PBC + PGD) + g•,2(PBC − PBD)

] .
This is distinct from the single-group case, in which DISC (Z) can never invade ALLD (Y ) (which corresponds to ν1 → 0,
blowing up the denominator). In this scenario, discriminators in group 1 can help discriminators in group 2 rise in
frequency, even though they are not guaranteed to have good opinions of discriminators in group 2.

8. Derivation of replicator equation under different copying models

Here we explicitly derive the replicator dynamics for various group-wise strategy copying scenarios. In this section we use
i and j to denote strategic types, as opposed to s and s′.

8.1. One group. Consider first the case of a single group. We have the following events to take into account:

1. Increase. A type j(6= i) individual is chosen to update with probability f j . With probability f i, the compared
individual is type i. The update happens with probability φ(Πj ,Πi) = 1/(1 + exp[β(Πj −Πi)]. The frequency of
type i increases by 1/N .

2. Decrease. A type i individual is chosen to update with probability f i. With probability f j , the compared individual
is type j( 6= i). The update happens with probability φ(Πi,Πj). The frequency of type i decreases by 1/N .

Thus,

E[∆f i] = 1
N

P
(

∆f i = 1
N

)
− 1
N

P
(

∆f i = − 1
N

)
= 1
N

(∑
j

f jf iφ(Πj ,Πi)− f i
∑
j

f jφ(Πi,Πj)

)

= 1
N
f i

(∑
j

f j
[
φ(Πj ,Πi)− φ(Πi,Πj)

])
.

Note that

φ(Πj ,Πi) = 1
1 + exp[β(Πj −Πi)] ≈

1
1 + exp[β(Πj −Πi)]

∣∣∣
β=0

+ β
(
d

dβ

[ 1
1 + exp[β(Πj −Πi)]

])∣∣∣
β=0

+O(β2)

= 1
2 + β

[ (Πi −Πj) exp[β(Πj −Πi)]
(1 + exp[β(Πj −Πi)])2

]∣∣∣
β=0

+O(β2)

= 1
2 + β

Πi −Πj

4 +O(β2).

Hence

φ(Πj ,Πi)− φ(Πi,Πj) ≈ βΠi −Πj

2 +O(β2).
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We therefore have

E[∆f i] = 1
N
f i
∑
j

[
β

2 f
j(Πi −Πj) +O(β2)

]
≈ β

2N f i
∑
j

f j(Πi −Πj)

= β

2N f i(Πi
∑
j

f j −
∑
j

f jΠj)

= β

2N f i(Πi − Π̄).

This is what ultimately justifies the use of the replicator equation under pairwise comparison. Rescaling time so that, on
average, one update event occurs per time step yields

ḟ i = f i(Πi − Π̄)

8.2. Multiple groups, copying only group identity. We now consider that there is more than one group (K > 1) and the
entire population is fixed for the same strategy, but individuals can copy the group identity of others. This turns out to be
almost identical to the one-group case outlined in section 8.1, except that the relevant transition probability is instead

φ(ΠJ ,ΠI) = 1
1 + exp[β(ΠJ −ΠI)]

.

The remainder of the argument proceeds identically, except with f i and f j replaced with νI and νJ , and we obtain

ν̇I = νI(ΠI − Π̄),with

ΠI =
∑
i

f iIΠi
I .

8.3. Multiple groups, disjoint strategic imitation. When there is more than one group (K > 1), the analysis of SI Section
8.1 holds, except that we must specify that an individual with strategy i in group I can only copy from another individual
in group I (their in-group). We thus obtain

ḟ iI = f iI(Πi
I − Π̄I). [29]

8.4. Multiple groups, well-mixed strategic imitation. We now derive the analogous case for multiple groups (K > 1)
with “well-mixed copying”, i.e., individuals do not distinguish between their in-group and out-group when deciding whom
to compare their fitness against and potentially imitate. Let νI be the frequency of group I, and let niI = NνIf

i
I be the

absolute number of individuals of type I following strategy i. The following events may occur.

1. Increase. A type j individual in group I is chosen to update with probability νIf jI . With probability νJf iJ , the
compared individual is type i, J , with J ∈ {1 . . .K} (i.e., J can take on the same value as I). The update happens
with probability φ(Πj

I ,Π
i
J). niI increases by 1.

