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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

Review of Woo et al. 

I enjoyed reading this paper, it is on a very important topic and the results are interesting, 

informative and in my opinion appropriate for Nature Communications. An important feature of the 

paper is the robustness of the findings across data sets, which is an important issue in 

contemporary work on biomarkers. I am also excited how this work aligns with prior published 

studies that we have done on very similar topics, which is very important for the development of 

better neurocognitive accounts of psychiatric difficulties. 

My only general comment is that I think it would be appropriate for the authors to include work 

from my lab (e.g. by Karapanagiotidis et al., (2020) in their revision. In our study we have 

pursued these questions in a broad manner for several years. For example, Karapangiotidis et al., 

applied hidden markov models to resting state data and identified a state dominated by the default 

mode network, that was related to patterns of negative past related thought during the scan, and 

predicted higher levels of depression and anxiety. This is very likely a similar phenotype as the 

authors are studying. It is really encouraging that the two different methods examining neural 

dynamics can find very similar results and our prior study provides a key indication into the broad 

experiential landscape within which the current study is embedded within. More broadly when 

reading the paper I was very excited about the overlap between our more general findings about 

how internal focus operates and the specific findings here, and including these in a integrated way 

would be very beneficial to the community since it would help develop a process view of how 

ongoing thought can be both helpful and costly. 

Signed 

Jonathan Smallwood 

Minor points 

Line 206. I thought it was really interesting that the visual cortex has negative weights. We have 

argued that states of ongoing thought often have this property which we refer to as perceptual 

decoupling.(Smallwood, 2013). This phenomena may occur in default mode network states when 

memory dominates experience either when retrieving task relevant material (Murphy et al., 2019, 

Neuroimage) or when the memories are task irrelevant (Zhang et al., 2022, Elife). It may be 

worth commenting on this. 

Line 337. If I understand this part of the paper correctly, it is really cool that the IFG shows 

stronger connections with the DMN in rumination here. In one of our prior studies, Vatansever et 

al., (2016) we found that high IFG connectivity to regions of the DMN was linked to unpleasant 

verbal thoughts at rest. I don’t think we included the dMPFC seed in the analysis, but it is certainly 

well in line with the idea discussed here and provides important corroboration of both this study, 

and our prior work. I also found the IFG-saliency network finding. In our work we find that this 

system can both supress and facilitate the emergence of patterns of ongoing thoughts with both 

internal and external features. For example, Turnbull et al., (2018, Neuroimage, 2019, Nature 

Comms) found dlLPFC can suppress and enhance off task thought, and using the ventral attention 

as a seed region established that connectivity with motor cortex was linked to effectively 

controlling when off task though occurs. It may be that the findings here show the other side of 

the coin (i.e. a pattern linked to worse control). 

Line 405. Although our studies go along way to rule out this limitation, I think that it may be 

appropriate to make it clear that I don’t think the authors can distinguish how general the role of 

dMPFC rumination. It may well be that this regions role in complex thought is much broader than 

is seen in this study, contributing to multiple types of ongoing thoughts, rumination included. This 

study is very comprehensive in it’s goal to map this feature of the dMPFCs contribution to 

rumination but does not have the capacity to identify other functions (cf the role of the dLPFC we 



identified in Turnbull et al., 2019). Please note that in this prior study we also performed an 

echoes analysis which found that the dorsal medial subsystem of the DMN was likely key to the 

generation of off task states providing clear overlap with the current findings. In our study, 

however, this broader system can be linked to better control of thinking. 

Reviewer #2: 

Remarks to the Author: 

The manuscript by Kim et al, titled “A DYNAMIC FUNCTIONAL CONNECTIVITY MARKER FOR 

RUMINATION” and submitted to the journal Nature Communications, investigates a dynamic 

functional connectivity predictive model of rumination, a common symptom of depression. The 

study combines four small datasets to form an unique approach to develop a predictive brain 

marker. Overall, the study has several strengths, is well written, and shows promising results. The 

largest weakness in my opinion is that at points the paper feels like it is written in a vacuum, 

without providing justifications for the choices that they make and how those choices affect 

downstream interpretation of the results. . I have signed this review for transparency and am 

happy to discuss these comments if they are unclear. – Dustin Scheinost 

A major comment I have is that the authors could better justify their approach and provide 

comparisons to other approaches. Their approach is novel and appears to perform well but at 

times details about the exact choices in models were made and comparisons to see if the choices 

were optimal would be helpful. For example, 

Does the dynamic connectivity predict better than static connectivity? I think the authors need to 

show results based on static connectivity. Otherwise, it is hard to justify starting with dynamic 

functional connectivity. Alternatively, a strong motivation for dynamic functional connectivity could 

be presented in the introduction. Have predictive models of static connectivity notably failed in 

predicting depression or rumination symptoms? The literature is mixed in terms of dynamic 

functional connectivity being better than static connectivity for predictive modeling and brain 

behavior associations in general. 

Similarly, the choice of Dynamic Conditional Correlation (DCC) should be explained. How is this 

better suited for the task at hand over the large number of dynamic functional connectivity 

methods currently available. 

While targeting the default mode networks is well justified, why are all seed regions treated 

independently rather than combining or mix & matching different seeds? Combine all the imaging 

features together into a single model may result in a more generalizable model. 

Relatedly, the authors appear to prefer sparsity in their approach. The lasso model, the validation 

approach of choosing the “winning” models at each dataset, the focusing on a single seed of the 

DMN at a time, and the refinement step will all lead to a small number of features being retained 

in a single model. Which are all fine, but these choices should be discussed. In particular, there is 

a confirmation bias of sorts in the discussion. The authors chose to look at the DMN because of its 

role in depression, find that a key node of the DMN is predictive of depression, and then discuss 

the DMN role in depression. But a different approach that predict similarly well with different brain 

regions would lead to a different discussion. I guess is this all just to say that I feel that the 

authors should caution how their modeling choices lead to the studies neurobiological features. 

Why were each dataset chosen for there specific role (training, testing, validation)? While the 

training dataset has the largest sample size, the sample sizes of all datasets are of the same 

order. If the authors iterated through every combination of assigning a dataset to training, testing, 

and validation, would the same models “win”? Along the same lines, why did the authors take this 

approach to cross-validation compared to a more standard 10-fold cross validation (even if in the 

supplement) could be a value to the field. 

Finally, why not combine all the behavioral data into a single model? As the predictive model show 

pretty good cross prediction of results, the brain signatures may not be independent and 

predicting a latent factor (say from a principal component analysis) of all measures often produces 

a better prediction results. 

I appreciate adding a depression dataset as a final validation. But I worry about the low number of 

individuals (n = 35) with depression, especially given the heterogeneous nature of depression. 

There are multiple depression datasets available fully processed and open sources (see REST-

meta-MDD Consortium) as well as the other sites in the Strategic Research Program for Brain 

Sciences dataset. 



There appears to be an outlier in independent test sample 2. It likely doesn’t affect the results, but 

the authors may want to check. 

A more minor point: I think the paper could increase the diversity of citations as opposed to works 

from the author’s extanded group. For example, it could be beneficial to cite: Taxali et al 2021 

when discussing that models have greater reliability of than edge level features. 

Reviewer #3: 

Remarks to the Author: 

From this reviewer’s perspective, the best aspect of the manuscript is the pattern of dmPFC 

findings. Across cultures and in the context of assessing the nebulous and ephemeral phenomenon 

of rumination, it does seem like something about the dmPFC is important. The potential 

importance of this region as opposed to other DMN structures is presented well in the introduction. 

In developing the work, the authors might choose to determine if other dmPFC connectivity 

metrics do or do not predict depressive rumination. If they do, then we might conclude that dmPFC 

relations with other structures are important in general; if not, then we might reach the even more 

useful conclusion that connective variability of dmPFC is especially important. 

Less good are the biomarker claims made and implied throughout the manuscript. The results are 

probably consistent but they are not particularly strong, with many parameters coming together to 

explain 10% of the variance. Indeed, up until the model predicts BDI in the depressed sample, the 

work smacks of type-I error with seven of 60 models surviving round 1 and one of seven surviving 

round 2 all the while using lenient FDR corrections and one-sided statistical tests. 

The authors state, “We therefore hypothesize that components of the dorsal medial system— 

especially connectivity with the dmPFC—may be a key neural marker important for both trait 

and state rumination.” How might a region of the brain mark both a cognitive phenomenon in 

action as well as the tendency for that phenomenon to occur in the absence of that phenomenon? 

This is important to consider in light of claims that the imaging results might provide “a direct 

window into depression-relevant brain processes.” This is especially noteworthy in consideration of 

the lack of reported results from the thought-probe resting fMRI approach from Study 3. This scan 

would seem to provide the only means close to assessing rumination at the state level. 

In one sense, the authors’ model predicting BDI in a diagnosed depressed sample is quite nice in 

that the model was trained on rumination of three varieties, only one of which associates strongly 

with levels of depressive symptoms which, themselves, fluctuate daily in depressed persons. In 

another sense, it’s a stretch to contend that dmPFC DCC with several brain regions is a marker of 

rumination in depression when rumination in depression was not formally assessed. 

To be faithful to the constructs of rumination presented, the authors should make clear that what 

they are calling “depressive rumination” is rumination that is correlated to levels of depressive 

symptoms in a depressed cohort studied by Treynor et al. The original notion was to study 

rumination in depression that was not part and parcel of depressive symptomatology—i.e., 

brooding and pondering. 

In Study 3, the authors “regressed out thought sampling-related fMRI signal.” This might give 

prospective readers the impression that the effects of conducting thought sampling five times 

during a putative resting-state scan did not otherwise interfere with cognitive and affective 

processes that occurred during the scan. Thought sampling is a necessary and potentially powerful 

tool but there is little to do about resulting “Heisenberg effects.” In this vein, it is possible that 

prompting subjects about their thought content caused more internal self-focus than would have 

otherwise been the case which then biased patterns of resting-brain connectivity toward the 

authors’ theoretical stance. 

