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1. Technical details of machine learning 

1.1 Details of tested descriptors and machine learning algorithms 

1.1.1 Details of tested descriptors 

In order to understand the baseline performances of machine learning modelling in a range of prediction 

tasks, we tested the predictive performances using widely applied molecular descriptors. The tested 

molecular descriptors include One-Hot, RDKit descriptors, Morgan Fingerprint, and Atom-centered Symmetry 

Functions. The tested molecular descriptors, as well as the corresponding generation parameters and 

package, are shown in Supplementary Table 1. All the related scripts for molecular descriptor generation are 

available in our GitHub project (https://github.com/Shuwen-Li/SEMG-MIGNN).  

Supplementary Table 1. Type and generation package of tested molecular descriptors.  

Molecular Descriptor Parameters 
Generation 
Package 

One-Hot(OH, 1D) default Scikit-learn4 

ML descriptor in RDKit1(RDKit, 
2D) 

default RDKit1 

Morgan Fingerprint2 (MF, 2D) radius = 2, nBits = 2048, useChirality = True RDKit1 

Atom-centered Symmetry 
Functions5 (ACSFs, 3D) 

rcut = 6.0, g2_params = [[1, 1], [1, 2], [1, 3]], 

g4_params = [[1, 1, 1], [1, 2, 1], [1, 1, -1], [1, 2, -1]] 
DScribe3 
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1.1.2 Details of tested machine learning algorithms 

A series of widely used machine learning algorithms were tested for the baseline model trainings, 

including AdaBoost6, Bagging Regression7, Decision Trees8, Extra-Trees9, Gradient Boosting10, k-Nearest 

Neighbors Regression11, Kernel Ridge Regression12, Linear Support Vector Regression13, Random Forest 

Regression14, Ridge15, Support Vector Regression13, XGBoost16, and Neural Network17. The model trainings 

were performed using scikit-learn4 and xgboost python packages18. The parameters of each tested algorithm 

are included in Supplementary Table 2. All the related scripts for model training are available in our GitHub 

project (https://github.com/Shuwen-Li/SEMG-MIGNN). The details of hyperparameter setting ensembles and 

access of these algorithms are shown in Supplementary Table 2. For the parameters not shown in 

Supplementary Table 2, the default settings were used. 

Supplementary Table 2. Hyperparameters of the tested machine learning algorithms for model training. 

Model Modules and parameters 

AdaBoost6 (Ada) 
sklearn.ensemble.AdaBoostRegressor(base_estimator=sklearn.ensemble.ExtraTrees
Regressor(n_jobs=60), n_estimators=10, learning_rate=1.0, loss='linear', random_stat
e=None) 

Bagging7 (BG) 
sklearn.ensemble.BaggingRegressor(base_estimator=None, n_estimators=100, max_
samples=100, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_sco
re=False, warm_start=False, n_jobs=60, random_state=None, verbose=0) 

Decision Tree8 (DT) 

sklearn.tree.DecisionTreeRegressor(criterion='squared_error', splitter='best', max_dept
h=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, m
ax_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decre
ase=0.0, ccp_alpha=0.0) 

Extra-Trees9 (ET) 

sklearn.ensemble.ExtraTreesRegressor(n_estimators=60, criterion='squared_error', m
ax_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf
=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootst
rap=False, oob_score=False, n_jobs=60, random_state=None, verbose=0, warm_start
=False, ccp_alpha=0.0, max_samples=None) 

Gradient Boosting10 (GB) 

sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimator
s=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_
leaf=1, min_weight_fraction_leaf=0.0, max_depth=4, min_impurity_decrease=0.0, init=
None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_no
des=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.
0001, ccp_alpha=0.0) 

k-Nearest Neighbors Regression11 
(KNR) 

sklearn.neighbors.NearestNeighbors(n_neighbors=10,weights='uniform',algorithm='aut
o',leaf_size=30,p=2,metric='minkowski',metric_params=None,n_jobs=None) 

KernelRidge12 (KRR) 
sklearn.kernel_ridge.KernelRidge(alpha=1, kernel='linear', gamma=None, degree=3, c
oef0=1, kernel_params=None) 

Linear Support Vector Regression13 
(LSVR) 

sklearn.svm.LinearSVR(epsilon=0.0,tol=0.0001,C=1.0,loss='epsilon_insensitive',fit_inte
rcept=True,intercept_scaling=1.0,dual=True,verbose=0,random_state=None,max_iter=
1000) 

RandomForest14 (RF) 

sklearn.ensemble.RandomForestRegressor(n_estimators=100,criterion='mae',max_de
pth=None,min_samples_split=2,min_samples_leaf=1,min_weight_fraction_leaf=0.0,ma
x_features='auto',max_leaf_nodes=None,min_impurity_decrease=0.0,bootstrap=True,
oob_score=False,n_jobs=60,random_state=None,verbose=0,warm_start=False,ccp_al
pha=0.0,max_samples=None) 

Ridge15 
sklearn.linear_model.Ridge(alpha=.5,fit_intercept=True,copy_X=True,max_iter=None,t
ol=0.001,) 