2. Decrease. A type i individual in group I is chosen to update with probability νIf iI . With probability νJf jJ , the
compared individual is type j( 6= i), J , with J ∈ {1 . . .K} (i.e., J can take on the same value as I). The update
happens with probability φ(Πi

I ,Πj
J). niI decreases by 1.
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Thus

E
[
∆niI

]
= P
(

∆niI = 1
)
− P
(

∆niI = −1
)

= νI
∑
j

f jI

∑
J

νJf
i
Jφ(Πj

I ,Π
i
J)− νIf iI

∑
j

∑
J

νJf
j
Jφ(Πi

I ,Πj
J)

≈ νI
∑
j

f jI

∑
J

νJf
i
J

(1
2 + β

Πi
J −Πj

I

4

)
− νIf iI

∑
j

∑
J

νJf
j
J

(1
2 + β

Πj
J −Πi

I

4

)]
= νI

1
2

[∑
j

f jI

∑
J

νJf
i
J − f iI

∑
j

∑
J

νJf
j
J

]
+ νI

β

4
∑
j

f jI

[∑
J

νJf
i
J(Πi

J −Πj
I)− f

i
I

∑
J

νJf
j
J(Πj

J −Πi
I)
]

= νI
1
2

[∑
J

νJ
(
f iJ
∑
j

f jI − f
i
I

∑
j

f jJ
)]

+ νI
β

4

[∑
J

νJ
∑
j

(
f jI f

i
J(Πi

J −Πj
I)− f

i
If
j
J(Πj

J −Πi
I)
)]
.

= νI
1
2

[∑
J

νJ
(
f iJ − f iI

)]
+ νI

β

4

[∑
J

νJ
(
f iJ(Πi

J −
∑
j

f jIΠj
I) + f iI(Πi

I −
∑
j

f jJΠj
J)
)]
.

Rescaling time allows us to recast this as an equation for ṅiI . Recalling that niI = NνIf
i
I , and dropping the 1/2 prefactor,

we have

ḟ iI ∝
∑
J

νJ

[
f iJ − f iI

]
+ β

2

[∑
J

νJ
(
f iJ(Πi

J −
∑
j

f jIΠj
I) + f iI(Πi

I −
∑
j

f jJΠj
J)
)]
.

The proportionality constant will depend on how we rescale time. Note that the first term does not have a β prefactor and
roughly corresponds to “neutral” mixing between the two groups. This means that that term will dominate, and thus we
expect f iI to equilibrate rapidly to a value common to all I. If we mandate this, the only dynamical quantity becomes
f i =

∑
I
νIf

i
I , so we have

ḟ i =
∑
I

νI ḟ
i
I

∝
∑
I

νI

[∑
J

νJ
(
f iJ(Πi

J −
∑
j

f jIΠj
I) + f iI(Πi

I −
∑
j

f jJΠj
J)
)]

=
∑
J

νJf
iΠi

J − f i
∑
I

νI
∑
j

f jΠj
I +
∑
I

νIf
iΠi

I − f i
∑
J

νJ
∑
j

f jΠj
J

= f i
(∑

J

νJΠi
J +

∑
I

νIΠi
I −
∑
j

f j
∑
I

νIΠj
I −
∑
j

f j
∑
J

νJΠj
J

)
∝ f i

∑
J

νJ
(
Πi
J −ΠJ

)
.
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Rescaling time allows us to write this as an equality:

ḟ i = f i
∑
J

νJ
(
Πi
J −ΠJ

)
= f i

(∑
J

νJΠi
J − Π̄

)
= f i

(
Πi − Π̄

)
,with

Πi =
∑
L

νLΠi
L,

Π̄ =
∑
L

νL
∑
i

f iΠi
L =

∑
L

νLΠL =
∑
i

f iΠi.

[30]

8.5. Multiple groups, in-group favored (“partially-mixed copying”). We have seen that if individuals freely copy across
group lines, strategy frequencies change much faster due to mixing than due to selection. We now consider the possibility
of partially, but not completely, restricting partner choice for strategy imitation. Let m (for “imitation” or, equivalently,
for “mixing”) be the weight that an individual assigns to the opposite group when deciding whom to imitate, so that
m = 0 corresponds to no mixing (disjoint imitation) and m = 1 corresponds to full mixing. An individual in group I thus
chooses an individual in their own group with probability 1−m and chooses an individual in a random group J (which
could be I) with probability νJm. For niI , the following events are possible.

