1	Supplemental Material					
2						
3	Infection of endothelial cells with Acinetobacter baumannii reveals remodelling					
4	of mitochondrial protein complexes					
5						
6						
7	Laura Leukert ¹ , Manuela Tietgen ^{1,2} , Felix F. Krause ^{1,3} , Tilman G. Schultze ¹ , Dominik C.					
8	Fuhrmann ⁴ , Charline Debruyne ⁵ , Suzana P. Salcedo ⁵ , Alexander Visekruna ³ , Ilka Wittig ⁶ ,					
9	Stephan Göttig ^{1,#}					
10						
11	¹ Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University,					
12	Frankfurt am Main, Germany					
13	² University Center of Competence for Infection Control of the State of Hesse, Frankfurt am Main,					
14	Germany					
15	³ Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany					
16	⁴ Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany					
17	⁵ Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche					
18	Scientifique UMR5086, Université de Lyon, Lyon, France					
19	⁶ Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main,					
20	Germany					
21						
22						
23	<u>#Corresponding author: stephan.goettig@kgu.de</u>					
24						
25						
26						

29

30

FIG S1 Antimicrobial susceptibility profile. The relative minimum inhibitory concentration (MIC) indicates the ratio of the actual MIC of an isolate divided by the highest MIC value for the respective antibiotic in the data set. The color bar displays the values. TZP, piperacillin/tazobactam; CAZ, ceftazidime; CEF, cefepime; MER, meropenem; IMP, imipenem; CIP, ciprofloxacin; LEV, levofloxacin; AMK, amikacin; GEN, gentamicin; TOB, tobramycin; DOX, doxycycline; TGC, tigecycline; MIN, minocycline; SXT, trimethoprim-sulfamethoxazole; COL, Colistin.

39

40 FIG S2 Presence-absence matrix of antibiotic resistance genes. Green areas indicate the

41 presence of the resistance gene in the respective genome. ST^{Pas} = sequence type according

42 to Pasteur scheme.

						Isolate								
Virulence gene	AB_1494	AB_1523	AB_4514	AB_2169	AB_2778	AB_705	AB_1945	AB_4401	AB_1784	AB_1372	AB_3378	AB_2219	AB_2597	AB_3038
abuO NC 010410 1:3570601-3571947				-										
tuf IEVI 01000029 1:1-790														
cui 3F1201000029.1.1-790											'			
acyl carrier protein NC_009065.1.137227-137467														
hcp Acinetobacter_baumannii_strain_M2														
tssM CP012004.1:2441902-2445726														
pilC CP010781.1:413401-414627														
pmrB CP017656.1:3261157-3262491														
pmrA CP045110.1:3277435-3278109														
tolC CP003856.1:554283-555629														
csnG AP022836 1:1286862-1287074														
tonB CP007712 1:3472653-3473408														
USDA CE022055 1:261880 262740														
hemE CD045110 1:00005-202740														
Dame CP045110.1.955362-953760														
rpmF A1S_0816 VBIAciBau103176_0835														
gspM CP017656.1:2633021-2633500														
gspL CP017656.1:2633500-2634639														
gspC CP017656.1:313797-314633														
zur CP045110.1:237352-237849														
csuAB ATCC 17978:1389867-1390403														
PgaABCD ATCC 17978-mff:1446525-1453251														
hmfS ATCC 17078-mff:3082462-3083889														
aba ATCC 17970-1111.3002402-3003003														
cnpA ATCC_17978-mtt:712598-717118														
antA AP022836.1:18/9194-18/9964														
hlyD AP022836.1:3181120-3182253														
adeAB ATCC_17978-mff:1931387-1935684														
pilQ CP003967.2:3349027-3351192														
pilY_2 CP008706.1:339222-343076														
csuA CP010781.1:2524132-2524680														
pilB CP010781.1:414657-416369														
mac\$ CP010781 1:683730-686537														
codB CD012004 1:1256024 1256650														
sous CF012004.1.1230024-1230030														
pici CP012004.1.1575962-1576190														
bauA CP012004.1:158484-160673														ļ
omp33 CP012004.1:211272-212171														
surA1 CP012004.1:2349708-2350025														
plc2 CP012004.1:3792688-3794856														
arpA CP012004.1:40488-41588														
arpB CP012004.1:41591-44716														
pld2 CP012004 1 522782-524407														
pld3 CP012004 1:627064-628527														
omp& CP012004 1:620065 682025														
01110A CP012004.1.860965-862035														
SecA CP014266.1:3309827-3312550												-		
IpxC CP017656.1:3818273-3819175														
gspD CP026761.1:1220009-1222279														
gspF CP026761.1:1332423-1333628														
gspE CP026761.1:1612778-1614268														
IpxA CP041587.1:2213618-2214406														
recA CP045110.1:2400486-2401535														
gacA CP045110.1:315918-316553														
pilA CP045110.1:603448-604248														
nduA CP0/15/28 1:776057-777505														
India 01 040420.11110001-111000														
hee LOD046654 4:004004 000550														
Dasj 0P040004.1.201384-202003														
basi CP046654.1:202678-203433										_				
basH CP046654.1:203444-204178														
barB CP046654.1:204251-205846														
barA CP046654.1:205843-207426														
basG CP046654.1:207699-208850														
basF CP046654.1:208968-209837														
basD CP046654.1:211645-214587														
basC CP046654.1:214635-215945														
bauB CP046654 1:218396-21936														
bull CF 040004.1.210000-21000														
Date GE040004.1.219371-220141														
Dauc CP046654.1.220138-221085														
DauD CP046654.1:221085-222068										_				
basB CP046654.1:222658-224685														
basA CP046654.1:224756-226603														
hIYB UFJZ01000001.1:1573874-1574581														
fbA-CII A1S_1544 VBIAciBau103176_1577														
atpA A1S_0153 VBIAciBau103176_0169														
purH A1S 2188 VBIAciBau103176 2241														
pilT figl470,1295,peg.331IIX87_01670														
catalase figl470 1295 per 404611X87_205601														
araG ABSDE1378 \/BIAciBau88365_1324														
										_				
VBIACIUIS186641_3450														
ziga Lci A1S_3411 84151365														

