
Supplementary Materials 1 

This manuscript contains the following supplemental materials: 2 

Supplement A – Detailed UltraSEQ Services (this document) 3 

Supplement B – Other UltraSEQ Services (this document) 4 

Supplement C – Sample-report_user guide (separate Excel Document) 5 

Supplement D – Supplemental_File_Scores (separate Excel Document) 6 

Supplement E – UltraSEQ Rules Engine Logic (this document) 7 

Supplement F – Supplemental Results (this document)8 



Supplement A – Detailed UltraSEQ Services 9 

Preprocessing Service. For datasets derived from sequencers, UltraSEQ’s preprocessing 10 

routine includes steps to trim low quality sequence regions, remove adapter sequences, 11 

(optionally) merge paired end reads, and (optionally) remove host sequences to ensure optimal 12 

reads remain for analysis. For Illumina and IonTorrent datasets, Trimmomatic v0.39 (Bolger et 13 

al., 2014) was used for quality trimming/adapter removal (settings include 14 

ILLUMINACLIP:NexteraPE-PE.fa:2:30:10:2:keepBothReads, LEADING:3 TRAILING:3 15 

SLIDINGWINDOW:5:20 MINLEN:50) and Fastp v0.23.0 (Chen et al., 2018) was used for paired 16 

end read merging and deduplication (settings include -m (R1/R2 merging mode) when 17 

applicable, –dedup, -Q -A (disable quality and adapter trimming). [Note: subsequent to this 18 

publication, UltraSEQ preprocessing routine was updated to use Fastp for quality 19 

trimming/adapter removal and merging in one step with the following setting: -m (R1/R2 merging 20 

mode), –cut_front –cut_front_window_size1 –cut_front_mean_quality 3 (mimics Trimmomatic 21 

LEADING:3), –cut_tail –cut_tail_window_size_1 –cut_tail_mean_quality 3 (mimics Trimmomatic 22 

TRAILING: 3), –cut_right –cut_right_window_size_5 –cut_right_mean_quality 20 (mimics 23 

Trimmomatic SLIDINGWINDOW:4:20), -l 50. A second step was used to deduplicate the 24 

dataset if necessary due to interference of Fastp’s –cut_right setting on –dedup. We found that 25 

this pipeline provides 1.5x speed increase, ~1.07x more usable reads, and automatic adapter 26 

removal (data not shown)]. Following trimming and adapter removal, Bowtie2 v2.3.5.1 27 

(Langmead & Salzberg, 2012) was used with default settings to remove host reads that 28 

produced an alignment to the human genome build GRCh38. For Nanopore datasets, Porechop 29 

v0.2.4 (Wick et al., 2017) was used with default settings to remove adapters and MiniMap2 30 

v2.24-r1122 (Li, 2018) was used with default settings to remove any reads that produced an 31 

alignment to human genome build GRCh38. FastQC v0.11.9 (Andrews, 2010) and MultiQC 32 

v1.10.1 (Ewels et al., 2016) were used to evaluate pre-processed and post-processed standard 33 

data quality metrics and ensure preprocessing routines were effective.  34 

To ensure the most informative reads are passed to the next UltraSEQ service, an additional 35 

de-duplication step is performed by removing any duplicates that have an exact match for the 36 

first 50 bases. Such duplication is known to occur during the library preparation step (Head et 37 

al., 2014). Further, to reduce cloud compute costs, enhance run-times, and provide better 38 

comparisons across datasets, subsampling was optionally performed prior to the alignment 39 

service described below. Subsampling was performed by calculating the average number of bps 40 

per read in a sample, then randomly sampling to the number of reads required to reach 41 

10,100,000 total bps (note: the subsampling was performed by bps instead of number of reads 42 

since some datasets, e.g., nanopore, have much longer reads). Subsampling was performed on 43 

all datasets (if needed) with the exception of a second set of runs that was performed the for 44 

Yang et al. (Yang et al., 2019) datasets for antibiotic resistance genotyping. For these runs, a 45 

separate UltraSEQ run was used in which the full sample was run without de-hosting to 46 

enhance signals for antibiotic resistance genes (with the exception of the following samples that 47 

were subsampled to 30,000 reads: Case 22, 10, 9, and 4; these were subsampled to 30,000 48 

reads to reduce computational runtime).  49 

Aligner Service. To avoid sequences with lengths longer than LAMBDA2’s maximum query 50 

length, sequences longer than 5,000 bps were chunked in pieces of maximum size 5,000. 51 



LAMBDA2 enables alignment against both protein and nucleotide databases, but the results for 52 

this study leveraged only protein databases, including the Uniref100 protein database (built April 53 

2021) and Battelle’s Sequence of Concern protein database, which contains ~8,000 sequences 54 

of concern (including virulence factors, toxins, bioregulators, pathways of concern, etc.), ~500 55 

signatures of genetic engineering, and ~3,500 biological agents, including ~2,800 pathogens 56 

(~2,600 human pathogens) as detailed here (Gemler et al., 2022). For selected runs, we also 57 

leveraged our curated nucleotide database of human pathogens and select agents, although 58 

these data are not shown here, as no improvement to results was noticed. For this study, the 59 

following aligner settings were used: e-value = 1e-4, maximum number matches = 10, aligner's 60 

seed-delta-increases-length flag = ON. 61 

Query Mapper Service: This service maps regions within query sequences to identify high 62 

quality alignment regions as well as chimeric reads / out-of-context DNA sequences. This 63 

service processes the raw alignment results from the aligner service and identifies top alignment 64 

results by first finding the top percent identity and then subsetting the raw alignment results to 65 

alignments whose percent identity is within a tolerance, by default 1%, of the top percent 66 

identity. The top alignment results are subsequently processed for positional information from 67 

each database used, including protein and nucleotide databases. For each query position, 68 