1. Increase. A type j individual in group I is chosen to update with probability νIf jI . With probability (1−m)f iI , the
compared individual is type i, I, and with probability νJmf iJ , the compared individual is type i, J (J can be I). The
update happens with probability φ(Πj

I ,Π
i
I) (for i, I) or φ(Πj

I ,Π
i
J) (for type i, J). In either case, niI increases by 1.

2. Decrease. A type i individual in group I is chosen to update with probability νIf iI . With probability (1−m)f jI , the
compared individual is type j( 6= i), I, and with probability νJmf jJ , the compared individual is type j(6= i), J (J can
be I). The update happens with probability φ(Πi

I ,Πj
I) (for j, I) or φ(Πi

I ,Πj
J) (for j, J). In either case, niI decreases

by 1.
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We thus have

E
[
∆niI

]
= P
(

∆niI = 1
)
− P
(

∆niI = −1
)

= (1−m)
[
νI
∑
j

f jI f
i
Iφ(Πj

I ,Π
i
I)− νIf iI

∑
j

f jIφ(Πi
I ,Πj

I)
]

+m
[
νI
∑
j

f jI

∑
J

νJf
i
Jφ(Πj

I ,Π
i
J)− νIf iI

∑
j

∑
J

νJf
j
Jφ(Πi

I ,Πj
J)
]

≈ (1−m)
[
νI
∑
j

f jI f
i
I

(1
2 + w

Πi
I −Πj

I

4
)
− νIf iI

∑
j

f jI
(1

2 + w
Πj
I −Πi

I

4
)]

+m
[
νI
∑
j

f jI

∑
J

νJf
i
J

(1
2 + w

Πi
J −Πj

I

4
)
− νIf iI

∑
j

∑
J

νJf
j
J

(1
2 + w

Πj
J −Πi

I

4
)]

= mνI
1
2

[∑
j

f jI

∑
J

νJf
i
J − f iI

∑
j

∑
J

νJf
j
J

]
+ (1−m)νI

w

2
∑
j

f jI f
i
I(Πi

I −Πj
I)

+mνI
w

4
∑
j

f jI

[∑
J

νJf
i
J(Πi

J −Πj
I)− f

i
I

∑
J

νJf
j
J(Πj

J −Πi
I)
]

= mνI
1
2

[∑
J

νJ
(
f iJ
∑
j

f jI − f
i
I

∑
j

f jJ
)]

+ (1−m)νI
w

2 f
i
I

(
Πi
I −
∑
j

f jIΠj
I

)
+mνI

w

4

[∑
J

νJ
∑
j

(
f jI f

i
J(Πi

J −Πj
I)− f

i
If
j
J(Πj

J −Πi
I)
)]
.

= mνI
1
2

[∑
J

νJ
(
f iJ − f iI

)]
+ (1−m)νI

w

2 f
i
I

(
Πi
I −ΠI

)
+mνI

w

4

[∑
J

νJ
(
f iJ(Πi

J −ΠI) + f iI(Πi
I −ΠJ)

)]
.

Recalling that niI = NνIf
i
I , the replicator dynamics are given by

ḟ iI ∝ m
1
2

[∑
J

νJ
(
f iJ − f iI

)]
+ (1−m)w2 f

i
I

(
Πi
I −ΠI

)
+m

w

4

[∑
J

νJ
(
f iJ(Πi

J −ΠI) + f iI(Πi
I −ΠJ)

)]
∝ m

w

[∑
J

νJ
(
f iJ − f iI

)]
+ (1−m)f iI

(
Πi
I −ΠI

)
+ m

2

[∑
J

νJ
(
f iJ(Πi

J −ΠI) + f iI(Πi
I −ΠJ

)]
As usual, the ∝ can be converted into = by rescaling time. In each equation, the first term (proportional to m/w) sets the
rate of between-group “neutral” mixing, the second corresponds to within-group selection, and the third corresponds to
between-group selection. Note that setting m = 0 yields Eq. [29] and setting m = 1 yields Eq. [30], subject to rescaling.
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8.6. Multiple groups, copying both strategy and group identity. We now assume that individuals engage in both well-
mixed strategic copying and copying of group identity. With probability τ , an individual resolves to update their group
identity; with probability 1− τ , they resolve to update their behavioral strategy. We consider here the possible change in
niI .