The concept of reliability is a cornerstone of the authors’ study. It is noteworthy, then, that three 

of the four sub-studies collected less BOLD data than the minimum recommended in order to 

achieve adequate test-retest reliability of rsfMRI-derived metrics (e.g., 

https://www.sciencedirect.com/science/article/pii/S0149763414001262). 



Calculating correlations between changes in delta corr across two studies in the virtual lesion 

analysis approach is a clever way of showing the statistical reliability of the overall pattern of 

“lesion” effects. In the end, though, it also shows that there is only ~40% correspondence 

between models. 
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Ms. No.: NCOMMS-022-05713 
  
We would like to thank the reviewers for their insightful comments and helpful suggestions and the 
editors of Nature Communications for the opportunity to address these comments. In response to the 
constructive feedback, we performed additional analyses and revised the manuscript as indicated in 
the point-by-point responses below.  
 
Summary of main changes: 

² We added four additional supplementary figures (Supplementary Figs. 3-6) and three 
supplementary tables (Supplementary Tables 2-4) to address many of Reviewer 2 and 3’s 
comments.  

² We added one additional (non-clinical) test dataset as a supplementary dataset. A brief 
description of the dataset and the results were added in Supplementary Fig. 6.  

² We changed the title of the manuscript to “A Dorsomedial prefrontal cortex-based dynamic 
functional connectivity model of rumination” 

 

We hope our revisions satisfactorily addressed all the issues raised. Again, we appreciate all your 
insightful comments and the opportunity to improve the manuscript. 
 
(Font color legends: Reviewers’ comments are in purple, our responses are in black, and the 
revisions are in red.) 
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Reviewer #1 

“I enjoyed reading this paper, it is on a very important topic and the results are interesting, informative 
and in my opinion appropriate for Nature Communications. An important feature of the paper is the 
robustness of the findings across data sets, which is an important issue in contemporary work on 
biomarkers. I am also excited how this work aligns with prior published studies that we have done on 
very similar topics, which is very important for the development of better neurocognitive accounts of 
psychiatric difficulties.” 

Response: We thank the reviewer for the positive evaluation of our paper. We are excited to hear that 
our study builds on your prior work and hope that such findings could contribute to a better 
understanding of the brain mechanisms of rumination and spontaneous cognition.  
 
R1-1: “My only general comment is that I think it would be appropriate for the authors to include work 
from my lab (e.g. by Karapanagiotidis et al., (2020) in their revision. In our study we have pursued 
these questions in a broad manner for several years. For example, Karapangiotidis et al., applied 
hidden markov models to resting state data and identified a state dominated by the default mode 
network, that was related to patterns of negative past related thought during the scan, and predicted 
higher levels of depression and anxiety. This is very likely a similar phenotype as the authors are 
studying. It is really encouraging that the two different methods examining neural dynamics can find 
very similar results and our prior study provides a key indication into the broad experiential landscape 
within which the current study is embedded within. More broadly when reading the paper I was very 
excited about the overlap between our more general findings about how internal focus operates and 
the specific findings here, and including these in a integrated way would be very beneficial to the 
community since it would help develop a process view of how ongoing thought can be both helpful and 
costly.” 
 
Response: We appreciate the reviewer’s comment. It was interesting and exciting to see that 
Karapanagiotidis et al.1 that used a different analysis method—i.e., the Hidden Markov Model—
reported similar findings to our study. In our revision, we tried to integrate Karapanagiotidis et al.1 to 
provide a more comprehensive discussion of our findings. 

Revision to the main manuscript, p.16 (Discussion):  
Beyond the regional dynamics, the importance of network-level dynamics in rumination has 
been suggested in previous studies1,2. For example, Karapanagiotidis et al.1 showed a close 
relationship between trait negative affectivity (e.g., anxiety, depression, and rumination) and 
the DMN-dominant states identified by hidden Markov modeling. In addition, Goodman et 
al.2 reported that the dwell time and state transition frequency of DMN-dominant states 
identified with the coactivation pattern analysis were correlated with depressive symptoms. 
Converging evidence from the studies that used different analysis methods highlights the 
importance of the dynamics of the DMN in rumination. It also implies a relationship between 
spatiotemporal characteristics of DMN states (e.g., frequency, dwelling time) and our 
internal-oriented thoughts beyond rumination. In addition to the DMN, our study found that 
some brain regions outside of the DMN, such as the left IFG from the ventral attention 
network, are also crucial for rumination, and thus future studies that show how across-
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network dynamics are related to rumination would be required for our better understanding 
of neural dynamics underlying the process. 

 
R1-2: “Line 206. I thought it was really interesting that the visual cortex has negative weights. We 
have argued that states of ongoing thought often have this property which we refer to as perceptual 
decoupling.(Smallwood, 2013). This phenomena may occur in default mode network states when 
memory dominates experience either when retrieving task relevant material (Murphy et al., 2019, 
Neuroimage) or when the memories are task irrelevant (Zhang et al., 2022, Elife). It may be worth 
commenting on this.” 
 
Response: We thank the reviewer for the insightful comment on the meaning of the negative weights 
within the visual cortex regions. We added the following discussion to the manuscript: 

Revision to the manuscript, p.18 (Discussion):  
Interestingly, regions within the visual cortex had negative weights in our model, indicating 
that more stable connections between the dmPFC and visual areas are predictive of a 
higher level of rumination. Considering together with the fact that the visual cortex regions 
showed weak mean functional connectivity with the dmPFC (Fig. 4b), this negative 
predictive weight may reflect the tendency of diverting one’s attention away from perception, 
also known as “perceptual decoupling,” 3,4 to be predictive of rumination. This is consistent 
with a recent study5, in which the DMN activity related to internally oriented cognition was 
decoupled with the activity in visual cortex regions at rest or during tasks. In addition, the 
decoupling was enhanced when participants were engaged in autobiographical memory 
recall.  

 
R1-3: “Line 337. If I understand this part of the paper correctly, it is really cool that the IFG shows 
stronger connections with the DMN in rumination here. In one of our prior studies, Vatansever et al., 
(2016) we found that high IFG connectivity to regions of the DMN was linked to unpleasant verbal 
thoughts at rest. I don’t think we included the dMPFC seed in the analysis, but it is certainly well in line 
with the idea discussed here and provides important corroboration of both this study, and our prior 
work. I also found the IFG-saliency network finding. In our work we find that this system can both 
supress and facilitate the emergence of patterns of ongoing thoughts with both internal and external 
features. For example, Turnbull et al., (2018, Neuroimage, 2019, Nature Comms) found dlLPFC can 
suppress and enhance off task thought, and using the ventral attention as a seed region established 
that connectivity with motor cortex was linked to effectively controlling when off task thought occurs. It 
may be that the findings here show the other side of the coin (i.e. a pattern linked to worse control).” 
 
Response: The reviewer points out very interesting connections to his work. In response, we added 
the following discussion when speculating on the implication of the IFG: 
 

Revision to the manuscript, p.16-17 (Discussion):  
This is also consistent with Vatansever et al.6, which used the canonical correlation analysis 
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(CCA) to simultaneously decompose resting-state fMRI connectivity and behavioral 
components. They reported that the brain component that comprises left IFG and a part of 
the dorsal medial subsystem was related to verbal, negative, and deliberate thoughts.  

 
R1-4: “Line 405. Although our studies go along way to rule out this limitation, I think that it may be 
appropriate to make it clear that I don’t think the authors can distinguish how general the role of 
dMPFC rumination. It may well be that this regions role in complex thought is much broader than is 
seen in this study, contributing to multiple types of ongoing thoughts, rumination included. This study 
is very comprehensive in it’s goal to map this feature of the dMPFCs contribution to rumination but 
does not have the capacity to identify other functions (cf the role of the dLPFC we identified in Turnbull 
et al., 2019). Please note that in this prior study we also performed an echoes analysis which found 
that the dorsal medial subsystem of the DMN was likely key to the generation of off task states 
providing clear overlap with the current findings. In our study, however, this broader system can be 
linked to better control of thinking. ” 
 
Response: We agree with the reviewer that it is difficult to pinpoint which cognitive functions are 
supported by the dmPFC with our data due to the limitation of resting-state fMRI. Thus, we have 
added the following text into the discussion: 

Revision to the manuscript, p.20 (Discussion) : 
Lastly, our study cannot pinpoint which cognitive functions are supported by the dmPFC due 
to the limitation of resting-state fMRI and our lack of measurement of concurrent thoughts. In 
future studies, researchers should use task-based fMRI to specify which types or contents of 
ongoing thoughts are linked to the region's dynamics. Turnbull et al., 7 provides a relevant 
example, in which they demonstrated that the left dorsolateral prefrontal cortex prioritizes 
individuals’ internal thoughts when a situation is non-demanding by showing the region’s 
different connectivity profiles with DMN when the task requires high or low demands. Such 
specification of the single region will be important for enhancing our understanding of 
cognitive functions. 