Support Vector Regression13 (SVR) 
sklearn.svm.SVR(kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1.0, 
epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=- 1) 

XGBoost16 (XGB) 

xgboost.XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1, 
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1, 
importance_type='gain', interaction_constraints='', learning_rate=0.3, 
max_delta_step=0, max_depth=10, min_child_weight=1, missing=np.nan, 
monotone_constraints='()', n_estimators=60, num_parallel_tree=1, random_state=0, 
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, 
tree_method='exact', validate_parameters=1, verbosity=None) 

NeuralNetwork17 (NN) 

sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(100,100), activation='relu'
, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_ra
te_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.00
01, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, e
arly_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-
08, n_iter_no_change=10, max_fun=15000) 
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1.2 Details of molecular graph training  

1.2.1 Details of baseline molecular graph 

The baseline molecular graphs were generated by dgl19. The nodes of molecular graph included seven 

types of information: atom type, atomic number, acceptor, donor, aromatic, hybridization and the number of 

hydrogens. The edge feature is bond distance. Details of node and edge information are shown in 

Supplementary Table 3. 

Supplementary Table 3. Description of baseline molecular graph. 

Feature Description Dimension 

Atom type H, C, N, O, F… (One-hot) 7 

Atomic number Number of protons (Integer) 1 

Acceptor Accepts electrons (Binary) 1 

Donor Donates electrons (Binary) 1 

Aromatic In an aromatic system (Binary) 1 

Hybridization sp, sp2, sp3 (One-Hot) 3 

Number of Hydrogens (Integer) 1 

Bond Distance (Float) 1 
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1.2.2 Details of GCN model 

For each molecule, the molecular graph was generated. Subsequently, the baseline molecular graphs 

were processed by the GCN layer using dgl. The processed molecular graphs were concatenated together 

and passed through the sum/mean/dense layers to predict the reaction performance. Detailed workflow of the 

GCN model is shown in Supplementary Figure 1. 

 

Supplementary Figure 1. Workflow of the GCN model (Graph Convolutional Network). For each 

molecule, the corresponding molecular graph was generated. Subsequently, the molecular graphs were 

processed by the GCN layer (Graph Convolutional Network). The processed molecular graphs were then 

concatenated together and passed through the sum/mean/dense layers to predict the reaction performance. 
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1.3 Details of hyperparameter optimization for the tested machine learning models 

For the tested encoding methods and machine learning algorithms, we carefully performed the 

hyperparameter optimization by grid search method, in order to identify the optimal hyperparameter settings. 

Supplementary Table 4 provides the details of the hyperparameter optimization, and the optimization results 

are summarized in Supplementary Table 13 and Supplementary Table 14. The optimized hyperparameters 

were used in the subsequent comparisons of model performances.  

Supplementary Table 4. Evaluated hyperparameters of the machine learning algorithms for model training. 

MIGNN means Molecular Interaction Graph Neural Network. 

Model Candidate parameters Access 

AdaBoost (Ada) n_estimators: [50, 100, 150, 200];  scikit-learn 

Bagging (BG) n_estimators: [10, 20, 30, 40] scikit-learn 

Decision Tree (DT) max_depth: [None, 10, 20, 30] scikit-learn 

Extra-Trees (ET) 
n_estimators: [100, 200, 300, 400]; 

max_depth: [None, 10, 20, 30] 
scikit-learn 

Gradient Boosting 
(GB) 

n_estimators: [50, 100, 150, 200]; 

max_depth: [3, 4, 5] 
scikit-learn 

k-Nearest Neighbors 
Regression (KNR) 

n_neighbors: [5, 10, 15, 20] scikit-learn 

KernelRidge (KRR) gamma: [None, 0.01, 0.001, 0.0001] scikit-learn 

Linear Support Vector 
Regression (LSVR) 

epsilon: [0.0, 0.1, 0.2, 0.3] scikit-learn 

RandomForest (RF) 
n_estimators: [100, 200, 300, 400]; 

max_depth: [None, 10, 20, 30];  
scikit-learn 

Ridge alpha: [0.5, 1.0, 1.5] scikit-learn 

Support Vector 
Regression (SVR) 

kernel: ['rbf', 'linear', 'poly']; gamma: ['scale', 'auto'] scikit-learn 

XGBoost (XGB) max_depth: [None, 10, 20, 30] xgboost 

NeuralNetwork (NN) Hidden_layer_sizes:[(100,), (200,), (100,100,)] scikit-learn 

GCN 
Convolution layer=[1, 2, 3], Multi graph=[mean, sum, max], 

output=[mean, sum, max] 
dgl 

MIGNN 

linear_depth=[0,1,2,3,4,5,6,7,8,9,10], 

hidden_size=[8,16,32,64,128,256], atom_attention=[0,1,2], 

inter_attention=[0,1,2], end_attention=[0,1,2], 

fc_size=[32,64,128,256], final_act=['sigmoid',’none’] 

tensorflow 
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1.4 Details of machine learning predictions on external experimental test set 

 

Supplementary Figure 2. Repeated result of chiral phosphoric acid-catalyzed thiol addition to N-acyl 
imine. The reported enantioselectivity under CPA-0 is 99% from Denmark’s work20. Our repeated experiment 
gave an enantioselectivity of 95% ee under the same CPA catalyst, which may due to trace amount of 
inseparable Lewis acid. 