𝑛𝑐𝑜𝑢𝑛𝑡𝑠 is defined as the total number of query alignment starts and query alignment stops 69 

corresponding to that position. After 𝑛𝑐𝑜𝑢𝑛𝑡𝑠 has been populated at every position, a normalized 70 

vector of counts (𝑁𝑐𝑜𝑢𝑛𝑡𝑠) is compiled according to equation 1: 71 

Equation 1 72 

𝑁𝑐𝑜𝑢𝑛𝑡𝑠 =
𝑛𝑐𝑜𝑢𝑛𝑡𝑠 −  𝑀𝑖𝑛(𝑛𝑐𝑜𝑢𝑛𝑡𝑠) 

𝑀𝑎𝑥(𝑛𝑐𝑜𝑢𝑛𝑡𝑠 ) −   𝑀𝑖𝑛(𝑛𝑐𝑜𝑢𝑛𝑡𝑠) 
 73 

Following these calculations, a K-means clustering is performed for the 𝑁𝑐𝑜𝑢𝑛𝑡𝑠 values, and the 74 

top cluster is used to define the region bounds. Specifically, kmeans++ (Arthur & Vassilvitskii, 75 

2007) is used to set the initial centroids. For this application, the “furthest point” algorithm 76 

sequentially selects initial centroids furthest from the ones in the previous iteration. Lloyd’s 77 

Algorithm (Lloyd, 1982) is then used for clustering given those initial centroids. Finally, the 78 

Elbow Method (Ng, 2012) is used to determine the best number of groups k. The top cluster is 79 

defined as the cluster with the largest centroid. Further, as implemented within UltraSEQ, the 80 

algorithm checks if the top two clusters’ centroids are within a particular tolerance (10% in the 81 

case of the query mapper); if they are, the penultimate cluster is absorbed into the top cluster 82 

(otherwise, the top cluster remains unaltered). 83 

To illustrate these calculations, consider the following example: one query sequence of length 84 

150 bps aligns to 3 different subject sequences, with the following start and stop query positions 85 

(and percent identities): Accession A, start position 1, end position 100 (percent identity = 100); 86 

Accession B, start position 1, end position 50 (percent identity = 95); Accession C, start position 87 

25, end position 100 (percent identity = 100). In this case, 𝑛𝑐𝑜𝑢𝑛𝑡𝑠 = 195, 100, 95, and 200 and 88 

𝑁𝑐𝑜𝑢𝑛𝑡𝑠 = 0.952, 0.0476, 0, 1.000, for positions 1, 25, 50, and 100, respectively. In this case, the 89 

top K-means cluster includes 𝑁𝑐𝑜𝑢𝑛𝑡𝑠 values 0.95 and 1.000 associated with query positions 1 90 

and 100, respectively. Query positions 1 and 100 then define the region bounds. The region 91 



bounds are subsequently applied to the query sequence, and any overhangs of sufficient length 92 

(default: 6 bps) can optionally be classified as their own region (overhangs that are less than the 93 

sufficient length threshold are ignored). The default setting for this study was to generate 94 

overhangs when possible. The query mapper also defines the region’s type: if the region has 95 

one or more alignments derived from a protein database, it is defined as a “translated” region; if 96 

it only has alignments from a nucleotide database, it is defined as an “untranslated” region; if no 97 

alignments are identified, it is defined as a “novel” region. Further, for translated regions, the 98 

reading frame(s) is documented based on the alignment. UltraSEQ provides the option to re-99 

align novel regions for greater depth of analysis, but this option was not used in this study. In 100 

the example presented here, two regions would be identified: one from query positions 1 to 100, 101 

and the second from query positions 101 to 150.  102 

Context Services and Subservices. These services generate contextual information and 103 

passes information to downstream services. The Metadata Service maps metadata to 104 

alignment results. For UniRef100 alignments, these metadata include Gene Ontology terms, 105 

UniProt identifiers, UniRef100 identifiers (which are linked to proteins involved in genetic 106 

engineering, housed within Battelle’s SoC database), taxonomy identifiers (also linked to 107 

Battelle’s SoC database for agent metadata), and other. For SoC alignments, these metadata 108 

further include tags such as coarse functionality (adherence, antibiotic resistance, etc.), 109 

pathways, SoC groups, etc. as defined in (Gemler et al., 2022). For nucleotide alignments, 110 

current metadata includes taxonomic identifiers. Other context services available for use but not 111 

used in this study are described in the Supplement B - Other UltraSEQ Services. 112 

Rules Engine Service. This service combines all of the above context and prediction services 113 

for regions, sequences, and samples using user defined logic rules for rapid sequence triage. 114 

UltraSEQ currently has 4 default rules engines to identify biothreats, controlled sequences for 115 