 
However, we added new supplementary results (detailed in R3-2 below) by applying the model to an 
additional supplementary dataset, which had an interesting experimental design feature—we 
administered two 14-min resting-state runs before and after participants watched a short emotional 
movie (around 10 mins long). This movie was about a mother meeting her daughter who passed away 
through virtual reality, and we selected this movie to enhance internally oriented cognitive states. As 
shown in Supplementary Figure 6 (newly added in this revision), our model showed a significant 
prediction of depressive rumination only with the post-movie resting-state data, r = 0.228, p = 0.040. 
With the pre-movie resting-state data, our model showed non-significant prediction, r = -0.038, p = 
0.613. These results provide an interesting interpretation (and hypothesis) that inducing a ruminative 
cognitive state would increase the prediction performance of our dmPFC-based predictive model. We 
believe that these new analyses give more functional interpretability to our model, yet as the reviewer 
points out, from this study alone, we cannot shed light on possible additional or broader roles of the 
dmPFC that may emerge more robustly in other contexts. 
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Supplementary Figure 6. Testing the model on an additional resting-state dataset. We 
tested our model on an additional dataset (n = 60, age = 23.35 ± 1.91 [mean ± SD], 30 
males, recruited from Suwon area similar to Studies 2 and 3), which has an interesting 
experimental design feature—we administered two resting-state scans (each run was 14 
minutes long) before and after participants watched a short emotional movie (9 minutes and 
38 seconds long). We conducted this additional model test to further test our model’s 
generalizability and also to see whether our model showed different prediction performances 
depending on different resting-state conditions 8. This movie was about a mother meeting 
her daughter who passed away through virtual reality, and we selected this movie to 
enhance internally oriented cognitive states. Scan parameters and preprocessing steps 
were the same as in Study 2. We also administered the Korean version of the RRS. (a) After 
each resting-state run, we asked a few questions to participants about their cognitive and 
affective states during the run, and as the plots show, participants had significantly higher 
levels of self-relevant thought and alertness. Statistical significance was calculated with a 
paired t-test (df = 59). *: p < .05, ***: p < .001. (b) Our model showed a significant prediction 
of depressive rumination only with the post-movie resting-state data, r = 0.228, p = 0.040. 
With the pre-movie resting-state data, our model showed non-significant prediction, r = -
0.038, p = 0.613. 
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Reviewer #2 
 
“The manuscript by Kim et al, titled “A DYNAMIC FUNCTIONAL CONNECTIVITY MARKER FOR 
RUMINATION” and submitted to the journal Nature Communications, investigates a dynamic 
functional connectivity predictive model of rumination, a common symptom of depression. The study 
combines four small datasets to form an unique approach to develop a predictive brain marker. 
Overall, the study has several strengths, is well written, and shows promising results. The largest 
weakness in my opinion is that at points the paper feels like it is written in a vacuum, without providing 
justifications for the choices that they make and how those choices affect downstream interpretation of 
the results. I have signed this review for transparency and am happy to discuss these comments if 
they are unclear.” 
 
Response: We appreciate the reviewer’s thoughtful comments, many of which concerned details of 
our methodological approach. In the revision, we have clarified the rationale for our choices, and we 
provide detailed responses regarding the reviewer’s concerns below. 
 
R2-1. “Does the dynamic connectivity predict better than static connectivity? I think the authors need 
to show results based on static connectivity. Otherwise, it is hard to justify starting with dynamic 
functional connectivity. Alternatively, a strong motivation for dynamic functional connectivity could be 
presented in the introduction. Have predictive models of static connectivity notably failed in predicting 
depression or rumination symptoms? The literature is mixed in terms of dynamic functional 
connectivity being better than static connectivity for predictive modeling and brain behavior 
associations in general.” 
 
Response: We appreciate the reviewer’s comments about the importance of providing comparisons 
with static connectivity. Our focus on dynamic connectivity was theoretically motivated based on the 
importance of dynamic features inherent to rumination. In other words, we asked whether the 
persistent nature of rumination (i.e., a lack of cognitive temporal variability) would be captured by the 
variance of the DMN dynamics (i.e., temporal persistency of the neural connectivity). Nevertheless, we 
agree with the reviewer that comparing the dynamic connectivity results to the static connectivity ones 
should be informative (as also mentioned in R3-1). Particularly, this can also provide a connection to 
previous literature that showed altered static connectivity of the dMPFC in MDD patients 9,10. 
Therefore, we added additional static connectivity results to the manuscript in Supplementary Table 
2. The results show that the models based on static connectivity did not show significant prediction 
performances across datasets. Therefore, across multiple datasets, the dynamic connectivity of the 
dMPFC showed better prediction performances for trait rumination than static connectivity. We have 
modified the manuscript to both reflect these new findings and clarify our a priori decision of using 
dynamic connectivity as input features.  
 

Revision to the manuscript, p.4 (Introduction):  
In light of this important feature of rumination, we hypothesized that the variance of dynamic 
functional connectivity would serve as an important predictor of rumination. Static or 
averaged dynamic DMN connectivities would reflect whether the connections between 
regions are high or low during the resting-state scan and have been one of the key 
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functional brain features for characterizing multiple clinical conditions 9,11,12. However, such 
static connectivity measures cannot capture how stable or variable they are over time, which 
we hypothesized to be a key feature of rumination. Despite the importance of the variance of 
the connectivity, only a few studies have explored the relevance of such measures to 
rumination 13,14. In addition, no studies of which we are aware have developed dynamic 
connectivity-based predictive models that can predict trait rumination in new participants. 

Revision to the manuscript, p.7 (Results): 
We also trained and tested the models with static connectivity as input features, but none of 
the models survived (Supplementary Table 2), suggesting that the dynamic functional 
connectivity is more sensitive to individual differences in rumination than static connectivity.  

Supplementary Table 2. Training and testing results using static connectivity. 

  Training (n = 84)   Test1 (n = 61) 

Seeds 
Brood  Depressive  Reflective  Brood  Depressive  

corr permP   corr permP   corr permP   corr permP   corr permP   

dMPFC 0.087 0.214   0.131 0.116   0.221 0.022        

vMPFC 0.018 0.440  0.129 0.122  -0.344 0.999        

HF (L) 0.037 0.371  0.101 0.188  0.024 0.414        

HF (R) -0.032 0.615  -0.063 0.723  -0.073 0.748        

LTC (L) 0.158 0.074  0.040 0.360  -0.248 0.989        

PCC (L) 0.107 0.167  -0.185 0.954  -0.193 0.959        

PHC (L) 0.079 0.234  -0.130 0.883  -0.006 0.518        

Rsp (L) 0.142 0.098  -0.065 0.716  -0.175 0.942        

TPJ (L) 0.052 0.326  -0.113 0.847  -0.200 0.967        

LTC (R) 0.244 0.017  -0.175 0.944  -0.109 0.838        

PCC (R) 0.284 0.005  -0.034 0.623  0.045 0.346        

PHC (R) -0.085 0.778  -0.187 0.955  -0.287 0.996        

Rsp (R) -0.268 0.992  -0.277 0.995  -0.351 1.000        

TPJ (R) -0.122 0.862  -0.031 0.614  -0.082 0.769        

pIPL (L) 0.418 0.000  0.377 0.000  0.262 0.010  -0.039 0.615  0.024 0.432  

TempP (L) 0.219 0.019  -0.088 0.786  0.234 0.017        

aMPFC (L) -0.071 0.737  -0.119 0.859  0.054 0.309        

pIPL (R) -0.093 0.796  -0.116 0.854  -0.090 0.788        

TempP (R) 0.234 0.014  0.151 0.088  0.281 0.006        

aMPFC (R) 0.192 0.041   0.176 0.053   0.191 0.038           

Note. Using the 20 regions-of-interest (ROIs) within the default mode network, we trained 
and tested predictive models using static functional connectivity as input features. We 
corrected the significance for the multiple tests with the false discovery rate (FDR) q < .05 (p 
< 1e-4). (L): Left; (R): Right. dmPFC: Dorsomedial prefrontal cortex, vmPFC: Ventromedial 
prefrontal cortex, HF: Hippocampal formation, LTC: Lateral temporal cortex, PCC: Posterior 
cingulate cortex, PHC: Parahippocampal cortex. Rsp: Retrosplenial cortex, TPJ: 
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Temporoparietal junction, pIPL: posterior inferior parietal lobule, TempP: Temporal pole, 
aMPFC: anterior medial prefrontal cortex. 

 
R2-2. “Similarly, the choice of Dynamic Conditional Correlation (DCC) should be explained. How is 
this better suited for the task at hand over the large number of dynamic functional connectivity 
methods currently available.” 
 
Response: Our choice of using the dynamic conditional correlation (DCC) was motivated by Lindquist 
et al., 201415, which conducted extensive tests with multiple dynamic connectivity methods including 
1) a sliding-time window method with various window sizes, 2) a tapered sliding-window method, 3) an 
exponential weighted moving average method, and 4) the DCC. The results showed that the DCC was 
the best in detecting dynamic variability, which was our main target as well. In addition, the DCC has a 
strength that it doesn’t require arbitrary choice of hyperparameters (e.g., size of the sliding windows). 
In our revision, we added the justification of our choice of the DCC.  

Revision to the manuscript, p.25 (Methods): 
We chose to use the DCC based on results from Lindquist et al. 15, which tested multiple 
dynamic functional connectivity methods including the sliding-time windows method with 
various window sizes and reported that the DCC showed a good balance between the 
sensitivity and specificity in estimating the variance of dynamic functional connectivity. In 
addition, the DCC is known to have a higher level of test-retest reliability in estimating the 
variance16 and does not require any additional arbitrary hyperparameters. 

 

R2-3: “While targeting the default mode networks is well justified, why are all seed regions treated 
independently rather than combining or mix & matching different seeds? Combine all the imaging 
features together into a single model may result in a more generalizable model.” 
 
Response: Our seed-based approach stems from our efforts to exploit previous literature. Previous 
literature on rumination has shown results ranging from the network level, sub-network level, and 
regional level. We reasoned that the mixed findings at the network and sub-network level studies 
require a regional level investigation. In particular, the dmPFC has appeared to be a key DMN region 
for rumination in previous literature, and we wanted to contribute to the region-level investigation by 
testing the dmPFC in the predictive modeling context. We agree that combining all the features would 
provide a better performance, but we believe that our seed-based approach can ensure better 
interpretability. The next comment is also relevant. Therefore, please see our continued response 
below.  
 