1. Increase...

(a) ...by changing group identity. A type i individual in group J ∈ {1 . . .K} is chosen to update with probability
νJf

i
J . With probability τ , they choose to update their group identity. With probability νIf jI , the comparison

partner is type j (any strategy) and in group I. The update happens with probability φ(Πi
J ,Πj

I).

(b) ...by changing behavioral strategy. A type j (any strategy) individual in group I is chosen to update with
probability νIf jI . With probability 1− τ , they choose to update their behavioral strategy. With probability νJf iJ ,
the comparison partner is type i and in group J ∈ {1 . . .K}. The update happens with probability φ(Πj

I ,Π
i
J).

2. Decrease...

(a) ...by changing group identity. A type i individual in group I is chosen to update with probability νIf iI . With
probability τ , they choose to update their group identity. With probability νJf jJ , the comparison partner is
type j (any strategy) and in group J ∈ {1 . . .K}. The update happens with probability φ(Πi

I ,Πj
J).

(b) ...by changing behavioral strategy. A type i individual in group I is chosen to update with probability νIf iI .
With probability 1− τ , they choose to update their behavioral strategy. With probability νJf jJ , the comparison
partner is type j (any strategy) and in group J ∈ {1 . . .K}. The update happens with probability φ(Πi

I ,Πj
J).
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We have

E
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]
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∑
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)
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νJf
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J − f iΠI
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4

(
Π̄−Πi
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)
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(
f i − f iI + β

2

[
(1− 2τ)

(∑
J

νJf
i
JΠi

J − f iΠI

)
+ f iI

(
Πi
I − Π̄

)]
).

Observe that the f i − f iI term lacks a prefactor and therefore will dominate, so we expect that all f iI will rapidly
equilibrate to a common value f i. The result is actually a system of equations in both f iI and νI , since νI =

∑
j
njI/N
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and f i = ni/(NνI). Thus
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J

νJf
j
IΠj

I − f
jΠI

)
+ f jI

(
Πj
I − Π̄

)]
)

= 1
N
νI
β

2

[
(1− 2τ)

∑
j

(∑
J

νJf
j
IΠj

I − f
jΠI

)
+
∑
j

f jI (Πj
I − Π̄)

]
= 1
N
νI
β

2

[
(1− 2τ)

(
Π̄−ΠI

)
+ ΠI − Π̄

]
= 1
N
νIβτ(ΠI − Π̄).

As expected, when τ → 0 (i.e., individuals never update their group identity), this vanishes. For positive τ , νI changes at
a rate that depends on the difference between νI ’s fitness and the population average. We can take advantage of the fact
that the f iI equilibrate rapidly to a common value f i and average out the fact that fitnesses Πi

I may differ by group, by
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considering only

f i =
∑
I

νIf
i
I

∴ ḟ i = d

dt

(∑
I

νIf
i
I)

=
∑
I

(ν̇If iI + νI ḟ
i
I)

=
∑
I

νI ḟ
i
I

=
∑
I

νI
1
N

d

dt

niI
νI

= 1
N

∑
I

νI
ṅiIνI − niI ν̇I

(νI)2

= 1
N

∑
I

νI
ṅiIνI −NνIf iI ν̇I

(νI)2

= 1
N

∑
I

(
ṅiI −Nf iI ν̇I

)
= 1
N

∑
I

νI
(
f i − f iI + β

2

[
(1− 2τ)

(∑
J

νJf
i
JΠi

J − f iIΠI

)
+ f iI

(
Πi
I − Π̄

)]
− f iIβτ(ΠI − Π̄)

)
= 1
N

∑
I

νI
(β

2

[
(1− 2τ)

(∑
J

νJf
i
JΠi

J − f iIΠI

)
+ f iI

(
Πi
I − Π̄

)]
− f iIβτ(ΠI − Π̄)

)
= 1
N

∑
I

νI
(β

2

[
(1− 2τ)

(∑
J

νJf
iΠi

J − f iΠI

)
+ f i

(
Πi
I − Π̄

)]
− f iβτ(ΠI − Π̄)