DNA synthesis vendors, indicators of genetic engineering, and Metagenomics Diagnostics. The 116 

first three are not described here as they are specific to various use cases. The fourth is 117 

described in the main methods of the manuscript.  118 

Metagenomics Service. This service provides sample level taxonomic composition based on 119 

the regions identified from reads processed in the query mapper service in 3 steps: 1) filtering 120 

out low quality reads, 2) scoring the remaining reads based on the information content of the 121 

reads, and 3) predicting the taxonomic composition based on the scores. In the first step, the 122 

default alignment quality filters used in this study include minimum alignment length of 48 base 123 

pairs (16 amino acids set based on aligner seed length), 99% percent identity and 100% region 124 

coverage for nucleotide alignments (note: no nucleotide databases were used in this study), 125 

95% percent identity and 90% region coverage for protein alignments. 126 

The metagenomics service works by estimating the information content of a read. That is, reads 127 

that are unique to a protein from a specific organism contain the highest amount of information, 128 

whereas reads that are found in proteins from across the tree of life contain less information. 129 

The information content of a read is derived from the read’s alignment data, in which the value 130 

of its information content is inversely proportional to the product of the number of unique 131 

accessions and taxonomies associated with high-quality alignments of a region – i.e., a region 132 

that contains a single accession and taxonomy call is more useful than a region that contains 133 



many accession and taxonomy calls. We note that the default protein reference database used 134 

in this study, the UniRef100, clusters proteins with 100% similarity to each other into a single 135 

reference accession. This clustering feature is important for the metagenomics service’s 136 

efficacy, since it prevents reference database duplication from incorrectly lowering the perceived 137 

information content of a region (e.g., duplicates of the same protein are represented by a single 138 

UniRef100 cluster, which would appear as a single subject accession in this study).  139 

Sequence region-level taxonomy predictions are associated with confidence scores that are 140 

based on alignment quality. For each unique taxonomy identified, the maximum confidence 141 

score from alignments that are associated with it are assigned. Specifically, based on the results 142 

of the query mapper service, all region alignments are compiled in a table (“query sequence 143 

information table”), and scoring is initially performed on a per region, per agent (organism), per 144 

accession basis. More specifically, each region (r), agent (a), and accession (acc) combination 145 

is assigned the following score, 𝑆𝑎,𝑟,𝑎𝑐𝑐: 146 

𝑆𝑎,𝑟,𝑎𝑐𝑐 =
𝐴𝑞𝑢𝑎𝑙𝑎𝑐𝑐,𝑟

𝑁𝑎𝑟 × 𝑁𝑎𝑐𝑐𝑟
 147 

Where 𝐴𝑞𝑢𝑎𝑙𝑎𝑐𝑐,𝑟 is the alignment quality (percent coverage x percent identity) in the region, 148 

𝑁𝑎𝑟 is the number of unique agents associated with the subject accessions in the region (score 149 

is inversely proportional to the region’s uniqueness) and 𝑁𝑎𝑐𝑐𝑟 is the number of accessions 150 

from the subject database that are associated with the region (score is inversely proportional to 151 

the region’s sequence complexity – higher complexity implies more specificity to a specific 152 

protein). Subsequently, an agent region score, 𝑆𝑎,𝑟, is calculated to be the score associated with 153 

the highest scoring accession (or accessions in the case of a tie) for the given agent, region 154 

combination: 155 

𝑆𝑎,𝑟 = max
𝑎𝑐𝑐

𝑆𝑎,𝑟,𝑎𝑐𝑐 156 

For each unique taxonomy across the sample, the agent scores 𝑆𝑎,𝑟 are summed across all 157 

regions for which each taxonomy is associated, and the sample-level or agent score (𝑆𝑎) is 158 

calculated: 159 

𝑆𝑎 = ∑ 𝑆𝑎,𝑟

𝑟

 160 

At this point, the agent score (𝑆𝑎) are rank ordered, and starting with highest sample-level 161 

scoring taxonomy, all sequences associated with the highest scoring taxonomy are identified 162 

and all other taxonomies associated with those sequences are removed from the query 163 

sequence information table (as defined above). This process is iteratively repeated until all 164 

taxonomies have been processed. The result is a pruned list of agent scores (𝑆𝑎) and their 165 

associated TaxIDs. From this list, a K-means cluster of the agent scores is performed by 166 

domain (Bacteria, Archaea, Eukaryotes, and Viruses) using the same method as described 167 

above for the Query Mapper Service, and the taxonomies associated with the top cluster in 168 

each domain are set to be the final sample composition. As with the query mapper, the 169 

algorithm checks if the top two clusters’ centroids are within a particular tolerance, referred to as 170 



the metagenomic clustering threshold (MCT) in the main body of the manuscript; if they are, the 171 

penultimate cluster is absorbed into the top cluster (otherwise, the top cluster remains 172 

unaltered). In this case, a 50% MCT was used for all UltraSEQ runs except during testing 173 

phases as described in the Results Section. The final confidence associated with each agent, 174 

𝐶𝑎, is defined as the average alignment quality for all sequences used in the final (pruned) query 175 

sequence information table for that agent. Note, due to the high abundance of phages, all 176 

TaxIDs associated with phages and other similar non-human viruses were masked from these 177 

calculations. This masking was accomplished by creating a removal list of all NCBI viral TaxID 178 

associated with the following hosts: fungi, bacteria, algae, archaea, diatom, and protozoa. 179 

Reporting Services. UltraSEQ provides several reports as well as described below. The text 180 

below describes the details of these reports as of the writing of this manuscript, although we 181 

anticipate additions/modifications as appropriate. Details for the Top Alignment Report, 182 

