Supplementary Table 2. Methods for Organoid Engineering. | Method | Timeline of Organoids | Advantages | Disadvantages | Applications | Ref. | |--------------------------|---|--|--|--|-------| | Bioprinting | Intestinal
organoids
(2021) | Controlled
cell-matrix
structures;
Precise 3D
biological
geometries | Resolution of printed material; Density of the tissue; Organ functionality | Functional organ formation; Large-scale manufacture of artificial organs for transplantation and regenerative medicine | 1,2 | | Droplet
microfluidics | Cholangiocyte
organoids
(2021), Inter-
organoid
platform
(2020), Lung
organoids
(2021) | Powerful platform for manipulating organoids; Establishment of complex organoids | Lacking control
over the cell-to-
cell ratios in the
structures | Assessing intra-organoid heterogeneity; Fabricating homogenous organoids | 3,4 | | Microwells | Intestinal
organoids
(2014),
Kidney
organoids
(2018), Liver
organoids
(2018) | Controlled cell aggregation and growth patterns | Small scale | Live-cell
manipulations;
Direct
quantitative
analysis of
organoids | 5-7 | | Gel
embedment | Intestinal
organoids
(2016-2017,
2021-2022); | Recapitulates
the ECM
components
of tissue | Non-defined
composition,
lack of control
over
spatiotemporal
cues | Increasing variability, decoupling stiffness, and enhancing the functionality of organoids | 8-16 | | Surface
tethering | Various
organoids | Provides ECM support and signaling cues | | Producing biomimetic scaffolds for organoid culture; Dissecting the | 17,18 | | | | | | stem cell
niche | | |--|--|--|-------------------------------|--|-------------| | Scaffold
anchoring | Intestinal
organoids
(2020) | Offers
flexibility with
specificity;
Provide
geometrical
cues | | Optimizing the combination of signals for modulating ASCs; Scaleup of organoids in a well-defined manner | 19,20 | | Micro-
fabricated
cages/organ-
on-chips | Liver organoids (2014), Pancreatic organoids (2019), Stomach organoids (2018), Kidney organoids (2019) | Can imitate key physiological and structural features of the organ | Absent of vascular structures | Drug
screening;
Disease
modeling;
Investigating
cell-cell, cell-
organ, and
organ-organ
interactions | 7,21-
28 |