)
= 1
N

(β
2

[
(1− 2τ)

(
f i
∑
I

νI
∑
J

νJΠi
J − f i

∑
I

νIΠI

)
+ f i

(∑
I

νIΠi
I −
∑
I

νIΠ̄
)]

− f iβτ(
∑
I

νIΠI −
∑
I

νIΠ̄)
)

= 1
N
f i
(β

2

[
(1− 2τ)

(∑
I

νIΠi − Π̄
)

+
(

Πi − Π̄
)]
− βτ(Π̄− Π̄)

)
= 1
N
f iβ
[
(1− τ)(Πi − Π̄)

]
.

Sending τ → 1 (i.e., individuals only ever update their group identity, not their behavioral strategy) yields ḟ i = 0 due to
selection. (The leading term in the expression for ṅiI still has no β prefactor and, thus, corresponds to the f iI equilibrating
as a result of random group identity switching, even in the absence of behavioral strategy updating, so the necessary
assumption that the f iI equilibrate rapidly is not violated.) Rescaling time again so as to drop the β/N prefactor yields the
system of equations

ν̇I = νIτ(ΠI − Π̄),

ḟ i = f i(1− τ)(Πi − Π̄).

8.7. Multiple groups, with an immediate switching cost. We now impose a fitness cost to switching groups, so that
individuals are less likely to switch groups. Call the cost α. Imposing this fitness cost is tantamount to amending the form
of φ(ΠI ,ΠJ), so that

φ(ΠJ ,ΠI) = 1
1 + exp[β(ΠJ −ΠI − α)] .
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Thus,

E[∆νI ] = 1
N

P
(

∆νI = 1
N

)
− 1
N

P
(

∆νI = − 1
N

)
= 1
N

(∑
J

νJνIφ(ΠJ ,ΠI)− νI
∑
J

νJφ(ΠI ,ΠJ)

)

= 1
N
νI

(∑
J

νJ

[
φ(ΠJ ,ΠI)− φ(ΠI ,ΠJ)

])
.

Note that

φ(ΠJ ,ΠI) = 1
1 + exp[β(ΠJ −ΠI − α)] ≈

1
1 + exp[β(ΠJ −ΠI − α)]

∣∣∣
β=0

+ β
(
d

dβ

[ 1
1 + exp[β(ΠJ −ΠI − α)]

])∣∣∣
β=0

+O(β2)

= 1
2 + β

[ (ΠI −ΠJ − α) exp[β(ΠJ −ΠI − α)]
(1 + exp[β(ΠJ −ΠI − α)])2

]∣∣∣
β=0

+O(β2)

= 1
2 + β

ΠI −ΠJ − α
4 +O(β2).

Hence

φ(ΠJ ,ΠI)− φ(ΠI ,ΠJ) ≈ βΠI −ΠJ − α
4 − βΠJ −ΠI − α

4 +O(β2)

≈ βΠI −ΠJ

2 +O(β2).

We therefore have

E[∆νI ] = 1
N
νI
∑
J

[
β

2 νJ(ΠI −ΠJ) +O(β2)
]

≈ β

2N νI
∑
J

νJ(ΠI −ΠJ)

= β

2N νI(ΠI − Π̄).

This model with an instantaneous switching cost is identical to equation 8.2, i.e., the case of no switching cost.

8.8. Multiple groups, with a transient switching cost. We now posit that there is a “cost” to switching group membership,
but that the cost continues to impacts an individual’s fitness for some duration after the switch. The cost is α, and the rate
at which individuals transition from the “new” state to the “established” state is σ. In other words, an individual who
switches to a new group pays a fitness cost α for a typical duration of time 1/σ – after which the individual becomes an
established member of the group and no longer pays the cost of having switched.

We also posit that, when an individual switches back to their old group, they no longer suffer the cost. Individuals can
end up in the “new” category in their opposing group by being “old”‘ in their current group and comparing their fitness
to that of either “old” or “new”‘ individuals in the opposing group. Individuals can end up in the “old” category in their
opposing group either by being “new” in that group and transitioning (at rate σ) or by being “new” in their current group
and (via selection) switching groups.