Taxonomy Report, and Default Report are provided in the main section of the manuscript. 183 

Additional details for the sample report are provided here. 184 

Sample Report. As described in the main methods section of the manuscript, the ‘main report’ 185 

tab provides a list of all organisms identified from the above Metagenomics Service, the results 186 

associated with the identified organisms, and the metadata associated with the organism from 187 

Battelle’s SoC database. These results and metadata are used in a logical diagnostic rules 188 

engine described in the ‘trigger-summary’ tabs. Statistics for the UltraSEQ run are provided in 189 

the ‘sample-statistics’ tab. For each organism identified, the ‘VF’ tab provides a list of SoCs 190 

identified, including virulence factors and antibiotic resistance genes from the Comprehension 191 

Antibiotic Resistance Database (CARD) (Alcock et al., 2020). Specifically, if an alignment to one 192 

of the proteins in the SoC database is contained within the Top Alignment Report and its TaxID 193 

matches to the organism or one of its children, it is populated in the organism-specific ‘VF’ tab. 194 

For antibiotic resistance profiles, only proteins in the CARD’s protein homology model are 195 

currently used. These protein sequences are currently populated in Battelle’s SoC database, but 196 

some metadata associated with these sequences and the drugs they confer resistance to 197 

defined by CARD (e.g., in the aro.tsv and ro.tsv files provided by CARD downloads 198 

https://card.mcmaster.ca/download). The ‘ABR’ tab pulls results from the ‘VF’ tab to provide 199 

antibiotic resistance information. Information in this tab is organized by drug class and antibiotic 200 

for easy interpretation. Other antibiotic resistance models (e.g., protein variant model, rRNA 201 

gene variant model, and protein knockout model, etc.) are not currently used in UltraSEQ. Thus, 202 

antibiotic resistance profiles are currently based solely on presence of genes that confer 203 

antibiotic resistance (i.e., profiles are not based on point mutants that may help confer 204 

resistance). In addition to the organism-specific antibiotic resistance profile, an organism-205 

specific agnostic profile is provided in the ‘CARD SoCs Report’ tab to further aid in antibiotic 206 

resistance genotyping (in cases where antibiotic genes may map to the incorrect or many 207 

different taxonomies).  208 

  209 
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Supplement B: Other UltraSEQ Services  253 

Other Context Services and Subservices. Other services include a Genetic Engineering 254 

(GE) Service and a Classifier Service. The GE Service enables prediction of GE indicators, 255 

including microservices for detection of GE proteins, GE signatures, codon optimization, and 256 

codon re-coding. The Classifier Service includes artificial intelligence (AI) models to make 257 

alignment-free predictions on amino acid sequences; the output is the probability that the input 258 

is associated with a subset of threat metadata categories (the coarse functional categories) 259 

described in Gemler et al. (Gemler et al., 2022). Information from the context services are 260 

passed to the Prediction Services and Flagging System (Rules Engine) as described below. 261 

Region-based Taxonomy Prediction Subservice. For other applications (such as forensic 262 

applications), sequence and region-level taxonomic information can be useful. For this 263 

prediction, a conservative and information-based approach is used that takes into consideration 264 

strength of alignments, the number of times a TaxID appears across alignments, and the 265 

taxonomic depth (species, genus, etc.). For this prediction, the TaxID frequency that each taxID 266 

appears across the top alignments is calculated, and TaxID Depth is assigned as follows: 100 267 

for species and below, 75 for genus, 50 for family, 30 for order, 20 for class, 15 for phylum, and 268 

10 for domain and above. A normalized TaxID Depth is then calculated in the same manner as 269 

the normalization defined in Equation 1 (Supplemental Material A). The TaxID score for each 270 

TaxID is then calculated according to Eq 2. 271 

Equation 2 272 

𝑇𝑎𝑥𝐼𝐷 𝑆𝑐𝑜𝑟𝑒 = √𝑤𝑑 (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑇𝑎𝑥𝐼𝐷 𝐷𝑒𝑝𝑡ℎ)2 + 𝑤𝑓(𝑇𝑎𝑥𝐼𝐷 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)2 273 

Where default weight values: 𝑤𝑑 = 2.0 and 𝑤𝑓 = 1.0 are used (optimized weights based on 274 

test/validation datasets, not shown). The final taxonomy predictions are then based on a 2-D K-275 

means clustering for the alignment confidence and TaxID score data. The TaxIDs in the top 276 

cluster are considered the final predictions using the same K-means clustering methods as 277 

described above (the rest of the TaxID predictions are discarded. Further, the confidence 278 

associated with each TaxID prediction is reported as follows: taxonomy evidence is gathered for 279 

the region from the alignments and the alignment scores (percent identity x percent region 280 

coverage) are normalized by the max heuristic value (100 in the case of 100% identity over 281 

100% of the region). For each TaxID identified, this normalized score is considered the final 282 

confidence score associated with each TaxID.  283 

Region-based Function Prediction Subservice. For each region, the function (gene ontology 284 

terms) is calculated in a similar manner. Specifically, 1) function evidence is gathered for each 285 

Region and alignment scores are normalized, 2) a 1-D K-means clustering is used for the 286 

alignment confidence; the GO Term sets in the top cluster are selected, and 3) the final function 287 

prediction confidence is calculated by averaging the alignment confidence values across the 288 

members in the top cluster.  289 

Region-based Threat Prediction Subservice. For each region, the threat metadata 290 

associated with that region (damage, antibiotic resistance, adherence, etc. as defined in 291 