 
R2-4: “Relatedly, the authors appear to prefer sparsity in their approach. The lasso model, the 
validation approach of choosing the “winning” models at each dataset, the focusing on a single seed of 
the DMN at a time, and the refinement step will all lead to a small number of features being retained in 
a single model. Which are all fine, but these choices should be discussed. In particular, there is a 



NCOMMS-22-05713 revision   9 

 

confirmation bias of sorts in the discussion. The authors chose to look at the DMN because of its role 
in depression, find that a key node of the DMN is predictive of depression, and then discuss the DMN 
role in depression. But a different approach that predict similarly well with different brain regions would 
lead to a different discussion. I guess is this all just to say that I feel that the authors should caution 
how their modeling choices lead to the studies neurobiological features.” 
 
Response: We thank the reviewer for this comment, which gave us a chance to justify our approach 
and clarify the implication of our findings in more depth. A big advantage prioritized in the current 
study is the ability to build on previous concepts and integrate the findings with previous literature 
(including animal literature), the majority of which are region- or pathway-centered. We appreciate the 
tension with more integrative models with potentially greater predictive power, but region-based 
models with sparse connections allow us to directly integrate with prior literature in a way that might 
otherwise be impossible. We are sensitive to the trend in the literature of selecting and confirming 
prior findings (i.e., selection and confirmation biases), which we have pointed out in many of our 
previous papers. For example, we suspect this has happened with the amygdala and threat learning, 
for example, and more strongly predictive regions have been missed (e.g., ref. 17). The other side of 
this coin is, however, is that the hypotheses-driven approach can dramatically increase power and 
reduce false positives. Here we attempted to strike the balance by testing the dmPFC with other 
regions across the DMN—basically placing the dmPFC in the distribution. In addition, given our 
limited power due to small sample sizes, we reasoned the current approach provides a good balance 
between type I and type II errors. In our revision, we added more detailed discussion on this issue.  

Revision to the manuscript, p. 4 (Introduction): 
Interpreted in this framework, a dorsal medial system is the most reasonable candidate 
important for the repetitive high-level appraisal that characterizes ruminative thinking. 
Particularly, the dorsal medial prefrontal cortex (dmPFC) has been suggested to be a core 
brain region for rumination. It has been considered a “dorsal nexus” that serves as a core 
that modulates the connectivity related to depression11, and the heightened connectivity of 
the dmPFC was a unique feature of major depressive disorder (MDD) compared to other 
mental disorders12 (see also refs. 18,19). We, therefore, hypothesized that dmPFC 
connectivity may be a key brain region important for trait rumination. However, there have 
also been some inconsistent reports in the literature. For example, the static functional 
connectivity strength within the dorsal medial system was increased9 or decreased20 in 
individuals with MDD (see also ref.21,22). Collectively, these findings highlight the need for 
adopting a predictive modeling approach, which could provide more reliable results 23. 
Furthermore, in addition to the dmPFC, we also tested other brain regions across the DMN 
to minimize the potential bias in our findings. 

Revision to the manuscript, p.18-19 (Discussion):  
First, the current study aimed to balance sparsity with complexity by focusing on multiple 
seed regions across the DMN, by permitting target regions across the entire brain, and by 
employing Lasso regression to build predictive models of rumination. Although restricting the 
search space to DMN seeds may increase selection and confirmation bias in our findings, 
the approach builds on a rich human and animal literature pointing to the role of the DMN in 
processes relating to emotion and rumination, and allows for easier interpretation when 
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integrating our findings with prior literature in a way that might otherwise be impossible with 
models allowing for increased complexity. Our approach, which allows for both hypothesis-
driven and exploratory findings, is also advantageous in its ability to increase power, reduce 
false positives, and balance type I and type II errors. However, future studies, especially if 
well-powered, could benefit from a more exploratory approach (e.g., combining multiple 
models, including more features, using less sparse models, etc.). 

 
 
R2-5: “Why were each dataset chosen for there specific role (training, testing, validation)? While the 
training dataset has the largest sample size, the sample sizes of all datasets are of the same order. If 
the authors iterated through every combination of assigning a dataset to training, testing, and 
validation, would the same models “win”? Along the same lines, why did the authors take this 
approach to cross-validation compared to a more standard 10-fold cross validation (even if in the 
supplement) could be a value to the field.” 
 
Response: We determined each dataset’s role a priori, and the reasons were as follows. The first and 
most important reason was the chronological order of the data collection. That is, we collected the 
training dataset (Study 1) first, and then the validation and testing datasets (Studies 2 and 3). We 
started this project when we had only the Study 1 dataset, and thus the decision of using the dataset 
for training was natural. Second, as the reviewer noted, the Study 1 dataset has the largest sample 
size (n = 84, compared to n = 61 and 48 for Studies 2 and 3, respectively) and is also ethnically most 
diverse, i.e., 34 Non-Hispanic White Americans, 30 Hispanic White Americans, and 20 African 
American. Also, Study 1 data had the largest variance in depressive rumination scores 
(Supplementary Fig.3). Given that increasing training data variability usually improves the 
generalizability of models, using Study 1 data as the training dataset is reasonable. We made the 
reasons for our a priori choices clearer in our revision.  
 

Revision to the manuscript, p. 26 (Methods): 
Our decision to use Study 1 as the training dataset was made a priori because it had the 
largest sample size (n = 84), the most racial-ethnic diversity (see ‘Participants’ section), and 
the largest variance in trait rumination scores across participants (Supplementary Fig. 3), 
all of which can help improve the generalizability of our model. 
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Supplementary Figure 3. Distributions of the depressive rumination scores across 
datasets. Study 1 dataset showed the largest variance in the depressive rumination scores. 
For Study 1, mean = 16.69, SD = 5.627; for Study 2, mean = 13.03, SD = 4.324; for Study 3, 
mean = 13.77, SD 4.323..  

 

In addition, following the reviewer’s suggestion, we conducted additional analyses to examine whether 
shuffling the role of datasets would yield similar results. We added the results to the manuscript as 
Supplementary Tables 3-4 (see below), which showed that no models survived the generalization 
test. We also tested 10-fold cross-validation, which also yielded non-significant results (r = .106, p 
= .164, permutation test). These results seemed discouraging, but we reasoned that it could be due to 
the methodological characteristics of Lasso regression. For example, to minimize overfitting, we did 
not conduct hyperparameter tuning (i.e., lambda) in Lasso regression, which means that we used the 
Lasso regularization only to reduce the number of predictors to nobs – 1, which is the largest number of 
predictors that we can keep. Because of this, the number of predictors became dependent on the 
number of observations (i.e., sample size) of the training dataset. Then, if the successful prediction of 
rumination requires at least a certain number of features, the shuffling and 10-fold cross-validation 
would fail because, compared to the model trained on Study 1 dataset, which has the largest sample 
size, the models trained on Study 2 and Study 3 datasets will have a smaller number of predictors. 
Similarly, a 10-fold cross-validation that used 90% of the sample for training in each fold ended up 
testing models with a fewer number of predictors compared to the leave-one-subject-out cross-
validation.  
 
To test this hypothesis, we combined Study 2 and 3 datasets (n = 109) and trained a model using the 
combined dataset, and used Study 1 dataset (n = 84) for independent testing. In addition, we tested 
the models with varying numbers of predictors and also tested 10-fold cross-validation. The combined 
dataset provides a sample size large enough to keep the comparable number of predictors as the 
original training dataset even with the 10-fold cross-validation, allowing us to test whether the 
successful prediction of rumination indeed requires at least a certain number of predictors to be 
retained. As shown in a figure below (which we added to the manuscript as Supplementary Fig. 4), 
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we found that the dmPFC-based predictive model showed significant prediction performance in both 
training and testing datasets only when the number of predictors exceeded 80 (Supplementary Fig. 
4). This can explain why training models with a small sample-size datasets (i.e., Studies 2 and 3, and 
10-fold cross-validation) failed to show significant model performance. We added these results and 
discussions to our revision.  
 

Revision to the manuscript, p. 7-9 (Results): 
In addition, to examine the robustness of our results, we repeated our analysis by shuffling 
and combining the training, validation, and testing datasets. When we trained predictive 
models with the Study 2 or Study 3 dataset alone, we could not replicate the results 
(Supplementary Tables 3 and 4). However, when we trained the models with the combined 
dataset of Studies 2 and 3 (n = 109) and tested the model on the Study 1 dataset, we were 
able to replicate the original results—the dmPFC-based predictive model showed significant 
prediction performance in both training and testing datasets, but it did so only when the 
number of predictors was greater than 80 (Supplementary Fig. 4). These additional 
analyses suggest that the successful prediction of rumination requires at least a certain 
number of predictors. 
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Supplementary Table 3. Prediction results using Study 2 as a training dataset. 

