Supplemental Material

Figure S1. Evaluation of the immune profile in response to Trypanosoma cruzi infection. (a) Anti-
inflammatory and (b) proinflammatory cytokines evaluated. Welch Two Sample t-test was
performed. * p < 0.05. BALBc infected mice, n =5; BALBc non-infected mice, n =5; c57BL6
infected mice, n =5; c57BL6 non-infected mice, n =5.

Figure S2. Relative abundance of the 10 most abundant viruses identified in (a) BALBc and (b)
c57BL6 mice for each of the measurement points. NI = non-infected; DPI = days post-infection.
(c) Beta diversity analysis was performed by non-parametric multidimensional scaling (NMDS)
to compare the microbiota composition between controls and infected BALBc (left) and c57BL6
(right) mice. BALBc infected mice, n =5; BALBc non-infected mice, n =5; ¢57BL6 infected mice,
n =5; c57BL6 non-infected mice, n =5.

Figure S3. Pangenome analysis for (a) Akkermansia muciniphila and (b) Lactobacillus johnsonii.
Complete and good-quality genomes available in PATRIC were downloaded: 96 genomes of
Akkermansia muciniphila and 15 of Lactobacillus johnsonii. Phylogenetic trees were made in ITol
(left) where the source of each isolate was defined according to the available information. The
bootstrap value is described between 0 and 1. The branch corresponding to the reconstructed MAG
for each case is highlighted in red. The heatmap (right) represents the core genome for the different
isolates (including the reconstructed MAGS).

Figure S4. Pangenome analysis for (a) Alistipes finegoldii, (b) Staphylococcus xylosus, and (c)
Faecalibaculum rodentium. Complete and good-quality genomes available in PATRIC were
downloaded: 18 of Alistipes finegoldii, 20 of Staphylococcus xylosus, and 4 of Faecalibaculum
rodentium. Phylogenetic trees were made in ITol (left) where the source of each isolate was defined
according to the available information. The bootstrap value is described between 0 and 1. The
branch corresponding to the reconstructed MAG for each case is highlighted in red. The heatmap
(right) represents the core genome for the different isolates (including the reconstructed MAGS).

Figure S5. Reconstruction of the amino acid synthesis pathway for the genomes of (a) Bacteroides
thetaiotaomicron and (b) Staphylococcus xylosus, obtained by KEGG mapper from the functional
analysis by Koafm. This map presents a modular architecture of the biosynthesis pathways of
twenty amino acids, which may be viewed as consisting of the core part and its extensions. The
core part is the KEGG module for conversion of three-carbon compounds from glyceraldehyde-
3P to pyruvate, together with the pathways around serine and glycine. This KEGG module is the
most conserved one in the KEGG MODULE database and is found in almost all the completely
sequenced genomes. The extensions are the pathways containing the reaction modules RMO001,
RMO033, RM032, and RMO002 for the biosynthesis of branched-chain amino acids (left) and basic
amino acids (bottom), and the pathways for biosynthesis of histidine and aromatic amino acids
(top right). It is interesting to note that the so-called essential amino acids that cannot be
synthesized in humans and other organisms generally appear in these extensions. Furthermore, the
bottom extension of basic amino acids appears to be most divergent containing multiple pathways
for lysine biosynthesis and multiple gene sets for arginine biosynthesis. Enzymes and metabolites



encoded in each genome are shown in green and the red boxes represent the absence of certain
enzymes lacking in the Staphylococcus xylosus genome.

Table S1. CheckM statistics from MAGs were obtained with their corresponding taxonomic
assignment made by GTDB-Tk.

Table S2. Summary statistics resulting from pangenome analysis. The results obtained by Roary
and Panaroo are shown.
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