(Gemler et al., 2022)) is tabulating the SoC alignment scores (percent identity x region 292 

coverage) associated with threat metadata category, clustering the scores using K-means, 293 

down selecting to only the top cluster, adding the alignment scores to 1/100th of the AI model, 294 

then dividing by the maximum possible score. 295 

 296 
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Supplement E - UltraSEQ Rules Engine Logic 303 

Bin Disease Diagnosis 

Confidence 

Qualifications  

Bin 1A Highest Confidence 

Agent 

1. SoC Filter* is True AND 

2. SoC agent is a pathogen that infects human host 

AND 

3. Relative abundance filters (based on predicted 

reads):  1%-5% for bacteria**; > 1%-2%** for 

fungi; >1% for other (protozoa, etc.) AND 

4. SoC agent is contained in Battelle’s human 

respiratory pathogen list (for respiratory 

datasets) or encephalitis/ meningitis pathogen 

list (for encephalitis datasets) AND*** 

5. At least one SoC with the Active, Damage, 

Apoptosis, Inhibits, or Transmission threat 

category from the agent was used by UltraSEQ’s 

metagenomics module for agent prediction 

Bin 1B High Confidence 

Agent 

1. SoC Filter* is False AND Conditions 2,3,4, and 5 

above met 

Bin 2 Medium Confidence 

Respiratory Agent 

1. Condition 1A and Condition1B = FALSE AND 

Conditions 2 and 3 above met AND 

2. No SoCs identified from the above categories for 

that agent 

Bin 3 Lowest Confidence 

Respiratory Agent 

1. Condition 1A and Condition1B = FALSE AND 

Conditions 2 and 3 above met AND 

2. There are SoCs from the above categories for 

that agent, however none are found [Note: other 

SoCs may be identified such as antibiotic 

resistant SoCs and adherence SoCs] 

* SoC Filter is a condition that is true when the UltraSEQ metagenomics service uses a 304 

UniRef100 cluster containing a SoC to trigger the taxonomy prediction. 305 

** For bacteria, a 5% threshold was used for the de Vries et al., PRJNA516289, Hasan et al., 306 

PRJEB7888, PRJEB13360; a 1% bacteria filter was used for all other datasets; for fungi, a 2% 307 

filter was used PRJNA516582; a 1% fungi filter was used for all other datasets 308 

*** At the time of this manuscript, Battelle’s SoC database contained ~2,200 human pathogen 309 

species, ~150 of which are curated as potential contaminants (either from reagents used during 310 

sequencing and/or due to the biological sample such as normal skin flora; all of these 311 

annotations are provided in the sample report. Of the human pathogens, ~250 are contained 312 

within the encephalitis/ meningitis list and ~250 are contained within the respiratory list.  313 

 314 

  315 



Supplement F - Supplemental Results 316 

Encephalitis / meningitis 317 

PRJNA516289 (Miller et al. (Miller et al., 2019)).  318 

Table F1. UltraSEQ Results for Miller Dataset  319 

Result Parasites Fungi Bacteria DNA Viruses RNA Viruses 

UltraSE

Q 

Mille

r 

UltraSE

Q 

Mille

r 

UltraSE

Q 

Mill

er 

UltraSE

Q 

Mille

r 

UltraSE

Q 

Mille

r 

TP 1 1 10 9 6 5 23 25 10 11 

FP 0 0 0 0 0 1 0 0 0 0 

FN 0 0 0 1 1 2 5 3 3 2 

TN 4 4 38 38 51 50 16 16 5 5 

PPA 100% 100

% 

100% 90% 86% 71

% 

82% 89% 77% 85% 

NPA 100% 100

% 

100% 100

% 

100% 98

% 

100% 100

% 

100% 100

% 

Accura

cy 

100% 100

% 

100% 98% 98% 95

% 

87% 93% 83% 89% 

* As noted by Miller et al., the “truth” was considered the initial clinical result unless a confirmatory test was run (i.e., if 320 
a confirmatory test was run by Miller et al., the truth was considered to be the confirmatory test). For both SURPI and 321 
UltraSEQ, RNA viruses were reported using sequences derived from the RNA libraries, whereas all other organisms 322 
results were based on sequences from the DNA libraries. 323 

 324 

PRJNA516582 (Saha et al. (Saha et al., 2019)).   325 

Table F2: Summary of Results for Saha and UltraSEQ 326 

Resul

t 

Saha Results UltraSEQ Results 

All 

sample

s 

Culture 

Only 

All 

confirme

d Cases 

CHIKV 

cases 

All 

sample

s 

Culture 

Only 

All 

confirmed 

Cases 

CHIK

V 

cases 

TP 52 7 24 17 53 7 25 17 

FP NR* NR* NR* NR* 0 0 0 0 

FN 12 1 12 0 11 1 11 0 

TN 29 N/A N/A N/A 29 N/A N/A N/A 

PPA 81% 88% 67% 100% 83% 88% 72% 100% 

NPA N/A N/A N/A N/A 100% N/A N/A N/A 

ACC 87% 88% 67% 100% 88% 88% 72% 100% 

* NR= not reported; N/A=not applicable (i.e., could not be calculated) 327 

** As detailed in the methods, UltraSEQ identified E. coli in nearly every sample despite the fact 328 

that E. coli was only identified by clinical tests in 2 samples. By using the UltraSEQ logic as 329 

defined in the Methods section without any background sample subtraction (as required by 330 