Under this model, consider the dynamics of νnew
1 . It can change by:

1. Increase. A group 2, old individual (probability νold
2 ) compares themselves to any group 1 individual, either old or

new (probability νnew
1 or νold

1 , respectively). The update then happens with probability φ(Πold
2 ,Πnew

1 ) or φ(Πold
2 ,Πold

1 )
respectively.

2. Decrease. A group 1, new individual (probability νnew
1 ) compares themselves to any group 2 individual, either

old or new (probability νnew
2 or νold

2 , respectively). The update then happens with probability φ(Πnew
1 ,Πnew

2 ) or
φ(Πnew

1 ,Πold
2 ) respectively. Otherwise, νnew

1 also constantly decreases at rate σ.
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Recalling that

φ(Πold
2 ,Πnew

1 ) ≈ 1
2 + β

Πnew
1 −Πold

2
4 +O(β2),

we thus have

E[∆νnew
1 ] = 1

N
P
(

∆νnew
1 = 1

N

)
− 1
N

P
(

∆νnew
1 = − 1

N

)
= 1
N

(
νold

2 [νold
1 φ(Πold

2 ,Πold
1 ) + νnew

1 φ(Πold
2 ,Πnew

1 )]

− νnew
1 [νold

2 φ(Πnew
1 ,Πold

2 ) + νnew
2 φ(Πnew

1 ,Πnew
2 ) + σ]

)
≈ 1
N

(
νold

2 [νold
1 (1

2 + β
Πold

1 −Πold
2

4 ) + νnew
1 (1

2 + β
Πnew

1 −Πold
2

4 )]

− νnew
1 [νold

2 (1
2 + β

Πold
2 −Πnew

1
4 ) + νnew

2 (1
2 + β

Πnew
2 −Πnew

1
4 ) + σ]

)
∴ ν̇new

1 = νold
2 νnew

1
Πnew

1 −Πold
2

2 + νold
2 νold

1
( 1

2β + Πold
1 −Πold

2
4

)
− νnew

1 νnew
2
( 1

2β + Πnew
2 −Πnew

1
4

)
− σ

β
νnew

1 .

In the low-β limit, this is

ν̇new
1 ≈ νold

2 νold
1 − νnew

1 νnew
2 − σνnew

1 .

after rescaling σ.
Likewise, consider νold

1 . It can change by:

1. Increase. A group 2, new individual (probability νnew
2 ) compares themselves to any group 1 individual, either old or

new (probability νnew
1 or νold

1 , respectively). The update then happens with probability φ(Πnew
2 ,Πnew

1 ) or φ(Πnew
2 ,Πold

1 )
respectively. The increase also happens secularly at rate σνnew

1 .

2. Decrease. A group 1, old individual (probability νold
1 ) compares themselves to any group 2 individual, either old or

new (probability νnew
2 or νold

2 , respectively). The update then happens with probability φ(Πold
1 ,Πnew

2 ) or φ(Πold
1 ,Πold

2 )
respectively.

Thus,

E[∆νold
1 ] = 1

N
P
(

∆νold
1 = 1

N

)
− 1
N

P
(

∆νold
1 = − 1

N

)
= 1
N

(
νnew

2 [νold
1 φ(Πnew

2 ,Πold
1 ) + νnew

1 φ(Πnew
2 ,Πnew

1 )]

− νold
1 [νold

2 φ(Πold
1 ,Πold

2 ) + νnew
2 φ(Πold

1 ,Πnew
2 )] + νnew

1 σ
)

≈ 1
N

(
νnew

2 [νold
1 (1

2 + β
Πold

1 −Πnew
2

4 ) + νnew
1 (1

2 + β
Πnew

1 −Πnew
2

4 )]

− νold
1 [νold

2 (1
2 + β

Πold
2 −Πold

1
4 ) + νnew

2 (1
2 + β

Πnew
2 −Πold

1
4 )] + νnew

1 σ
)

∴ ν̇old
1 = νnew

2 νold
1

Πold
1 −Πnew

2
2 + νnew

2 νnew
1
( 1

2β + Πnew
1 −Πnew

2
4

)
− νold

1 νold
2
( 1

2β + Πold
2 −Πold

1
4

)
+ σ

β
νnew

1 .