To test the extrapolative abilities of the machine learning models, we performed a series of external 

experimental tests. These tests used the chiral phosphoric acid-catalyzed thiol addition to N-acylimine under 

11 new chiral phosphoric acid catalysts (experimental details are provided in section 5. Results of experiment). 

To ensure the reliability of our experimental data, we first repeated one transformation using an identical chiral 

phosphoric acid CPA-0 from Denmark’s report20. This transformation was reported to have a 99% ee, which 

corresponds to a 3.13 kcal mol-1 free energy difference. Despite extensive efforts, our repeated experiment 

consistently gave an enantioselectivity of 95% ee, 2.17 kcal mol-1 (Supplementary Figure 2).  

We believe this mitigation of enantioselectivity raised from the influence of the racemic background 

reaction, probably catalyzed by the trace amount of inseparable Lewis acid. During the experimental 

explorations, we noticed that the imine addition is very fast, and we tried our best to eliminate the influence 

of background reaction. We have tried various means of purification and more stringent reaction setups, such 

as new glassware for each transformation, but we still cannot completely avoid the reduction of 

enantioselectivity. In order to make reasonable predictions using the Denmark’s statistics-trained machine 

learning model, we applied a scaling factor of Denmark’s statistics as a reasonable compromise. The 

mechanistic reasoning of scaling factor is elaborated as follows: 

Without the background reaction, ΔΔ𝐺‡ = −𝑅𝑇ln
1+𝑒𝑒

1−𝑒𝑒
= −𝑅𝑇[ln(1 + 𝑒𝑒) − ln(1 − 𝑒𝑒)] (1) 

With the background reaction, ΔΔ𝐺𝑤/𝑏𝑔
‡ =  −𝑅𝑇[ln(1 + 𝑒𝑒𝑤/𝑏𝑔) − ln(1 − 𝑒𝑒𝑤/𝑏𝑔)] (2) 
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Applying second-order Taylor expansion: 

ΔΔ𝐺‡

ΔΔ𝐺𝑤/𝑏𝑔
‡ =

𝑒𝑒 −
1
2

𝑒𝑒2 − (−𝑒𝑒 −
1
2

𝑒𝑒2)

𝑒𝑒𝑤/𝑏𝑔 −
1
2

𝑒𝑒𝑤/𝑏𝑔
2 − (−𝑒𝑒𝑤/𝑏𝑔 −

1
2

𝑒𝑒𝑤/𝑏𝑔
2)

=
𝑒𝑒

𝑒𝑒𝑤/𝑏𝑔
 

 

=
𝑘𝑝𝑟𝑒𝑓_𝑡𝑜𝑡+ 𝑘𝑏𝑔_𝑡𝑜𝑡

𝑘𝑝𝑟𝑒𝑓_𝑡𝑜𝑡
= 1 +

𝑘𝑏𝑔_𝑡𝑜𝑡

𝑘𝑝𝑟𝑒𝑓_𝑡𝑜𝑡
 (3) 

Because the substrates were synthesized by the same reaction and subsequently purified, the content 

of the Lewis acid should be comparable, and the corresponding background reaction rate is approximately 

constant (𝑘𝑏𝑔_𝑡𝑜𝑡). In addition, since all the chiral catalysts are CPA, the total rates of the catalytic reactions 

(𝑘𝑝𝑟𝑒𝑓_𝑡𝑜𝑡) should also be approximately comparable (𝑘𝑝𝑟𝑒𝑓_𝑡𝑜𝑡 is the total reaction rate under CPA catalysis, 

which does not require the enantioselectivity to be the same). Therefore, even there is a discrepancy in the 

actual enantioselectivity, we believe the 
ΔΔ𝐺‡

ΔΔ𝐺𝑤/𝑏𝑔
‡  can be considered as a constant based on the above 

approximation. Based on the repeated experiments, we defined this value as 0.693 (ΔΔGtransferred =ΔΔGoriginal  

× 0.693). All the enantioselectivity values (in kcal mol-1) in Denmark’s dataset were timed by 0.693, so that 

our repeating transformation has the identical target label as the transferred Denmark’s dataset (2.17 = 3.13 

×  0.693). With the transferred Denmark’s dataset, we trained the machine learning models and make 

predictions for the 11 new CPA catalysts.  
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2. Benchmark of the theoretical levels for geometry optimization and electron density calculation 

2.1 Evaluation of the methods for geometry optimization 

 
Supplementary Figure 3. Comparisons of the optimized geometries of representative molecules in 

yield and enantioselectivity datasets at various levels of theory. The blue atoms are the portions of 

the molecule with significant structural differences. a Using the B3LYP/def2-SVP optimized structure as 

the standard, the RMSDs (root-mean-square deviations) of the structures optimized by MMFF and GFN2-

xTB levels of theory for a representative ligand in yield dataset. b Using the B3LYP/def2-SVP optimized 

structure as the standard, the RMSDs (root-mean-square deviations) of the structures optimized by MMFF 

and GFN2-xTB levels of theory for a representative catalyst in enantioselectivity dataset. 