Saha), UltraSEQ was able to remove all E. coli false positives. 331 



 332 

‘CSF_metagenomics’ from idseq.net (Hasan et al. (Hasan et al., 2020)).  333 

Table F3: Table of Species Identified by UltraSEQ for Sample CW322  334 

Taxonomy Name TaxID NCBI 

TaxID 

Rank 

Type Confidenc

e 

Relative Abundance 

TaxID + Children (vs 

PREDICTED ONLY 

reads) 

Neisseria 

meningitidis 

487 species Bacteri

a 

99.4 99.96 

Human 

alphaherpesvirus 2 

10310 species Virus 99.0 0.0025 

 335 

 336 

 337 

 338 



Figure F1: CW322 Results Showing Bacteria and Viruses Identified by IdSeq (Note that several 339 

more rows of genera were identified and not shown here). 340 

 341 

 342 

 343 

 344 

Figure F2: CW322 Results Showing all Neisseria Species Identified (Note that several more 345 

rows of species were identified and not shown here). 346 

 347 

Respiratory disease: Influenza 348 

PRJEB7888 (Fischer et al. (Fischer et al., 2015)).  349 

Table F4: Summary of Results for Fischer and UltraSEQ 350 

Pipeline TP FN TN FP PPA NPA Accuracy 

Explify 16 3 5 0 84% 100% 83% 

Fisher 15 4 5 0 79% 100% 88% 



UltraSE

Q 

14 5 5 0 74% 100% 79% 

 351 

 352 

Respiratory disease: ventilator associated pneumonia (VAP) 353 

PRJNA554856 (Watts et al. (Watts et al., 2019)).  354 

Table F5: AbR Report for SRR9693434 (Patient 2, Day 1) 355 

Drug Class Drug Class 

Evidence: SoC 

Evidence [Soc 

Name, SoC Alt 

Name, Number 

of Reads 

Aligning to 

SoC, perc 

reads, gene 

variant or 

mutant] 

Drug Class Evidence: 

AMR gene family [AMR 

name, AMR CARD ID, 

Soc name associated 

with AMR, SoC Alt 

Name, Number of 

Reads Aligning to SoC, 

perc reads, AMR gene 

variant or mutant] 

Antibiotic(s) Antibiotic 

Evidence: SoC 

Evidence [Soc 

Name, SoC Alt 

Name, Number 

of Reads 

Aligning to 

SoC, perc 

reads, gene 

variant or 

mutant] 

Antibiotic 

Evidence: AMR 

gene family [AMR 

name, AMR CARD 

ID, Soc name 

associated with 

AMR, SoC Alt 

Name, Number of 

Reads Aligning to 

SoC, perc reads, 

AMR gene variant 

or mutant] 

fluoroquinolone 

antibiotic 

(ARO:0000001) 

  [‘major facilitator 

superfamily (MFS) 

antibiotic efflux pump 

(ARO:0010002)’, 

‘Staphylococcus aureus 

norA’, [‘ARO:3004667’], 

31, 0.016, ‘0’] 

[‘major facilitator 

superfamily (MFS) 

antibiotic efflux pump 

(ARO:0010002)’, 

‘Staphylococcus aureus 

norA’, [‘ARO:3004667’], 

31, 0.016, ‘0’] 

[‘major facilitator 

superfamily (MFS) 

antibiotic efflux pump 

(ARO:0010002)’, 

‘Staphylococcus aureus 

norA’, [‘ARO:3004667’], 

31, 0.016, ‘0’] 

[‘major facilitator 

superfamily (MFS) 

antibiotic efflux pump 

(ARO:0010002)’, 

‘Staphylococcus aureus 

norA’, [‘ARO:3004667’], 

31, 0.016, ‘0’] 

ciprofloxacin 

(ARO:0000036) 

enoxacin 

(ARO:0000023) 

ofloxacin 

(ARO:3000663) 

norfloxacin 

(ARO:3000662) 

[‘Staphylococcus 

aureus norA’, 

[‘ARO:3004667’], 

31, 0.016, ‘0’] 

[‘major facilitator 

superfamily (MFS) 

antibiotic efflux 

pump 

(ARO:0010002)’, 

‘Staphylococcus 

aureus norA’, 

[‘ARO:3004667’], 

31, 0.016, ‘0’] 

phosphonic 

acid antibiotic 

(ARO:0000025) 

  [‘fosfomycin thiol 

transferase 

(ARO:3000133)’, ‘FosD’, 

[‘ARO:3004674’], 1, 

0.001, ‘0’] 

      



glycylcycline 

(ARO:0000042) 

[‘mepA’, 

[‘ARO:3000026’], 

44, 0.023, ‘0’] 

[‘multidrug and toxic 

compound extrusion 

(MATE) transporter 

(ARO:3000112)’, ‘mepA’, 

[‘ARO:3000026’], 44, 

0.023, ‘0’] 

tigecycline 

(ARO:0000030) 

[‘mepA’, 

[‘ARO:3000026’], 

44, 0.023, ‘0’] 

[‘multidrug and toxic 

compound 

extrusion (MATE) 

transporter 

(ARO:3000112)’, 

‘mepA’, 

[‘ARO:3000026’], 

44, 0.023, ‘0’] 

lincosamide 

antibiotic 

(ARO:0000017) 