FIG S3 Presence-absence matrix of virulence genes. Green areas indicate the presence of

46 scheme.

⁴⁵ the resistance gene in the respective genome. ST^{Pas} = sequence type according to Pasteur

FIG S4 Comparison of genomes between AB_1372 and AB_2778. SNVs, single nucleotide

variants; CDS, coding gene sequences; VG, virulence genes; VG*, acyl carrier protein
NC_009085.1:137227-137487.

- 53
- 54 FIG S5 The workflow of the complexome analysis is depicted. Mitochondria of A. baumannii
- 55 infected HUVECs were fractionated and proteins were separated by blue native page. The gel
- 56 was sliced into 48 pieces followed by a tryptic digest and mass spectrometry. Migration profiles
- 57 of identified proteins were analysed and protein complexes were clustered using NOVA.
- 58

- 62 proportions of each cell compartment were plotted for the uninfected control and for HUVECs
- 63 infected with AB_2778 and AB_1372, respectively.
- 64
- 65

FIG S7 Analysis of morphology of endoplasmic reticulum (A) and Golgi apparatus (B) upon
bacterial infection. HUVECs were infected with AB_1372 or AB_2778 for 16 hours (MOI 50).
Representative immunofluorescence images of either uninfected and infected HUVECs. DAPI
staining was used for visualisation of DNA (blue). The endoplasmic reticulum marker protein
CANX (rot) and the Golgi apparatus marker protein GM130 (gold) were immunostained and
morphology was monitored (scale bar: 10 µm).

77 FIG S8 Impact of the inhibitor Mdivi-1 on mitochondrial morphology upon bacterial infection. 78 (A) Pictures depict changes in morphology of mitochondria upon infection with AB 1372, 79 AB_2778 and AB_19606, respectively, 10 hpi (MOI 50). (B) Representative 80 immunofluorescence images of uninfected and infected HUVECs after pre-treatment with 81 25 µM Mdivi-1 (DRP-1 inhibitor) 14 hours prior to infection. DAPI staining was used for 82 visualisation of DNA (blue). The outer mitochondrial membrane protein TOM20 (green) was 83 immunostained and mitochondrial morphology and dynamics were monitored (scale bar: 84 10 µm). Triangles in TOM20 images indicate morphological changes of mitochondria 85 compared to uninfected control.

FIG S9 Abundance of DRP1 and OPA1 upon bacterial infection (A) Heat map of normalized
protein abundance distribution and migration profile of absolute protein abundance of DRP1
and OPA1 upon infection with AB_1372 and AB_2778, respectively and uninfected HUVECs.

92 (B) Direction of triangles indicate abundance of OPA1 and DRP1 in infected HUVECs for the

- 93 AB_1372 and AB_2778, respectively.