 

In order to find the suitable level for geometry optimization to obtain the steric encodings accurately and 

efficiently, we compared the geometries optimized by the MMFF, GFN2-xTB, and DFT (B3LYP/def2-SVP) 

methods, and representative results are shown in Supplementary Figure 3. Using the B3LYP/def2-SVP 

structures as reference, the root-mean-square deviation (RMSD) of the MMFF and GFN2-xTB were computed. 

It was shown that MMFF is not suitable for the geometry optimization of complex molecules, giving incorrect 

orientations for certain key substituents (such as the highlighted ones in Supplementary Figure 3) and yielding 

an unsatisfying level of RMSD. In comparison, GFN2-xTB significantly improved the accuracy of geometry 

optimization, achieving a level close to that of DFT optimization while still meeting our requirements for high-
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throughput virtual screening. Therefore, we eventually chose GFN2-xTB level of theory for geometry 

optimization.  

To ensure the reliability of the GFN2-xTB geometries in terms of modelling accuracy, we further 

compared the regression performances of SEMG-MIGNN models (Sterics- and Electronics-embedded 

Molecular Graph and Molecular Interaction Graph Neural Network) trained by GFN2-xTB (Supplementary 

Figure 4a) and B3LYP/def2-SVP (Supplementary Figure 4b) geometries. In both yield and enantioselectivity 

prediction tasks, the two models have comparable predictive abilities. These comparisons further supported 

that the selected GFN2-xTB level of theory can provide the required accuracy for geometry optimization and 

enable the desired machine learning modelling.  

 
Supplementary Figure 4. Test set performances of the SEMG-MIGNN models (Sterics- and 

Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) trained by 

the geometries optimized at the GFN2-xTB level (a) and the B3LYP/def2-SVP level (b). The yield dataset 

is randomly split to 70% (training) and 30% (test). The enantioselectivity task is randomly split to 600 (training) 

and 475 (test) transformations. 
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2.2 Evaluation of the methods for electron density calculation 

In order to find the suitable level for the calculation of electron density, we have evaluated the electron 

densities calculated by various methods. We ultimately selected the theoretical level of B3LYP/def2-SVP to 

obtain the electron densities and process the model trainings.  

Based on the GFN2-xTB-optimized geometries, the accuracies of the computed electron densities were 

evaluated for thirty-five levels of theory including the variations of five functionals (LDA-VWN, B3LYP, M06-

2X, ωB97X-D, PBE0) and seven basis sets (STO-3G, STO-6G, 3-21G, def2-SVP, 6-31G(d), 6-311+G**, def2-

TZVPP). The evaluation process is elaborated in Supplementary Figure 5a. For a given molecule in the 

studied dataset, the electron densities of the same geometry were compared between two levels of theory: 

the reference level (B3LYP/def2-TZVPP) and the comparing level (the other thirty-four levels). The 

neighboring electron density of each atom was assessed to obtain a 7x7x7 tensor with the vdW diameter size. 

This creates a Nx7x7x7 tensor for the entire molecule, which was flattened into an one-dimensional vector. 

Subsequently, the Euclidean distances between the two vectors were calculated to provide the quantified 

evaluation of the change of electron densities.  

The total of 97 molecules involved in the reactivity and enantioselectivity datasets were examined, and 

the average Euclidean distances of each level of theory are shown in Supplementary Figure 5b. This analysis 

identified four main levels of accuracies for the studied computational methods. It is worth noting that as the 

size of basis set increases, the calculation efficiency decreases significantly. Considering the trade-off 

between accuracy and efficiency, we have selected the level of B3LYP/def2-SVP (F5B4) for the electron 

density calculations. 

To further verify the physical accuracy of the selected B3LYP/def2-SVP level, we compared the 

electrostatic potential surfaces, which is an important representation of the spatial distribution of the electron 

density. Supplementary Figure 6 to Supplementary Figure 12 shows the electrostatic potential surfaces of the 

97 molecules involved in the yield and enantioselectivity datasets calculated by B3LYP/def2-SVP and 

B3LYP/def2-TZVPP (isovalue=0.0004); under the same scale, the changes between the two levels of theory 

are quite limited. These comparisons further demonstrate that the selected B3LYP/def2-SVP approach can 

provide physically accurate electron density.  

In addition, we used the electron densities calculated by the B3LYP/def2-SVP and B3LYP/def2-TZVPP 

levels to train the SEMG-MIGNN models (Sterics- and Electronics-embedded Molecular Graph and Molecular 

Interaction Graph Neural Network) and compared the prediction performances. Supplementary Figure 13 

shows the model performances trained by different electron density inputs. In both yield and enantioselectivity 

prediction tasks, further increasing the physical accuracy from def2-SVP level (Supplementary Figure 13a) to 

def2-TZVPP level (Supplementary Figure 13b) only led to limited improvement of regression performances 

(R2: 0.969 vs. 0.971 in yield task; 0.915 vs. 0.918 in enantioselectivity task). These additional evaluations 

supported that the selected B3LYP/def2-SVP level of theory can provide solid accuracy for the electron 

density and support the desired machine learning modelling.  