  Training (n = 61)   Test1 (n = 84) 

Seeds 
Brood  Depressive  Reflective  Brood  Depressive  Reflective 

corr permP   corr permP   corr permP   corr permP   corr permP   corr permP 
dMPFC 0.191 0.072  -0.142 0.862  0.396 0.001        0.042 0.351 
vMPFC 0.398 0.001  -0.173 0.907  0.007 0.467  0.066 0.273       
HF (L) 0.091 0.241  0.025 0.422  0.429 0.001        -0.216 0.978 
HF (R) -0.201 0.941  -0.304 0.991  -0.209 0.954          
LTC (L) 0.209 0.053  0.048 0.349  -0.211 0.946          
PCC (L) -0.039 0.625  -0.098 0.775  -0.139 0.848          
PHC (L) -0.198 0.937  -0.227 0.964  0.366 0.001        -0.076 0.762 
Rsp (L) 0.274 0.015  0.040 0.383  -0.155 0.884          
TPJ (L) 0.193 0.068  0.103 0.216  -0.079 0.720          
LTC (R) -0.276 0.984  0.171 0.097  -0.100 0.787          
PCC (R) -0.204 0.943  0.175 0.089  -0.223 0.959          
PHC (R) 0.060 0.339  0.302 0.009  0.258 0.022          
Rsp (R) 0.154 0.113  0.009 0.470  0.384 0.001        -0.120 0.861 
TPJ (R) 0.237 0.032  0.308 0.009  -0.231 0.966          
pIPL (L) -0.059 0.673  0.157 0.113  0.349 0.004        -0.170 0.938 

TempP (L) 0.172 0.090  0.323 0.004  0.442 0.000     -0.002 0.511  0.078 0.238 
aMPFC (L) -0.076 0.713  0.334 0.004  0.226 0.038     -0.036 0.617    

pIPL (R) -0.101 0.783  -0.002 0.518  -0.057 0.661          
TempP (R) 0.208 0.054  -0.205 0.936  0.201 0.059          
aMPFC (R) 0.080 0.273   0.262 0.021   -0.006 0.519                   

Note. Using the same 20 default mode network regions-of-interest as in Table 1, we trained and tested the models using the 
variance of seed-based dynamic functional connectivity. The difference is that this shows the results of using Study 2 as a training 
dataset. We corrected for multiple comparisons with the false discovery rate (p < .009 for FDR q < .05). Here, we used Study 1 
dataset for validation. (L): Left; (R): Right. dmPFC: Dorsomedial prefrontal cortex, vmPFC: Ventromedial prefrontal cortex, HF: 
Hippocampal formation, LTC: Lateral temporal cortex, PCC: Posterior cingulate cortex, PHC: Parahippocampal cortex. Rsp: 
Retrosplenial cortex, TPJ: Temporoparietal junction, pIPL: posterior inferior parietal lobule, TempP: Temporal pole, amPFC: 
anterior medial prefrontal cortex 
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Supplementary Table 4. Prediction results using Study 3 as a training dataset. 

  Training (n = 48)   Test1 (n = 84)   Test2 (n = 61)   

Seeds 
Brood  Depressive  Reflective  Brood   Reflective  Brood 

corr permP   corr permP   corr permP   corr permP     corr permP   corr permP 
dMPFC 0.009 0.473  -0.056 0.656  0.158 0.144           
vMPFC 0.411 0.002  0.215 0.073  -0.175 0.880           
HF (L) -0.108 0.771  -0.004 0.513  0.110 0.224           
HF (R) 0.527 0.000  0.152 0.155  -0.083 0.721  0.187 0.041      -0.067 0.692 
LTC (L) -0.150 0.845  -0.195 0.911  0.292 0.022           
PCC (L) -0.478 1.000  0.101 0.250  0.390 0.004           
PHC (L) 0.289 0.023  0.145 0.169  0.436 0.002      0.075 0.249    
Rsp (L) -0.306 0.983  -0.194 0.903  -0.323 0.989           
TPJ (L) 0.025 0.432  0.082 0.297  -0.414 0.999           
LTC (R) -0.143 0.835  -0.280 0.971  0.077 0.297           
PCC (R) 0.351 0.007  -0.285 0.975  -0.221 0.934           
PHC (R) 0.064 0.332  -0.290 0.980  -0.515 1.000           
Rsp (R) -0.043 0.610  0.339 0.008  0.088 0.263           
TPJ (R) 0.026 0.422  -0.111 0.777  -0.227 0.937           
pIPL (L) 0.344 0.009  -0.136 0.816  0.264 0.037           

TempP (L) -0.042 0.620  0.004 0.490  -0.421 0.999           
aMPFC (L) 0.160 0.139  -0.207 0.914  0.094 0.262           

pIPL (R) -0.348 0.992  0.162 0.137  0.217 0.065           
TempP (R) -0.285 0.973  -0.195 0.909  -0.132 0.813           
aMPFC (R) -0.091 0.734   -0.072 0.680   -0.214 0.934              

Note. Same with Supplementary Table 3, except that this shows the results of using Study 3 as a training dataset. 
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Supplementary Figure 4. Prediction performance of the dmPFC-based predictive 
model with varying numbers of predictors. Here we trained the dmPFC-based predictive 
model with a combined dataset of Study 2 and 3 (n = 109) to examine whether the 
successful prediction of rumination required at least a certain number of predictors. The 
testing dataset was the Study 1 dataset (n = 84). We varied the number of predictors to be 
retained in the Lasso regression and plotted the correlation between the model response 
(yfit) and the dependent variable (y). For the training dataset, the y-yfit correlation was from 
10-fold cross-validation. The results show that the dmPFC-based predictive model showed 
significant prediction performance in both training and testing datasets, but it did so only 
when the number of predictors was greater than 80. *p < .05, permutation test in both 
training and testing datasets. 

 
R2-6: “Finally, why not combine all the behavioral data into a single model? As the predictive model 
show pretty good cross prediction of results, the brain signatures may not be independent and 
predicting a latent factor (say from a principal component analysis) of all measures often produces a 
better prediction results.” 
 
Response: There were two main reasons that we modeled each subscale separately. First, we did so 
based on previous literature on rumination. Treynor et al.24 showed that the reflective pondering and 
brooding subscales of the RRS were unconfounded with depression and differentially related to 
rumination. Treynor et al. thus explicitly recommended investigating the subscales separately (see the 
quote below).  
 

“Specifically, it is critical to differentiate between a reflection component of rumination and a 
brooding component, and to measure them separately, because they have quite different 
relationships to depression.” (p. 258, ref. 24) 
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Meanwhile, the depressive rumination subscale is known to include some overlapping items with the 
Beck Depression Inventory25,26. It is still unclear whether this overlap reflects a fundamental similarity 
between two constructs (i.e., rumination and depression) or just a methodological confound. For these 
reasons, rather than lumping all these heterogeneous subscales together, we decided to model them 
separately.  
 
Second, Studies 2 and 3 used the Korean version of the RRS (KRRS), which has a factor structure 
that is slightly different from the original RRS, which is used in Study 1. In more detail, Kim et al. 27 
conducted an exploratory factor analysis of the KRRS and found that the KRRS also consisted of the 
same three subscales as the original English version of the RRS. However, the items of each 
subscale were slightly different as detailed in the Methods section. Combining the subscales can 
obscure the differences between two versions of the RRS, and thus we decided to use each subscale 
separately for the model development.  
 
We addressed a similar issue in R3-5 below, in which we described the three RRS subscales in more 
detail.  
 
 
R2-7: “I appreciate adding a depression dataset as a final validation. But I worry about the low number 
of individuals (n = 35) with depression, especially given the heterogeneous nature of depression. 
There are multiple depression datasets available fully processed and open sources (see REST-meta-
MDD Consortium) as well as the other sites in the Strategic Research Program for Brain Sciences 
dataset.  
 
Response: We thank the reviewer for this comment on this important issue, and we are totally with 
the reviewer on this concern. Of course, we also wanted to test our model on more depression 
datasets, but there were some reasons we decided not to do that. As the reviewer noted, all 
depression data are highly heterogeneous. Depression itself is a highly heterogeneous clinical 
condition28, and also fMRI datasets from multiple scan sites should be highly heterogeneous due to 
their differences in scanners, sequence parameters, and many other factors29. Thus, when we were 
planning on this final validation on a clinical dataset, we took a focused approach (again) instead of an 
exploratory approach because we reasoned that we do not have that much power given the high 
degree of variance intrinsic to the clinical fMRI data. In other words, our concern was that the 
exploratory tests would increase the type II error (false negative rate) dramatically. This was why we 
chose one clinical data with the largest sample size and from one scan site, tested our model on the 
dataset, and stopped. This did not mean that we did not want to test our model on other clinical 
datasets given that we were planning to make our rumination model freely available so that any 
researchers (including us) could freely test our model on their own datasets. Regardless of these 
concerns, however, we tested our model on more clinical datasets to follow the reviewer’s suggestion.  
 
One thing to note is that we could not test our model on the REST-meta-MDD Consortium data 
because they did not provide the raw fMRI data that we need to calculate the DCC values. They only 
provide fully processed fMRI indices (e.g., the amplitude of low-frequency fluctuations, Regional 
Homogeneity, static functional connectivity, etc.) using a specific brain parcellation atlas that does not 
match with ours. Thus, we tested our model on three datasets from the Strategic Research Program 
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for Brain Sciences (SRPBS) data that had both fMRI and behavioral (i.e., BDI-II) data. These datasets 
were independently obtained from different scan sites and with different scan parameters.  
 
After we applied the selection criteria same as our original analysis (i.e., participants with mean 
framewise displacement under 0.25 and right-handed), we were able to proceed with the following 
datasets: a dataset from Hiroshima Kajikawa Hospital (HKH; n = 21), Hiroshima University Hospital 
(HUH; n = 57), and University of Tokyo (UTO; n = 22). We calculated the dmPFC-based DCC 
variances, applied the refined model (i.e., model with 21 important regions), and compared the model 
prediction with the BDI-II scores. As shown in the figure below (which we have now added to our 
revised manuscript as Supplementary Fig. 5), our model did not show generalization across three 
datasets.  
 
There could be many reasons for this, but according to Yamashita et al.29, the measurement bias 
caused by different scan parameters (esp., phase encoding direction) and MRI manufacturers could 
be major contributors to the generalization failure. Yamashita et al.29 conducted detailed analyses on 
the SRPBS data to minimize the heterogeneity across multiple scan sites (i.e., data harmonization) 
and showed that phase encoding and MRI manufacturer were the two most significant contributors to 
the measurement bias.  
 