  [‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘poxtA’, 

[‘ARO:3004470’], 6, 

0.003, ‘0’] 

[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘vgaA’, 

[‘ARO:3002829’], 1, 

0.001, ‘0’] 

[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘vgaC’, 

[‘ARO:3002831’], 1, 

0.001, ‘0’] 

      

macrolide 

antibiotic 

(ARO:0000000) 

  [‘macrolide 

phosphotransferase 

(MPH) (ARO:3000333)’, 

‘mphC’, 

[‘ARO:3000319’], 72, 

0.037, ‘0’] 

[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘poxtA’, 

[‘ARO:3004470’], 6, 

0.003, ‘0’] 

[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘vgaA’, 

[‘ARO:3002829’], 1, 

0.001, ‘0’] 

[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘vgaC’, 

[‘ARO:3002831’], 1, 

0.001, ‘0’] 

spiramycin 

(ARO:3000156) 

clarithromycin 

(ARO:0000065) 

roxithromycin 

(ARO:0000027) 

tylosin 

(ARO:3000145) 

oleandomycin 

(ARO:3000867) 

azithromycin 

(ARO:3000158) 

erythromycin 

(ARO:0000006) 

dirithromycin 

(ARO:3000176) 

telithromycin 

(ARO:0000057) 

[‘mphC’, 

[‘ARO:3000319’], 

72, 0.037, ‘0’] 

[‘macrolide 

phosphotransferase 

(MPH) 

(ARO:3000333)’, 

‘mphC’, 

[‘ARO:3000319’], 

72, 0.037, ‘0’] 

mupirocin 

(ARO:3000554) 

  [‘antibiotic-resistant 

isoleucyl-tRNA 

synthetase (ileS) 

(ARO:3000446)’, ‘mupA’, 

[‘ARO:3000521’], 10, 

0.005, ‘1’] 

[‘antibiotic-resistant 

isoleucyl-tRNA 

synthetase (ileS) 

(ARO:3000446)’, ‘mupB’, 

mupirocin 

(ARO:3000554) 

[‘mupA’, 

[‘ARO:3000521’], 

10, 0.005, ‘1’] 

[‘mupB’, 

[‘ARO:3000510’], 

2, 0.001, ‘1’] 

[‘antibiotic-resistant 

isoleucyl-tRNA 

synthetase (ileS) 

(ARO:3000446)’, 

‘mupA’, 

[‘ARO:3000521’], 

10, 0.005, ‘1’] 

[‘antibiotic-resistant 

isoleucyl-tRNA 

synthetase (ileS) 

(ARO:3000446)’, 



[‘ARO:3000510’], 2, 

0.001, ‘1’] 

‘mupB’, 

[‘ARO:3000510’], 2, 

0.001, ‘1’] 

oxazolidinone 

antibiotic 

(ARO:3000079) 

  [‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘poxtA’, 

[‘ARO:3004470’], 6, 

0.003, ‘0’] 

[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘vgaA’, 

[‘ARO:3002829’], 1, 

0.001, ‘0’] 

[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘vgaC’, 

[‘ARO:3002831’], 1, 

0.001, ‘0’] 

linezolid 

(ARO:0000072) 

[‘poxtA’, 

[‘ARO:3004470’], 

6, 0.003, ‘0’] 

[‘ABC-F ATP-

binding cassette 

ribosomal 

protection protein 

(ARO:3004469)’, 

‘poxtA’, 

[‘ARO:3004470’], 6, 

0.003, ‘0’] 

penam 

(ARO:3000008) 

  [‘methicillin resistant 

PBP2 (ARO:3001208)’, 

‘mecA’, [‘ARO:3000617’], 

35, 0.018, ‘0’] 

methicillin 

(ARO:0000015) 

[‘mecA’, 

[‘ARO:3000617’], 

35, 0.018, ‘0’] 

[‘methicillin resistant 

PBP2 

(ARO:3001208)’, 

‘mecA’, 

[‘ARO:3000617’], 

35, 0.018, ‘0’] 

phenicol 

antibiotic 

(ARO:3000387) 

 
[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘poxtA’, 

[‘ARO:3004470’], 6, 

0.003, ‘0’] 

[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘vgaA’, 

[‘ARO:3002829’], 1, 

0.001, ‘0’] 

[‘ABC-F ATP-binding 

cassette ribosomal 

protection protein 

(ARO:3004469)’, ‘vgaC’, 

[‘ARO:3002831’], 1, 

0.001, ‘0’] 

chloramphenicol 

(ARO:3000385) 

florfenicol 

(ARO:3000461) 

[‘poxtA’, 

[‘ARO:3004470’], 

6, 0.003, ‘0’] 

[‘ABC-F ATP-

binding cassette 

ribosomal 

protection protein 

(ARO:3004469)’, 

‘poxtA’, 

[‘ARO:3004470’], 6, 

0.003, ‘0’] 

 356 

PRJNA554461 (Yang et al. (Yang et al., 2019)).  357 

 358 

Table F6. Comparison of UltraSEQ and WIMP Results for the Yang et al. (PRJNA554461) VAP 359 

Dataset 360 

Platform  TPs FNs TNs FPs PPA  NPA  Accuracy 



[TP / (TP+FN)] [TN / (TN 

+FP)] 

WIMP (Author) 10 2 6 7 83% 46% 64% 

UltraSEQ 9 3 5 3 75% 63% 70% 

 361 

Table F7. UltraSEQ’s Antibiotic Genotype Profiles Agree with Phenotypic Profiles. 362 