S11 

 

 
Supplementary Figure 5. Quantitative evaluation of the computed electron density at various 

theoretical levels. a Evaluation procedure of the Euclidean distance between the vectors of the computed 

electron densities. b Euclidean distances of the vectors generated by thirty-five theoretical levels. 
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Supplementary Table 5. Labelling of the 97 molecules for Supplementary Figure 6.  

Entry Label SMILES 

1 Additive-1 COC1=NOC(C(OCC)=O)=C1 

2 Additive-2 C1(N(CC2=CC=CC=C2)CC3=CC=CC=C3)=NOC=C1 

3 Additive-3 C12=C(C=CC=C2)ON=C1 

4 Additive-4 CC1=C(C(OCC)=O)C=NO1 

5 Additive-5 O=C(OC)C1=NOC(C2=CC=CS2)=C1 

6 Additive-6 C1(C2=CC=CC=C2)=CC=NO1 

7 Additive-7 O=C(OC)C1=NOC(C2=CC=CO2)=C1 

8 Additive-8 CC1=CC(C(OCC)=O)=NO1 

9 Additive-9 CC1=NOC(C(OCC)=O)=C1 

10 Additive-10 CCOC(C1=NOC=C1)=O 

11 Additive-11 C1(C2=CC=CC=C2)=CON=C1 

12 Additive-12 CCOC(C1=CON=C1)=O 

13 Additive-13 C12=CON=C1C=CC=C2 

14 Additive-14 CC1=CC=NO1 

15 Additive-15 C1(N(CC2=CC=CC=C2)CC3=CC=CC=C3)=CC=NO1 

16 Additive-16 CC1=NOC=C1 

17 Additive-17 C1(C2=CC=CC=C2)=NOC=C1 

18 Additive-18 O=C(OC)C1=CC=NO1 

19 Additive-19 FC(C=CC=C1F)=C1C2=CC=NO2 

20 Additive-20 CC1=NOC(C2=CC=CC=C2)=C1 

21 Additive-21 CC1=CC(N2C=CC=C2)=NO1 

22 Additive-22 CC1=CC(C)=NO1 

23 Base-1 CN1CCCN2C1=NCCC2 

24 Base-2 CN(C)P(N(C)C)(N(C)C)=NP(N(C)C)(N(C)C)=NCC 

25 Base-3 CC(C)(C)/N=C(N(C)C)/N(C)C 

26 Aryl Halides-1 BrC1=CN=CC=C1 

27 Aryl Halides-2 ClC1=CC=C(C(F)(F)F)C=C1 

28 Aryl Halides-3 ClC1=NC=CC=C1 

29 Aryl Halides-4 IC1=CC=C(OC)C=C1 

30 Aryl Halides-5 IC1=NC=CC=C1 

31 Aryl Halides-6 IC1=CC=C(C(F)(F)F)C=C1 

32 Aryl Halides-7 ClC1=CN=CC=C1 

33 Aryl Halides-8 IC1=CN=CC=C1 
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34 Aryl Halides-9 BrC1=CC=C(C(F)(F)F)C=C1 

35 Aryl Halides-10 BrC1=CC=C(CC)C=C1 

36 Aryl Halides-11 ClC1=CC=C(CC)C=C1 

37 Aryl Halides-12 BrC1=NC=CC=C1 

38 Aryl Halides-13 IC1=CC=C(CC)C=C1 

39 Aryl Halides-14 BrC1=CC=C(OC)C=C1 

40 Aryl Halides-15 ClC1=CC=C(OC)C=C1 

41 Ligand-1 
CC(C)C(C=C(C(C)C)C=C1C(C)C)=C1C2=C(P( 

C(C)(C)C)C(C)(C)C)C(OC)=CC=C2OC 

42 Ligand-2 
CC(C)C(C=C(C(C)C)C=C1C(C)C)=C1C2= 

C(P(C(C)(C)C)C(C)(C)C)C=CC=C2 

43 Ligand-3 
CC(C)C(C=C(C(C)C)C=C1C(C)C)=C1C2=C 

(P(C3CCCCC3)C4CCCCC4)C=CC=C2 

44 Ligand-4 

CC(C)C(C=C(C(C)C)C=C1C(C)C)=C1C2=C(P 
([C@@]3(C[C@@H]4C5)C[C@H](C4)C[C@H] 

5C3)[C@]6(C7)C[C@@H](C[C@@H]7C8) 
C[C@@H]8C6)C(OC)=CC=C2OC 

45 CPA-1 O=P1(O)OC2=C(Br)C=C3C(C=CC=C3)=C2C4=C(O1)C(Br)=CC5=CC=CC=C54 

46 CPA-2 O=P1(O)OC2=C(Br)C=C3C(CCCC3)=C2C4=C(O1)C(Br)=CC5=C4CCCC5 

47 CPA-3 
O=P1(O)OC2=C(C3=C(C(C)C)C=C(C(C)C)C=C3C 

(C)C)C=C4C(C=CC=C4)=C2C5=C(O1)[C@@] 
([C@@]6=C(C(C)C)C=C(C(C)C)C=C6C(C)C)=CC7=C5C=CC=C7 

48 CPA-4 

O=P1(O)OC2=C(C3=C(C(C)C)C=C(C4=CC=C(C(C)( 
C)C)C=C4)C=C3C(C)C)C=C5C(C=CC=C5)=[C@] 