In the low-β limit, this is

ν̇old
1 ≈ νnew

2 νnew
1 − νold

1 νold
2 + σνnew

1 .
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The total ν̇1 is

ν̇1 = ν̇new
1 + ν̇old

1

= νold
2 νnew

1
Πnew

1 −Πold
2

2 + νold
2 νold

1
( 1

2β + Πold
1 −Πold

2
4

)
− νnew

1 νnew
2
( 1

2β + Πnew
2 −Πnew

1
4

)
− σ

β
νnew

1

+ νnew
2 νold

1
Πold

1 −Πnew
2

2 + νnew
2 νnew

1
( 1

2β + Πnew
1 −Πnew

2
4

)
− νold

1 νold
2
( 1

2β + Πold
2 −Πold

1
4

)
+ σ

β
νnew

1

= νold
2 νnew

1
Πnew

1 −Πold
2

2 + νnew
2 νold

1
Πold

1 −Πnew
2

2 + νold
2 νold

1
Πold

1 −Πold
2

2 + νnew
1 νnew

2
Πnew

2 −Πnew
1

2
= ν1ν2Π̄1 − ν1ν2Π̄2

= ν1(Π̄1 − Π̄),

after rescaling time to eliminate the 1/2 constant and defining

Π̄1 = (νnew
1 Πnew

1 + νold
1 Πold

1 )/ν1,

Π̄2 = (νnew
2 Πnew

2 + νold
2 Πold

2 )/ν2.

Note that the expression for ν̇1 is independent of β, but the individual expressions for ν̇new
1 and ν̇old

1 contain inverse powers
of β; the approximate (“low-β”) expressions are independent of the fitnesses. This means we may make the Ansatz that,
while ν1 changes only slowly (over timescales associated with selection), νnew

1 and νold
1 equilibrate quickly in response to

changes in ν1; the separation of timescales is set by 1/β. Define ρ1 and ρ2, the fraction of groups 1 and 2 that are in the
“new” state, so that νnew

1 = ρ1ν1. Then

ν̇new
1 = ρ̇1ν1 + ρ1ν̇1

≈ ρ̇1ν1

∴ ρ̇1 = ν̇new
1 /ν1

∴ ρ̇1 =
(
νold

2 νold
1 − νnew

1 νnew
2 − σνnew

1
)
/ν1

= (1− ρ2)(1− ρ1)ν2 − ρ1ρ2ν2 − σρ1

= ν2(1− ρ1 − ρ2)− σρ1

= (1− ν1)(1− ρ1 − ρ2)− σρ1,

ρ̇2 = ν1(1− ρ1 − ρ2)− σρ2.

These equations have an equilibrium at

ρ1 = 1− ν1

1 + σ
, ρ2 = ν1

1 + σ
,

which is stable.

9. The “main character” effect

A common feature of social networks, especially in social media, is the existence of an individual who is assigned a bad
reputation by the entire population, for example due to high-visibility acts of bad behavior. On social networks like Twitter,
such individuals are referred to as “main characters”. In this section, we consider how the existence of such a “main
character” affects the rate of cooperation in a group-structured population of discriminators (DISC). And we also study
whether unconditional defectors (ALLD) can invade a population of discriminators, when a “main character” is present.

We model the main character effect as follows. We assume that, with probability 1−m, each individual’s reputation is
assessed based on how they behaved toward a random other individual in the population, as in prior models we have
studied. However, with probability m, the individual is instead assessed based on how they behaved towards the singular
main character. (For simplicity, we do not consider insular social interactions in this version of the model.) Since the main
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character is considered bad by the entire population, a discriminator will assuredly defect with them. The reputational
profile of discriminators is thus given by

gin = (1−m)
[
gPGC + (1− g)PBD

]
+mPBD

= (1−m)g(PGC − PBD) + PBD,

gout = (1−m)
[
GPGC + (g −G)(PGD + PBC) + (1− 2g +G)PBD

]
+mPBD

= (1−m)
[
G(PGC − PGD − PBC + PBD) + g(PGD + PBC − 2PBD)

]
+ PBD,

in which

g = gin + (K − 1)gout

K
,

G = 2gingout + (K − 2)(gout)2

K
.

Here, g is the average reputation (which is also the average cooperation rate in the remainder of the population, i.e.,
excluding the main character), and G is a particular form of GI,J , the probability that an observer regards an out-group
donor’s action as good.