97

FIG S10 Relative expression levels of *ompA* in AB_1372, AB_2778 and AB_*ΔompA* (internal control) isolated from HUVECs after infection. Total RNA was isolated and relative levels of gene expression were measured by qRT-PCR using the housekeeping gene *rpoB*. The relative expression of *ompA* was normalized to AB_1372. Values are means ± SEM derived from two independent experiments with each four technical replicates. Statistical analysis was performed by a two-tailed t-test. n.s., not significant.

104 Supplementary Table

105

106 **TABLE S1** Ratio of *in vitro* cytotoxicity and *in vivo* virulence, calculated by dividing the

107 percentage of apoptotic HUVECs in Annexin V/PI assay and log(LD₅₀) from *G. mellonella* time-

108 kill experiments.

Isolate	Apoptotic HUVECs[%]/log(LD ₅₀)	Apoptotic HUVECs[%]	Log(LD ₅₀)
AB_1372	0.76 ± 0.33	4.59 ± 1.22	6.05 ± 0.14
ATCC 19606 [⊤]	1.46 ± 0.63	7.38 ± 2.14	5.07 ± 0.18
AB_1523	2.45 ± 0.86	12.24 ± 3.24	4.99 ± 0.18
AB_3378	2.47 ± 0.20	12.78 ± 1.52	5.18 ± 0.34
AB_2597	2.68 ± 0.44	11.65 ± 2.27	4.35 ± 0.11
AB_1784	2.82 ± 0.24	10.86 ± 1.57	3.85 ± 0.20
AB_2219	2.94 ± 1.08	13.05 ± 3.73	4.43 ± 0.22
AB_4514	2.95 ± 0.26	12.03 ± 1.76	4.08 ± 0.15
AB_2169	2.98 ± 0.18	11.73 ± 1.42	3.94 ± 0.14
AB_5075	3.14 ± 0.09	17.37 ± 1.20	5.53 ± 0.19
AB_1494	3.27 ± 0.47	15.36 ± 2.67	4.70 ± 0.12
AB_4401	3.38 ± 0.03	14.47 ± 0.67	4.29 ± 0.13
AB_3038	3.81 ± 0.45	15.51 ± 2.62	4.07 ± 0.16
AB_705	3.87 ± 0.16	18.45 ± 1.65	4.77 ± 0.20
AB_1945	4.28 ± 0.32	18.02 ± 2.37	4.21 ± 0.20
AB_2778	5.50 ± 0.44	22.58 ± 3.12	4.11 ± 0.12

110 Supplementary methods

111

112 Genome sequencing

113 Library preparation for Nanopore sequencing was done using the SQK-RBK004 rapid 114 barcoding kit. Sequencing was performed on a MinION MK1B sequencer utilizing R9.4.1 flow 115 cells. Raw signal data was base called and demultiplexed using the high accuracy base calling 116 model of guppy basecaller version 4.0.11. Raw data was filtered using NanoFilt for long reads 117 resulting in datasets of reads with an average genome coverage of at least 30-fold for long 118 reads. De novo hybrid assembly was conducted using Unicycler version 0.4.8 utilizing the bold 119 assembly mode. Gene presence-absence plots were drawn utilizing a python script 120 (accessible via https://raw.githubusercontent.com/sanger-121 pathogens/Roary/master/contrib/roary plots/roary plots.py).

122

123 Growth kinetics of A. baumannii

To compare growth of AB_1372 and AB_2778, bacteria cultures were adjusted to an optical density (OD_{600}) of 0.05 in lysogeny broth (LB). A total of 200 µL of the bacterial solutions were transferred to 96-well plates and incubated in a plate reader (infinite M200 Pro, TECAN) for 24 h at 37 °C. OD_{600} was measured every 20 min with a shaking amplitude of 3 mm during measurement.

129

130 Biofilm analysis

131 Bacteria were cultivated in tryptic soy broth (TSB) medium without dextrose at 37 °C overnight. 132 Subsequently, a culture with TSB medium with 2% (w/v) dextrose was inoculated and 133 cultivated until an OD₆₀₀ of 0.5 was reached. A 1:20 dilution of the culture (or medium as 134 negative control) was transferred into a 96-well microtitre plate (Nunclon Delta Surface, 135 Thermo Fisher) and incubated for 24 h at 37 °C. The supernatant was discarded and the biofilm 136 was washed three times with PBS. Subsequently, the plate was dried at 65 °C for 5 min. The 137 biofilm was stained for two minutes using a saturated solution of crystal violet and washed five 138 times with A. dest. Subsequently, ethanol (200 µl) was added to each well and absorption at 139 405 nm (crystal violet) and 570 nm (reference) was measured with a plate reader (infinite M200 140 Pro, TECAN).