2[C@]6=C(O1)C(C7=C(C(C)C)C=C(C8=CC= 
C(C(C)(C)C)C=C8)C=C7C(C)C)=CC9=C6C=CC=C9 

49 CPA-5 
O=P1(O)OC2=C(C3=C(C)C=C(C)C=C3C)C=C4C(C=CC 

=C4)=C2C5=C(O1)[C@@]([C@@]6=C(C) 
C=C(C)C=C6C)=CC7=C5C=CC=C7 

50 CPA-6 
O=P1(O)OC2=C(C3=C(C4=CC(C=CC=C5)=C5C=C4) 

C=CC=C3)C=C6C(CCCC6)=C2C7=C(O1)C(C8=CC=CC 
=C8C9=CC=C(C=CC=C%10)C%10=C9)=CC%11=C7CCCC%11 

51 CPA-7 

O=P1(O)OC2=C(C3=C(C4CCCCC4)C=C(C5CCCCC5) 
C=C3C6CCCCC6)C=C7C(C=CC=C7)=C2C8=C(O1) 

[C@@]([C@@]9=C(C%10CCCCC%10)C=C(C%11CC 
CCC%11)C=C9C%12CCCCC%12)=CC%13=C8C=CC=C%13 

52 CPA-8 

O=P1(O)OC2=C(C3=C(C=CC4=CC=CC(C=C5)=C46) 
C6=C5C=C3)C=C7C(C=CC=C7)=C2C8=C(O1)C(C9 
=CC=C(C=C%10)C%11=C9C=CC%12=CC=CC%10 

=C%11%12)=CC%13=C8C=CC=C%13 

53 CPA-9 

O=P1(O)OC2=C(C3=C(C=CC=C4)C4=C(C5=CC(C= 
CC=C6)=C6C=C5)C7=C3C=CC=C7)C=C8C(C=C 

C=C8)=[C@]2[C@]9=C(O1)C(C%10=C(C=CC=C%11) 
C%11=C(C%12=CC=C(C=CC=C%13)C%13=C%12)C%14= 

C%10C=CC=C%14)=CC%15=C9C=CC=C%15 
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54 CPA-10 

O=P1(O)OC2=C(C3=C(C=CC=C4)C4=CC5=C3C= 
CC=C5)C=C6C(C=CC=C6)=C2C7=C(O1)[C@@]([C 

@@]8=C(C=CC=C9)C9=CC%10=C8C=CC= 
C%10)=CC%11=C7C=CC=C%11 

55 CPA-11 
O=P1(O)OC2=C(C3=C(F)C=C(OC)C=C3F)C=C4C 

(C=CC=C4)=[C@]2[C@]5=C(O1)C(C6=C(F)C= 
C(OC)C=C6F)=CC7=C5C=CC=C7 

56 CPA-12 
O=P1(O)OC2=C(C3=C(OC(F)(F)F)C=CC=C3)C=C4C 

(C=CC=C4)=C2C5=C(O1)C(C6=CC=CC= 
C6OC(F)(F)F)=CC7=C5C=CC=C7 

57 CPA-13 
O=P1(O)OC2=C(C3=C(OC)C=CC=C3OC)C=C4C(C=CC 

=C4)=C2C5=C(O1)[C@@]([C@@]6=C(OC)C=C 
C=C6OC)=CC7=C5C=CC=C7 

58 CPA-14 
O=P1(O)OC2=C(C3=C(OCC)C=CC(C)=C3)C=C4C(C 

=CC=C4)=C2C5=C(O1)C(C6=CC(C)=CC 
=C6OCC)=CC7=C5C=CC=C7 

59 CPA-15 
O=P1(O)OC2=C(C3=CC(C(C)(C)C)=CC(C(C)(C)C)=C3) 
C=C4C(C=CC=C4)=C2C5=C(O1)C(C6=CC(C(C)(C)C) 

=CC(C(C)(C)C)=C6)=CC7=C5C=CC=C7 

60 CPA-16 
O=P1(O)OC2=C(C3=CC(C(C)(C)C)=CC(C(C)(C)C) 
=C3)C=C4C(CCCC4)=C2C5=C(O1)C(C6=CC(C(C) 

(C)C)=CC(C(C)(C)C)=C6)=CC7=C5CCCC7 

61 CPA-17 
O=P1(O)OC2=C(C3=CC(C(F)(F)F)=CC(C(F)(F)F)=C3) 

C=C4C(C=CC=C4)=C2C5=C(O1)C(C6=CC(C(F) 
(F)F)=CC(C(F)(F)F)=C6)=CC7=C5C=CC=C7 

62 CPA-18 
O=P1(O)OC2=C(C3=CC(C(F)(F)F)=CC(C(F)(F)F)=C3)C 

=C4C(CCCC4)=C2C5=C(O1)C(C6=CC(C(F)(F)F) 
=CC(C(F)(F)F)=C6)=CC7=C5CCCC7 

63 CPA-19 
O=P1(O)OC2=C(C3=CC(C)=C(OC(C)C)C(C)=C3)C 

=C4C(C=CC=C4)=C2C5=C(O1)C(C6=CC(C)=C 
(OC(C)C)C(C)=C6)=CC7=C5C=CC=C7 

64 CPA-20 

O=P1(O)OC2=C(C3=CC(C4=C(C)C=C(C)C=C4C)= 
CC(C5=C(C)C=C(C)C=C5C)=C3)C=C6C(CCCC6)= 
C2C7=C(O1)C(C8=CC(C9=C(C)C=C(C)C=C9C)=C 