Case AbR profile by culture* 

UltraSEQ AbR summary for Identified 

Pathogen w/ # reads** 

Drug class 

    Antibiotic 

Author results 

1 

R: ticarcillin/ 

clavulanic acid 

R: ceftazidime  

I: levofloxacin  

NT: Tetracycline 

Cephalosporin (beta lactam): 2 reads  

 

Note: Others identified as well; 

fluoroquinolone identified in agent 

agnostic report 

blaTEM-4,blaTEM-

112, blaTEM-157, 

blaACT-5, oqxB, 

tetC 

2 

R: methicillin 

  

R: erythromycin, 

clindamycin 

Penam (beta lactam): 2 reads 

    methicillin: 10 reads 

Macrolide:  

    Roxithromycin, oleandomycin, telithromycin, 

spiramycin, azithromycin, clarithromycin, 

erythromycin, tylosin, dirithromycin: 17 reads 

lincosamide:  

    clindamycin, lincomycin: 17 reads 

 

Note: several others identified as well 

mecA 

  

ermA, erm 

  

tet38,ant(4’)-lb, tetC, 

blaTEM-4 

3 I: tetracycline 

Tetracycline: 

    Tetracycline: 3 reads 

    Tigecycline: 3 reads 

 

No Methicillin resistance identified  

Note: several others identified as well but 

all 2 reads or less; included all strains of S. 

aureus identified   

tetK, tet38, tetQ 

4 

R: tetracycline 

  

R: Trimethoprim-

sulfamethoxazole 

  

R: ciprofloxacin, 

levofloxacin 

Tetracycline: 

    Tetracycline: 14 reads 

Minocycline, demeclocycline, 

oxytetracycline,    chlortetracycline, 

doxycycline: 4 reads 

Diaminopyrimidine: 

    Trimethoprim: 1 read 

 

tetX 

sul1  

dfrA  

acrF, pare, mdf  

mphA, aadA5, 

vgaC, blaACT-5, 

blaACT-14, mefA, 

mel 



Note: Aminoglycosides and macrolides 

identified as well (>10 reads each); 

fluoroquinolone identified in agent 

agnostic report  

5 S: all tested agents 
None 

No Methicillin resistance identified  
None 

6 S: all tested agents 

Note: 7 classes identified, all with 2 reads 

or less 

No Methicillin resistance identified 

Tet38, blaTEM4 

7 S: all tested agents N/A None 

8 NT 

Note: 56 reads to drug efflux protein 

conferring resistance to multiple drug 

classes 

tetM, isaC, sul1, 

tetQ, mphA, aadA5 

* R=resistant, I=intermediate, S=Susceptible, NT=Not tested; N/A = not applicable  363 

** Only appropriate true positives and true negatives are listed (full AbR phenotype is unknown).  364 

Results in green font indicate that for the identified pathogen, UltraSEQ identified the same 365 
antibiotic or class as the phenotype data; those in blue denote that UltraSEQ identified a closely 366 
related class; those in orange indicate that that the antibiotic was only identified in the agent 367 
agnostic report; those in italics were not phenotypically tested. 368 

 369 

Illumina RNASeq Dataset: Respiratory viruses 370 

PRJEB13360 (Graf, Flygare (Flygare et al., 2016; Graf et al., 2016)). Detailed results are 371 

provided in Supplement D – Supplemental_File_Scores.xlsx. 372 

Illumina RNASeq Dataset: nasopharyngeal swabs for SARS-CoV-2 diagnosis 373 

PRJNA634356 (Babiker et al (Babiker et al., 2020)).  374 

  375 

Table F8. Comparison of UltraSEQ Results to Babiker et al. (KrakenUniq) and Explify 376 

Platform  TPs FNs TNs FPs PPA  

[TP / (TP+FN)] 

NPA  

[TN / (TN 

+FP)] 

Accuracy  

Author 

(KrakenUniq) 

26 1 17 1 96% 94% 96% 

Explify 20 3 16 0 86% 100% 93% 

UltraSEQ 27 0 16 2 100% 89% 96% 

 377 

Mixed: 378 

de Vries et al. Dataset. (https://veb.lumc.nl/CliniMG) 379 



Table F9. UltraSEQ Results for the de Vries Dataset Compared to Other Pipelines as Reported 380 

in (de Vries et al., 2021) 381 

 Pipeline Positive predictive value (PPV) [%]* PPA (Sensitivity) [%]* 

UltraSEQ 100 92 

Centrifuge 100 92 

DAMIAN 100 77 

DIAMOND 93 85 

DNAstar 71 100 

FEVIR 88 100 

Genome Detective 100 85 

Jovian 100 77 

MetaMIC 100 77 

metaMix 100 100 

One Codex 100 77 

RIEMS 81 85 

Taxonomer 100 85 

VirMet 93 92 

* PPV and PPA for UltraSEQ results were determined as described in the Methods Section. 382 

PPA and PPV for all other datasets determined as reported in Supplemental Table 2 and 4, 383 

respectively in (de Vries et al., 2021). 384 

 385 

Mixed Illumina RNASeq Dataset: In-house COVID-19 Saliva Study 386 

Battelle (PRJNA856680).  387 

Detailed results provided in Supplement D – Supplemental_File_Scores.xlsx. 388 

389 
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