141

142 Analysis of bacterial adhesion to human endothelial cells

HUVECs were seeded into 6-well plates and infected with *A. baumannii* (MOI 200). After
infection, the 6-well plates were incubated for 1 h. The supernatant was removed and cells
with adherent bacteria were washed with PBS and detached using a cell scraper. Thereafter,
adherent bacteria were quantified by plating serial dilution series. Visualisation of bacterial

147 adhesion to human endothelial cells was done by fluorescence microscopy. For this purpose, 148 HUVECs were seeded into 6-well plates containing collagenized coverslips and infected with 149 A. baumannii (MOI 200) for 2 h. Before infection, bacteria were stained with carboxyfluorescein 150 succinimidyl ester (CFSE) (diluted 1:300 in 1 mL A. dest.) for 30 min (37 °C). After incubation, 151 cells were washed to remove non-adherent bacteria and fixed with 400 µL 3.75% 152 paraformaldehyde (4 °C) for 15 min. Cells were thereafter incubated with 0.2% Triton X-100 153 for 15 min at room temperature. The incubation was followed by staining the cells with 500 µL 154 tetramethylrhodamine (TRITC)-phalloidin (1:500) for 1 h at room temperature and 4',6-155 diamidino-2-phenylindole (DAPI) for 10 min at 4 °C. Bacterial adhesion to HUVECs was then 156 visualised by fluorescence microscopy (Nikon Eclipse Ci-L).

157

158 Analysis of caspase activity

Activity of caspase-3, caspase-7, caspase-8 and caspase-9 were determined in 96-well plates infected with *A. baumannii* (MOI 10) using the Caspase-Glo[®] 3/7 Assay and the Caspase-Glo[®] 8 and 9 Assay (Promega, Walldorf, Germany). After infection, the 96-well plates were incubated for 2, 4, 6, 8, 16 and 24 h (37 °C, 5% CO₂). After incubation, 10 μ L of the caspase-3/7 or caspase-8 or caspase-9 solution were added to each well. The plates were mixed for 30 s (300 rpm) in a plate reader (infinite M200 Pro, TECAN) and incubated for 45 min. Thereafter, plates were mixed again for 30 s (300 rpm) and luminescence was recorded.

166

167 Evaluation of bacterial virulence using the *Galleria mellonella in vivo* infection model

168 Larvae of the greater wax moth (Galleria mellonella) with a weight of 150-250 mg were 169 obtained from UK waxworms (Sheffield, UK). A. baumannii isolates were grown overnight in 170 LB and then diluted 100-fold into fresh LB and grown for 3 h. After two washes with phosphate-171 buffered saline (PBS), bacteria were resuspended in PBS to a final OD_{600} of 1.0 and 10-fold 172 serial dilutions were prepared in PBS. Each experiment included control groups of non-injected 173 larvae or larvae injected with PBS. Larvae were considered dead if they did not respond to 174 physical stimuli. Generation of time-kill curves and calculation of the median lethal dose (LD_{50}) 175 after 24 h was done by non-linear regression analysis using GraphPad Prism as described 176 (49, 50, 54). Experiments were repeated three times using ten larvae per experimental group.

177

178 **Determination of** *ompA* **expression levels**

Quantification of *ompA* gene expression was done as described previously (58). Total RNA
was isolated from bacteria harvested after infection of HUVECs (Monarch Total RNA Miniprep
Kit, NEB, Frankfurt am Main, Germany). Subsequently, samples were used for quantitative
real-time PCR (qRT-PCR). Expression levels of *rpoB* as internal control (*rpoB_*RT_fwd primer:
GAG TCT AAT GGC GGT GGT TC; *rpoB_*RT-rev Primer: ATT GCT TCA TCT GCT GGT TG)

- 184 and *ompA* (*ompA*_RT_F primer: AGG TCA CAC AGA TAA CAC TGG; *ompA*_RT_R primer:
- 185 AAC GTT GTA TTC GTT TAC AAG AGC) (Luna, Universal One-Step RT-qPCR Kit, NEB,
- 186 Frankfurt am Main, Germany) were quantified (11). The relative expression of *ompA* in bacteria
- 187 after infection was normalized to planktonic bacteria.
- 188