C(C%10=C(C)C=C(C)C=C%10C)=C8)=CC%11=C7CCCC%11 

65 CPA-21 

O=P1(O)OC2=C(C3=CC(C4=CC(C(F)(F)F)=CC(C(F) 
(F)F)=C4)=CC(C5=CC(C(F)(F)F)=CC(C(F)(F)F)=C5)= 
C3)C=C6C(C=CC=C6)=C2C7=C(O1)C(C8=CC(C9= 

CC(C(F)(F)F)=CC(C(F)(F)F)=C9)=CC(C%10=CC(C(F) 
(F)F)=CC(C(F)(F)F)=C%10)=C8)=CC%11=C7C=CC=C%11 

66 CPA-22 

O=P1(O)OC2=C(C3=CC(C4=CC(C=CC=C5)=C5C 
=C4)=CC=C3)C=C6C(C=CC=C6)=C2C7=C(O1)C 
(C8=CC=CC(C9=CC=C(C=CC=C%10)C%10=C9) 

=C8)=CC%11=C7C=CC=C%11 

67 CPA-23 

O=P1(O)OC2=C(C3=CC(C4=CC=C(OC)C=C4)=C 
C(C5=CC=C(OC)C=C5)=C3)C=C6C(C=CC=C6)= 
C2C7=C(O1)C(C8=CC(C9=CC=C(OC)C=C9)=CC 

(C%10=CC=C(OC)C=C%10)=C8)=CC%11=C7C=CC=C%11 

68 CPA-24 
O=P1(O)OC2=C(C3=CC(COC)=CC=C3)C=C4C 

(C=CC=C4)=C2C5=C(O1)C(C6=CC= 
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CC(COC)=C6)=CC7=C5C=CC=C7 