The COI (Center of Innovation in Hiroshima University) dataset that we included in the original 
manuscript was the only dataset that had the same phase encoding direction (i.e., A→P direction) and 
the same MRI manufacturer (i.e., Siemens) as ours (i.e., Studies 1-3). Unfortunately, no other 
depression datasets from the SRPBS used the same scan parameters and the same scanner. For 
example, the HUH, UTO, and HKH datasets used a different phase encoding direction (i.e., P→A), 
and the HUH and UTO datasets used an MRI scanner from a different manufacturer (i.e., GE). In our 
revision, we added these additional analyses and discussions on the limitation of our results.  
 

Revision to the manuscript, p. 15 (Results): 
However, please note that our model fails to generalize in three other MDD patients’ 
datasets (n = 21, 57, and 22; Supplementary Fig. 5). Critical differences between the 
datasets that our model worked on versus those that did not work include phase encoding 
direction and MRI manufacturer, which Yamashita et al.29 reported were the two most 
significant contributors to the measurement bias. 

Revision to the manuscript, p. 20 (Discussion):  
We also showed that our model does not generalize to the clinical datasets with different 
scan parameters, such as phase encoding direction and MRI manufacturer. … Also we 
could not directly test our model to predict rumination in MDD patients because the clinical 
datasets did not have the RRS scores, making it difficult to know what exactly our model 
predicted in depressed patients. Thus, future studies should investigate the boundary 
conditions when our model does work or does not work. 



NCOMMS-22-05713 revision   18 

 

 

 

Supplementary Figure 5. Prediction results in additional clinical samples. To examine 
whether our model generalizes to other clinical depression datasets, we tested our model on 
three datasets from the Strategic Research Program for Brain Sciences (SRPBS) data that 
had both fMRI and behavioral (i.e., BDI-II) data. After we applied the selection criteria same 
as our original analysis (i.e., participants with mean framewise displacement under 0.25 and 
right-handed), we were able to proceed with the following datasets: a dataset from Hiroshima 
Kajikawa Hospital (HKH; n = 21), Hiroshima University Hospital (HUH; n = 57), and University 
of Tokyo (UTO; n = 22). We calculated the dmPFC-based DCC variances, applied the refined 
model (i.e., model with 21 important regions), and compared the model prediction with the 
BDI-II scores. The results showed that our model failed to generalize in other depression 
datasets. There could be many reasons for this, but according to Yamashita et al.29, the 
measurement bias caused by different scan parameters (esp., phase encoding direction) and 
MRI manufacturers could be major contributors to the generalization failure. Yamashita et 
al.29 conducted detailed analyses on the SRPBS data to minimize the heterogeneity across 
multiple scan sites (i.e., data harmonization) and showed that phase encoding and MRI 
manufacturer were the two most significant contributors to the measurement bias. The COI 
(Center of Innovation in Hiroshima University) dataset that we included in the main 
manuscript was the only dataset that had the same phase encoding direction (i.e., A→P 
direction) and same MRI manufacturer (i.e., Siemens) as ours (i.e., Studies 1-3 and 
Supplementary dataset). Unfortunately, no other depression datasets from the SRPBS did 
not use the same scan parameters and same scanner. For example, the HUH, UTO, and 
HKH datasets used a different phase encoding direction (i.e., P→A), and the HUH and UTO 
datasets used MRI scanner from a different manufacturer (i.e., GE). In our revision, we added 
these additional analyses and discussions on the limitation of our results. 

 

R2-8: There appears to be an outlier in independent test sample 2. It likely doesn’t affect the 
results, but the authors may want to check.” 
 
Response: Thank you for this. Removing the outlier in Study 3 (which is the independent test 
sample 2) did not significantly affect our results, r = 0.276, p = 0.028. We modified the figure, the 
corresponding caption, and the manuscript to make it apparent. 
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Revision to the manuscript, p. 6 (Figure 1.) 

 
 

Revision to the manuscript, p. 7 (Caption of Figure 1.):  
A red-dashed circle indicates the data point that was identified as an outlier (i.e., 
greater than 3 standard deviations away from the mean), which did not affect the model 
significance after its removal. 

 

Revision to the manuscript, p. 7 (Results):  
When we removed one outlier in the independent test dataset, the dmPFC-based 
model still showed significant prediction performance, r = 0.276, p = 0.028. 

 

R2-9: “A more minor point: I think the paper could increase the diversity of citations as opposed to 
works from the author’s extanded group. For example, it could be beneficial to cite: Taxali et al 2021 
when discussing that models have greater reliability of than edge level features.” 
 
Response: We are grateful to the reviewer for suggesting citing an interesting paper, which has 
shown higher reliability of multivariate predictive modeling than edge-level features themselves. We 
think the paper could highlight the importance of our findings and the predictive modeling approach.  

 

Revision to the manuscript, p. 4 (Introduction): 
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However, there have also been some inconsistent reports. For example, the static 
functional connectivity strength within the dorsal medial system was increased9 or 
decreased20 in individuals with MDD (see also ref.21,22), highlighting the need for 
adopting a predictive modeling approach, which could provide more reliable results 23. 
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Reviewer #3 
 
R3-1: “From this reviewer’s perspective, the best aspect of the manuscript is the pattern of dmPFC 
findings. Across cultures and in the context of assessing the nebulous and ephemeral phenomenon of 
rumination, it does seem like something about the dmPFC is important. The potential importance of 
this region as opposed to other DMN structures is presented well in the introduction. In developing the 
work, the authors might choose to determine if other dmPFC connectivity metrics do or do not predict 
depressive rumination. If they do, then we might conclude that dmPFC relations with other structures 
are important in general; if not, then we might reach the even more useful conclusion that connective 
variability of dmPFC is especially important.” 
 
Response: We thank the reviewer for pointing out the significance of the dmPFC findings, and we 
agree! We also agree that testing other connectivity metrics is important to provide a more definitive 
interpretation of the results. In our revised manuscript, we have added the results of using static 
connectivity as input features for the prediction of RRS scores (Supplementary Table 2.). The results 
show that the models based on static connectivity did not show significant prediction performances 
across datasets, suggesting that using the variance of dynamic connectivity is a key to the successful 
prediction of individual differences in rumination. Since the comment is closely related to R2-1 above, 
please find our revisions in R2-1.  

 

R3-2: “Less good are the biomarker claims made and implied throughout the manuscript. The results 
are probably consistent but they are not particularly strong, with many parameters coming together to 
explain 10% of the variance. Indeed, up until the model predicts BDI in the depressed sample, the 
work smacks of type-I error with seven of 60 models surviving round 1 and one of seven surviving 
round 2 all the while using lenient FDR corrections and one-sided statistical tests.” 
 
Response: We appreciate the reviewer’s comment. We agree that the small effect sizes and low 
statistical power are our main weaknesses. We made multiple efforts to address this comment. First, 
we revised the title and the manuscript to tone down our biomarker claim, and instead focused more 
on the dmPFC findings. For example, we changed the title of the manuscript as the following:  
 

Revision to the title: 
“A dorsomedial prefrontal cortex-based dynamic functional connectivity model of rumination”  

 
and we also provided a more in-depth discussion on the dmPFC in the Introduction: 

Revision to the manuscript, p. 4 (Introduction): 
“Interpreted in this framework, a dorsal medial system is the most reasonable candidate 
important for the repetitive high-level appraisal that characterizes ruminative thinking. 
Particularly, the dorsal medial prefrontal cortex (dmPFC) has been suggested to be a core 
brain region for rumination. It has been considered a “dorsal nexus” that serves as a core 
that modulates the connectivity related to depression11, and the heightened connectivity of 
the dmPFC was a unique feature of major depressive disorder (MDD) compared to other 
mental disorders12 (see also refs. 18,19). We, therefore, hypothesized that the dmPFC 
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connectivity may be a key brain region important for trait rumination. However, there have 
also been some inconsistent reports. For example, the static functional connectivity strength 
within the dorsal medial system was increased9 or decreased20 in individuals with MDD (see 
also ref.21,22), highlighting the need for adopting a predictive modeling approach, which could 
provide more reliable results 23. Furthermore, in addition to the dmPFC, we also tested other 
brain regions across the DMN to minimize the potential bias in our findings.” 

 
In addition, we have added one more dataset as independent test data to further test the 
generalizability of our model. This dataset that we recently finished collecting (during the revision 
period) has an interesting experimental design feature, which is that we administered two 14-min 
resting-state runs before and after participants watched a short emotional movie (around 10 mins 
long). This movie was about a mother meeting her daughter who passed away through virtual reality, 
and we selected this movie to enhance internally oriented cognitive states. As shown in the figure 
below (which is now added to the manuscript as Supplementary Figure 6), our model showed a 
significant prediction of depressive rumination only with the post-movie resting-state data, r = 0.228, p 
= 0.040. With the pre-movie resting-state data, our model showed non-significant prediction, r = -
0.038, p = 0.613. Again, the results showed a small effect size and one negative result, which could 
still suggest a possibility of type-I error. However, this also provides an interesting hypothesis that 
inducing a ruminative cognitive state would increase the prediction performance of our model, which 
should be examined in future studies. Overall, though we cannot provide definitive evidence that our 
findings are not false positives, we at least put our best effort into further testing our model and here 
provide one positive and one negative result with an interesting hypothesis for future study.  
 