Next, we consider the temptation to become an unconditional defector. Discriminators resist this temptation provided

ΠZ |fZ =1 > ΠY |fZ =1

(b− c)g > bgY

∴
b

c
>

g

g − gY ,

in which

gY = (1−m)
[
gPGD + (1− g)PBD

]
+mPBD

= (1−m)g(PGD − PBD) + PBD.

The effect of a “main character” is thus twofold. By increasing the relative importance of the PBD term in gin and gout,
it can improve the overall rate of cooperation in a population of discriminators, provided that defecting against a bad
individual is considered good (i.e., PBD is large, which is true of Stern Judging and Simple Standing but not Shunning).
However, it has a similar effect on the reputational profile of defectors. Thus, as m becomes large, gY and g both approach
PBD, and the critical b/c ratio needed to sustain a population of discriminators, (b/c)∗, goes to infinity.

We zero in on the unique case of Stern Judging, in which there is a large gap between gin and gout. For simplicity, we set
ux = 0. Some results can be seen in SI Figure S8. In this case, when m = 0, we have

gin = 1− ua,

gout = 1
2 ,

g = 1− 2ua
K

+ 1
2 ,

gY = 1
2 −

(1− 2ua)2

K
,(

b

c

)∗
= 1− 2ua +K

2(1− ua)(1− 2ua) .

As expected, the cooperation rate g becomes dominated by gout as K grows. When K →∞, we have g = gY = 1/2, and
thus it is impossible to sustain cooperation, as (b/c)∗ →∞.

On the other hand, when m→ 1, all g terms approach 1− ua; thus, while a high rate of cooperation in a population
of discriminators is assured for any K, cooperation cannot be sustained, as defectors are guaranteed to invade. In
phenomenological terms, the population cannot distinguish between individuals who defect against the main character
because they are discriminators punishing someone they see as bad and individuals who defect against the main character
because they are unconditional defectors; the defectors accrue slightly higher fitness because they never cooperate with
the rest of the population.

For intermediate values of m, an intriguing picture emerges. While the cooperation rate g always grows with m, the
critical ratio (b/c)∗ is non-monotonic in m; in general there is a unique value of m, which we call m∗, that minimizes
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(b/c)∗ and thus makes it easiest for populations to resist invasion by defectors. For example, when K = 2 and m = 0, we
have (

b

c

)∗
= 3− 2ua

2− 6ua + 4u2
a
. [31]

The critical value of m is

m∗ =
√
ua(1− 2√ua − 2ua)
(1 +√ua)(1− 2ua) ,

at which (
b

c

)∗
= 1− ua

(1−√ua)2 . [32]

For ua = 0.02, Eq. [31] is approximately 1.57, whereas Eq. [32] is approximately 1.33; the critical value m∗ is approxi-
mately 0.09.

As K →∞, cooperation can never be sustained when m = 0. The critical value of m is given by

m∗ = 1
2 ,

at which (
b

c

)∗
= 2

1− 2
√
ua(1− ua)

.

For ua = 0.02, this is approximately 2.78.
Thus, somewhat remarkably, a “main character” can stabilize cooperation even in the limit of private assessment

(K →∞), by providing a common enemy and fomenting consensus among otherwise fragmented gossip groups. However,
when main character interactions become too important in determining one’s reputation, this advantage dissipates and
it becomes more difficult to sustain cooperation. Second-order effects of a main character, such as the possibility of a
“bounty” for identifying a main character (and the corresponding incentive to seek one out), are exciting potential topics
for future research. Notably absent from our analysis is any consideration of the welfare of the main character themself,
who is always targeted for defection irrespective of their behavior.
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Fig. S8. The effect of a “main character”, a high-visibility individual who is considered bad by the entire population. In both plots, the norm is
Stern Judging, and error rates are ua = 0.02, ux = 0. Left plot: the average cooperation rate in the remainder of the population g, when the
population consists entirely of discriminators. As individuals are more likely to be judged on their interactions with the main character (i.e., as
m increases), g increases. Right: the critical value (b/c)∗ needed for discriminators to resist the temptation to become unconditional defectors.
A moderate value of m can decrease this value, but a yet higher value of m pushes (b/c)∗ towards infinity, rendering it impossible to sustain
cooperation.
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