Revision to the manuscript, p. 19 (Discussion): 

our prediction results showed only small effect sizes, and our sample sizes were small for 
predicting individual differences30, suggesting a possibility of type I errors in this study. To 
further test the generalizability of our model, we tested our model on an additional 
subclinical independent dataset (n = 60; see captions of Supplementary Fig. 6  for the 
details of this dataset) that we finished collecting during revision. This Supplementary 
dataset had an interesting experimental design feature—we administered two 14-min 
resting-state runs before and after participants watched a short emotional movie (around 10 
mins long). This movie was about a mother meeting her daughter who passed away through 
virtual reality, and we selected this movie to enhance internally oriented cognitive states. As 
shown in Supplementary Figure 6, our model showed a significant prediction of depressive 
rumination only with the post-movie resting-state data, r = 0.228, p = 0.040. With the pre-
movie resting-state data, our model showed a non-significant prediction, r = -0.038, p = 
0.613. Again, the results showed a small effect size and one negative result, which could still 
suggest a possibility of type-I error. However, this also provides an interesting hypothesis 
that inducing a ruminative cognitive state would increase the prediction performance of our 
model, which should be examined in future studies. Overall, though we cannot provide 
definitive evidence that our findings are not false positives in the current study, we put our 
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best effort into further testing our model, and here we provide one positive and one negative 
result with an interesting hypothesis for future study. 

 

 

Supplementary Figure 6. Testing the model on an additional resting-state dataset. We 
tested our model on an additional dataset (n = 60, age = 23.35 ± 1.91 [mean ± SD], 30 
males, recruited from Suwon area similar to Studies 2 and 3), which has an interesting 
experimental design feature—we administered two resting-state scans (each run was 14 
minutes long) before and after participants watched a short emotional movie (9 minutes and 
38 seconds long). We conducted this additional model test to further test our model’s 
generalizability and also to see whether our model showed different prediction performances 
depending on different resting-state conditions 8. This movie was about a mother meeting 
her daughter who passed away through virtual reality, and we selected this movie to 
enhance internally oriented cognitive states. Scan parameters and preprocessing steps 
were the same as in Study 2. We also administered the Korean version of the RRS. (a) After 
each resting-state run, we asked a few questions to participants about their cognitive and 
affective states during the run, and as the plots show, participants had significantly higher 
levels of self-relevant thought and alertness. Statistical significance was calculated with a 
paired t-test (df = 59). *: p < .05, ***: p < .001. (b) Our model showed a significant prediction 
of depressive rumination only with the post-movie resting-state data, r = 0.228, p = 0.040. 
With the pre-movie resting-state data, our model showed non-significant prediction, r = -
0.038, p = 0.613. 

 
 
R3-3: “The authors state, “We therefore hypothesize that components of the dorsal medial system—
especially connectivity with the dmPFC—may be a key neural marker important for both trait and state 
rumination.” How might a region of the brain mark both a cognitive phenomenon in action as well as 
the tendency for that phenomenon to occur in the absence of that phenomenon? This is important to 
consider in light of claims that the imaging results might provide “a direct window into depression-
relevant brain processes.” This is especially noteworthy in consideration of the lack of reported results 
from the thought-probe resting fMRI approach from Study 3. This scan would seem to provide the only 
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means close to assessing rumination at the state level.” 
 
Response: We thank the reviewer for the comment. We think that it is difficult to specify the functional 
role of the dmPFC (see R1-4 as well) with our data, and thus we deleted the sentence. Though we still 
believe that the dmPFC could play a crucial role in both state and trait rumination based on previous 
literature 31,32, we decided to narrow our focus on modeling trait rumination given that our outcome 
measure, the RRS, targets the trait rumination. However, we were also intrigued by the reviewer’s 
question, “How might a region of the brain mark both a cognitive phenomenon in action as well as the 
tendency for that phenomenon to occur in the absence of that phenomenon”. We reasoned that we 
could approach this question in two ways. First, we could develop an additional predictive model 
based on Study 3. Second, we could examine whether our model also capture state rumination using 
thought-sampling task data from Study 3. As we decided to focus on trait rumination, we did not 
choose the first approach. In addition, the second approach had two challenges: First, each thought-
sampling trial in Study 3 lasted only for a short duration (45 seconds), which could result in unreliable 
estimates of functional connectivity. Second, we had no in-scanner report for rumination to directly 
compare the model response with, making it challenging to know whether the model is predicting the 
construct of interest or not. Due to these limitations, we instead decided to test our model on an 
additional supplementary dataset as described in R3-2 above.  
 
 
R3-4: “In one sense, the authors’ model predicting BDI in a diagnosed depressed sample is quite nice 
in that the model was trained on rumination of three varieties, only one of which associates strongly 
with levels of depressive symptoms which, themselves, fluctuate daily in depressed persons. In 
another sense, it’s a stretch to contend that dmPFC DCC with several brain regions is a marker of 
rumination in depression when rumination in depression was not formally assessed.” 
 
Response: We agree with the reviewer and thus we added the following sentence in the discussion.  
 

Revision to the manuscript, p. 21 (Discussion):  
Also, we could not directly test our model to predict rumination in MDD patients because the 
clinical datasets did not have the RRS scores, making it difficult to know what exactly our 
model predicted in depressed patients. 

 
 
R3-5: “To be faithful to the constructs of rumination presented, the authors should make clear that 
what they are calling “depressive rumination” is rumination that is correlated to levels of depressive 
symptoms in a depressed cohort studied by Treynor et al. The original notion was to study rumination 
in depression that was not part and parcel of depressive symptomatology—i.e., brooding and 
pondering.” 
 
Response: We appreciate the reviewer’s comment about the need to clarify what depressive 
rumination is. We admit that the term ‘depressive rumination’ has caused some confusion. We 
changed the citation when explaining RRS, and further added some clarification comments in the 
Methods section as below: 
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Revision to the manuscript, p.22 (Methods): 
There have been some debates on which factors comprise a reliable construct of 
rumination33-35. Here, we used the sum of each subscale of RRS suggested in Treynor et 
al.24 as a measure of each subscale construct. Treynor et al. argued that the depressive 
rumination subscale might be confounded with depression itself, while the other two are 
unconfounded with depression and each reflects adaptive (reflective pondering) and 
maladaptive (brooding) aspects of rumination. 

 

R3-6: “In Study 3, the authors “regressed out thought sampling-related fMRI signal.” This might give 
prospective readers the impression that the effects of conducting thought sampling five times during a 
putative resting-state scan did not otherwise interfere with cognitive and affective processes that 
occurred during the scan. Thought sampling is a necessary and potentially powerful tool but there is 
little to do about resulting “Heisenberg effects.” In this vein, it is possible that prompting subjects about 
their thought content caused more internal self-focus than would have otherwise been the case which 
then biased patterns of resting-brain connectivity toward the authors’ theoretical stance.“ 
 
Response: We thank the reviewer for this insightful comment. We totally agree about the possibility of 
‘prompting subjects about their thought content caused more internal self-focus’ and decided to make 
it as explicit as possible as seen in R3-2. However, a fundamental challenge here is that we have no 
in-scanner report of participants’ internal cognitive states (e.g., rumination), making it difficult to prove 
that participants were indeed in a more self-focused state or conclude that the internally oriented 
cognitive state leads to significant prediction performance. This should be examined in future studies.  
 
 
R3-7: “The concept of reliability is a cornerstone of the authors’ study. It is noteworthy, then, that three 
of the four sub-studies collected less BOLD data than the minimum recommended in order to achieve 
adequate test-retest reliability of rsfMRI-derived metrics 
(e.g., https://www.sciencedirect.com/science/article/pii/S0149763414001262).”  
 
Response: We thank the reviewer for pointing out the potential reliability issue. We agree that 
reliability is greatly important, and we already had a paragraph on the potential reliability issue in the 
discussion section. We have added the citation that the reviewer provided. However, what we have 
shown in our previous papers 17,36 is that a good predictive model improves both effect sizes and 
reliability of model scores dramatically 37. Thus, achieving good reliability of individual features will 
always be difficult, but it is possible to get an overall pattern that is reliable.  

 
 
R3-8: “Calculating correlations between changes in delta corr across two studies in the virtual lesion 
analysis approach is a clever way of showing the statistical reliability of the overall pattern of “lesion” 
effects. In the end, though, it also shows that there is only ~40% correspondence between models.” 
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Response: We appreciate your concern about the consistency of virtual lesion results. Yes, 40% 
correspondence seems small, but we showed that the refined model worked in the MDD patient 
group, suggesting that the overlaps between the two datasets were meaningful. In addition, the high 
delta correlation values across two datasets were found in the left IFG, suggesting the importance of 
the region. This finding is plausible considering previous literature 6,38. Thus, the virtual lesion analysis 
results seem to provide meaningful results.  
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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

I think this revision deals with all of the suggestions I made about the initial submission. I believe 

the paper is stronger because of these changes and as I explained in my initial review I am very 

excited about the paper and in particular it's convergence with other studies along similar lines. I 

am looking forward to seeing this paper in press in due course. 

Signed, 

Jonathan Smallwood 

Reviewer #2: 

Remarks to the Author: 

Overall the authors have answered my questions/comments from the previous review. 

I think there is an error in Table 1. For the last column (Test2 (n=48)), the r is listed as 0.24 be it 

should be 0.288 per the text above. 

It could be helpful to put in the SI the tables for combining dataset 2+3 for training (maybe one 

for the original number of features and one for >80 features). That would make it easier to 

compare when and how replication is achieved across different training/testing breakdowns. It 

might be also worth noting this as a limitation. 

I really appreciate the tables. They make it easy to compare across models. 

Reviewer #4: 

Remarks to the Author: 

In their manuscript, Kim et al. present a multivariate predictive model of trait rumination using as 

input dynamic functional connectivity between the dorsomedial prefrontal cortex and the rest of 

the brain. Notably, the performance of this model was tested in multiple independent datasets and 

the results generalized in many of them. 

Resting state fluctuations in regions belonging to the default mode network, such as the 

dorsomedial prefrontal cortex, have been shown to be related to trait rumination in previous 

studies, but these have only used static connectivity and have yielded mixed results. The 

significant innovations of the current study are to use a measure of dynamic functional 

connectivity (“dynamic conditional correlations”) and to adopt a rigorous predictive approach with 

validation across multiple independent datasets. Rumination is a construct that is relevant in the 

psychopathology of several mental illnesses, such as depression, and there is a need of 

generalizable neuroimaging correlates of symptoms in psychiatry. In this context, I find this 

manuscript rigorous and well-executed and the model that the Authors introduce, promising. 

Therefore, I think that this manuscript is a valuable addition to the field, and I recommend it for 

publication. 

I am not the Reviewer 3 who made the first round of comments and in my review, I was asked to 

assess if the response of the Authors to previous Reviewer 3 was satisfactory. I think that the 

Authors have addressed the previous Reviewer’s concerns well, in the following ways: 

1) The Authors have redone the analysis using static instead of dynamic functional connectivity to 

show that only the variance of dynamic functional connectivity can successfully predict rumination. 

2) The Authors have added an additional generalizability dataset comprising of two resting state 

runs, one of which was collected after watching a short emotional movie. The Authors show that 

their model successfully predicts rumination only in the resting state following the emotional 



movie, raising the interesting possibility that the prediction of trait rumination might be boosted by 

conducting the brain scan while the participant is in a ruminative state. This is in line with previous 

findings, (e.g. Chen et al., 2020) and paves the way for future studies that could induce a 

ruminative state to obtain even better quantitative predictors of trait rumination. 

3) The Authors have added text to their limitations section, acknowledging that it is unclear 

whether their model predicted trait rumination specifically in depressed patients and 

acknowledging potential reliability issues of resting state scans lasting <10 minutes. 

4) The Authors have clarified the term “depressive rumination” in the Methods. 

5) The Authors argue that they can’t assess if thought sampling during the resting state in Study 3 

induced a more ruminative state. I think that trying to do this would be highly speculative and I 

agree with the Authors that this should be done as part of future studies that attempt the 

prediction while inducing ruminations. 

6) Finally, the Authors argue that the results of their virtual lesion analysis are meaningful even if 

only 21 regions (~40%) showed overlapping results across datasets. I agree with them, and I 

think that this relatively small set of regions could be the focus of future studies. 

Overall, I think that the revision addresses the concerns of previous Reviewer 3 well and 

recommend the manuscript for publication. 
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Ms. No.: NCOMMS-022-05713A 
  
We would like to thank the reviewers for their thoughtful comments and constructive suggestions and 
the editors of Nature Communications for the opportunity to submit the revised manuscript. In 
response to the comments, we performed additional analyses and revised the manuscript as indicated 
in the point-by-point responses below.  
 
Summary of main changes: 

² We corrected a typo in Table 1, which reported the wrong correlation value in the testing 
dataset. 

² We added two supplementary tables (Supplementary Tables 5-6) for comparison of model 
prediction results with different numbers of features. 

² We changed one of the co-author’s last name as she requested. 

 
We hope our revisions satisfactorily addressed all the issues raised. Again, we appreciate all your 
insightful comments and the opportunity to improve the manuscript. 
 
(Font color legends: Reviewers’ comments are in purple, our responses are in black, and the 
revisions are in red.) 
 
 
Reviewer #1 

“I think this revision deals with all of the suggestions I made about the initial submission. I believe the 
paper is stronger because of these changes and as I explained in my initial review I am very excited 
about the paper and in particular it's convergence with other studies along similar lines. I am looking 
forward to seeing this paper in press in due course.” 

Response: We thank you so much for your thoughtful and positive comments.  
 
 
Reviewer #2 
 
“Overall the authors have answered my questions/comments from the previous review.  
 
Response: We are glad our revision answered your questions and comments. We hope the current 
revision also satisfies your additional comments. 
 
R2-1. “I think there is an error in Table 1. For the last column (Test2 (n=48)), the r is listed as 0.24 be it 
should be 0.288 per the text above.” 
 
Response: Thank you so much for pointing out our mistake. We have fixed the error in Table 1. We 
also double-checked all the numbers to make sure there were no more errors.  
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Revision to the manuscript p. 8 (in red): 
 

 
 
 
R2-2. “It could be helpful to put in the SI the tables for combining dataset 2+3 for training (maybe one 
for the original number of features and one for > 80 features). That would make it easier to compare 
when and how replication is achieved across different training/testing breakdowns. It might be also 
worth noting this as a limitation.” 
 
Response: We agree that the results with the combined datasets 2 and 3 would be useful. Thus, we 
now added the results as Supplementary Tables 5-6. Supplementary Table 5 shows the results 
from using the number of features same as the original model (i.e., nfeature = 84), and Supplementary 
Table 6 shows the result from using the maximum possible number of features (i.e., nfeature = 109). 
Lastly, as the reviewer suggested, we now added the relevant discussion as a limitation to the 
Discussion section.  
 

Revision to the manuscript p. 9 
In addition, to further investigate the impact of the number of features, we compared the 
results of using the number of features same as the original model (i.e., nfeature = 84; 
Supplementary Table 5) with the results of using the maximum possible number of features 
(i.e., nfeature = 109; Supplementary Table 6). In both cases, only the dmPFC-based predictive 
model of depressive rumination showed significant predictions across training and testing 
datasets. 
 
Revision to the manuscript p. 20 
Sixth, the model’s generalizability was affected by which datasets were used in the training 
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procedure (Supplementary Tables 3 and 4). Our additional analyses suggested that it could 
be due to 1) differences in the distribution of the dependent variables across datasets 
(Supplementary Fig. 3) or 2) the minimum number of input features required for the 
generalizable prediction of rumination (Supplementary Fig. 4, Supplementary Tables 5-6). 
However, it is difficult to know whether there is a specific number of features required for 
successful prediction. Also, it is possible that multiple modeling options, such as input features 
(e.g., connectivity vs. activity), resolution (e.g., voxel-level vs. region-level), etc., interact with 
the required number of features. Future studies should examine these influences in more 
detail. 

Supplementary Table 5. Training and testing results using the number of features same 
as the original model, nfeature = 84 

 

Note. This table shows the results using the combined dataset of Studies 2 and 3 (n = 109) as 
the training dataset and the Study 1 dataset (n = 84) as the testing dataset. We used the 
same 20 default mode network regions-of-interest as in Table 1 and trained and tested the 
models using the variance of seed-based dynamic functional connectivity. We corrected for 
multiple comparisons with the false discovery rate (p < .003 for FDR q < .05). 
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Supplementary Table 6. Training and testing results using the maximum number of 
features, nfeature = 109 

 

Note. Same as Supplementary Table 5, except this shows the results of using the maximum 
possible number of features for prediction. 

 

R2-3: “I really appreciate the tables. They make it easy to compare across models.” 

Response: We are glad that our tables are helpful for you to understanding our findings. We now 
added additional tables requested in R2-2, and hope those tables are helpful.  
 

 

Reviewer #4 
 
R4-1:“In their manuscript, Kim et al. present a multivariate predictive model of trait rumination using as 
input dynamic functional connectivity between the dorsomedial prefrontal cortex and the rest of the 
brain. Notably, the performance of this model was tested in multiple independent datasets and the 
results generalized in many of them.  
 
Resting state fluctuations in regions belonging to the default mode network, such as the dorsomedial 
prefrontal cortex, have been shown to be related to trait rumination in previous studies, but these have 
only used static connectivity and have yielded mixed results. The significant innovations of the current 
study are to use a measure of dynamic functional connectivity (“dynamic conditional correlations”) and 
to adopt a rigorous predictive approach with validation across multiple independent datasets. 
Rumination is a construct that is relevant in the psychopathology of several mental illnesses, such as 
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depression, and there is a need of generalizable neuroimaging correlates of symptoms in psychiatry. 
In this context, I find this manuscript rigorous and well-executed and the model that the Authors 
introduce, promising. Therefore, I think that this manuscript is a valuable addition to the field, and I 
recommend it for publication.” 
 
I am not the Reviewer 3 who made the first round of comments and in my review, I was asked to 
assess if the response of the Authors to previous Reviewer 3 was satisfactory. I think that the Authors 
have addressed the previous Reviewer’s concerns well, in the following ways: 
 
1) The Authors have redone the analysis using static instead of dynamic functional connectivity to 
show that only the variance of dynamic functional connectivity can successfully predict rumination.  
2) The Authors have added an additional generalizability dataset comprising of two resting state runs, 
one of which was collected after watching a short emotional movie. The Authors show that their model 
successfully predicts rumination only in the resting state following the emotional movie, raising the 
interesting possibility that the prediction of trait rumination might be boosted by conducting the brain 
scan while the participant is in a ruminative state. This is in line with previous findings, (e.g. Chen et 
al., 2020) and paves the way for future studies that could induce a ruminative state to obtain even 
better quantitative predictors of trait rumination.  
3) The Authors have added text to their limitations section, acknowledging that it is unclear whether 
their model predicted trait rumination specifically in depressed patients and acknowledging potential 
reliability issues of resting state scans lasting <10 minutes.  
4) The Authors have clarified the term “depressive rumination” in the Methods.  
5) The Authors argue that they can’t assess if thought sampling during the resting state in Study 3 
induced a more ruminative state. I think that trying to do this would be highly speculative and I agree 
with the Authors that this should be done as part of future studies that attempt the prediction while 
inducing ruminations. 
6) Finally, the Authors argue that the results of their virtual lesion analysis are meaningful even if only 
21 regions (~40%) showed overlapping results across datasets. I agree with them, and I think that this 
relatively small set of regions could be the focus of future studies.” 
 
Overall, I think that the revision addresses the concerns of previous Reviewer 3 well and recommend 
the manuscript for publication.” 
 
Response: We sincerely appreciate your careful reading of our paper and positive comments on our 
revision.  
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