69 CPA-25 
O=P1(O)OC2=C(C3=CC(COC)=CC=C3)C=C4C(CC 

CC4)=C2C5=C(O1)C(C6=CC=CC(COC)=C6)=CC7=C5CCCC7 

70 CPA-26 
O=P1(O)OC2=C(C3=CC=C(C(C)(C)C)C=C3)C=C4C 

(C=CC=C4)=C2C5=C(O1)C(C6=CC=C(C(C) 
(C)C)C=C6)=CC7=C5C=CC=C7 

71 CPA-27 
O=P1(O)OC2=C(C3=CC=C(C)C=C3)C=C4C(C=CC 

=C4)=C2C5=C(O1)C(C6=CC=C(C)C=C6)=CC7=C5C=CC=C7 

72 CPA-28 
O=P1(O)OC2=C(C3=CC=C(C4=CC(C(F)(F)F)=CC 

(C(F)(F)F)=C4)C=C3)C=C5C(C=CC=C5)=C2C6=C(O1) 
C(C7=CC=C(C8=CC(C(F)(F)F)=CC(C(F)(F)F)=C8)C=C7)=CC9=C6C=CC=C9 

73 CPA-29 
O=P1(O)OC2=C(C3=CC=C(C4=CC=C(C=CC=C5) 

C5=C4)C=C3)C=C6C(C=CC=C6)=C2C7=C(O1)C(C8 
=CC=C(C9=CC(C=CC=C%10)=C%10C=C9)C=C8)=CC%11=C7C=CC=C%11 

74 CPA-30 
O=P1(O)OC2=C(C3=CC=C(C4CCCCC4)C=C3)C= 

C5C(CCCC5)=C2C6=C(O1)C(C7=CC=C 
(C8CCCCC8)C=C7)=CC9=C6CCCC9 

75 CPA-31 
O=P1(O)OC2=C(C3=CC=C(OC)C=C3)C=C4C(C=C 

C=C4)=C2C5=C(O1)C(C6=CC=C(OC)C=C6)=CC7=C5C=CC=C7 

76 CPA-32 
O=P1(O)OC2=C(C3=CC=C(S(F)(F)(F)(F)F)C=C3)C= 

C4C(C=CC=C4)=C2C5=C(O1)C(C6=CC=C(S(F) 
(F)(F)(F)F)C=C6)=CC7=C5C=CC=C7 

77 CPA-33 
O=P1(O)OC2=C(C3=CC=CC=C3)C=C4C(C=CC= 

C4)=C2C5=C(O1)C(C6=CC=CC=C6)=CC7=C5C=CC=C7 

78 CPA-34 
O=P1(O)OC2=C(CC)C=C3C(CCCC3)=C2 

C4=C(O1)C(CC)=CC5=C4CCCC5 

79 CPA-35 
O=P1(O)OC2=C(CC3=C(C=CC=C4)C4=CC5=C3 

C=CC=C5)C=C6C(C=CC=C6)=C2C7=C(O1)C(CC8 
=C(C=CC=C9)C9=CC%10=C8C=CC=C%10)=CC%11=C7C=CC=C%11 

80 CPA-36 
O=P1(O)OC2=C(CC3=CC(C(F)(F)F)=CC(C(F)(F)F)= 

C3)C=C4C(CCCC4)=C2C5=C(O1)C(CC6=CC(C 
(F)(F)F)=CC(C(F)(F)F)=C6)=CC7=C5CCCC7 

81 CPA-37 
O=P1(O)OC2=C(CC3=CC=C(C(F)(F)F)C=C3C(F)( 
F)F)C=C4C(C=CC=C4)=C2C5=C(O1)C(CC6=C(C 
(F)(F)F)C=C(C(F)(F)F)C=C6)=CC7=C5C=CC=C7 

82 CPA-38 
O=P1(O)OC2=C(CC3=CC=C(OC)C=C3)C=C4C 

(CCCC4)=C2C5=C(O1)C(CC6=CC=C(OC)C=C6)=CC7=C5CCCC7 

83 CPA-39 

O=P1(O)OC2=C([Si](C3=CC=C(C(C)(C)C)C=C3) 
(C4=CC=C(C(C)(C)C)C=C4)C5=CC=C(C(C)(C)C) 
C=C5)C=C6C(CCCC6)=C2C7=C(O1)C([Si](C8= 

CC=C(C(C)(C)C)C=C8)(C9=CC=C(C(C)(C)C)C=C9) 
C%10=CC=C(C(C)(C)C)C=C%10)=CC%11=C7CCCC%11 

84 CPA-40 
O=P1(O)OC2=C([Si](C3=CC=CC=C3)(C)C4=CC= 
CC=C4)C=C5C(C=CC=C5)=C2C6=C(O1)C([Si](C7 

=CC=CC=C7)(C8=CC=CC=C8)C)=CC9=C6C=CC=C9 

85 CPA-41 
O=P1(O)OC2=C([Si](C3=CC=CC=C3)(C4=CC=C 
C=C4)C5=CC=CC=C5)C=C6C(C=CC=C6)=C2C7 
=C(O1)C([Si](C8=CC=CC=C8)(C9=CC=CC=C9) 
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C%10=CC=CC=C%10)=CC%11=C7C=CC=C%11 

86 CPA-42 

O=P1(O)OC2=C([Si](C3=CC=CC=C3)(C4=CC=C 
C=C4)C5=CC=CC=C5)C=C6C(CCCC6)=C2C7=C 

(O1)C([Si](C8=CC=CC=C8)(C9=CC=CC=C9)C 
%10=CC=CC=C%10)=CC%11=C7CCCC%11 

87 CPA-43 
O=P1(O)OC2=[C@]([C@]3=C(Cl)C=C(Cl)C=C3Cl)C 

=C4C(CCCC4)=[C@]2[C@]5=C(O1)C(C6= 
C(Cl)C=C(Cl)C=C6Cl)=CC7=C5CCCC7 

88 Imine-1 O=C(C1=CC=CC=C1)/N=C/C2=CC=C(C(F)(F)F)C=C2 

89 Imine-2 O=C(C1=CC=CC=C1)/N=C/C2=CC=C(Cl)C=C2Cl 

90 Imine-3 O=C(C1=CC=CC=C1)/N=C/C2=CC=C(OC)C=C2 

91 Imine-4 O=C(C1=CC=CC=C1)/N=C/C2=CC=CC3=C2C=CC=C3 

92 Imine-5 O=C(C1=CC=CC=C1)/N=C/C2=CC=CC=C2 

93 Thiol-1 CCS 

94 Thiol-2 SC1=CC=C(OC)C=C1 

95 Thiol-3 SC1=CC=CC=C1 

96 Thiol-4 SC1=CC=CC=C1C 

97 Thiol-5 SC1CCCCC1 
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Supplementary Figure 6A. Electrostatic potential surfaces of the additives involved in the yield 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 6B. Electrostatic potential surfaces of the additives involved in the yield 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 6C. Electrostatic potential surfaces of the additives involved in the yield 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 6D. Electrostatic potential surfaces of the additives involved in the yield 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 6E. Electrostatic potential surfaces of the additives involved in the yield dataset 

calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic units. 
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Supplementary Figure 7. Electrostatic potential surfaces of the bases involved in the yield dataset 

calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic units. 
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Supplementary Figure 8A. Electrostatic potential surfaces of the aryl halides involved in the yield 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 8B. Electrostatic potential surfaces of the aryl halides involved in the yield 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 

 



S25 

 

 

Supplementary Figure 8C. Electrostatic potential surfaces of the aryl halides involved in the yield 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 9. Electrostatic potential surfaces of the ligands involved in the yield dataset 

calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic units. 
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Supplementary Figure 10A. Electrostatic potential surfaces of the CPAs in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 10B. Electrostatic potential surfaces of the CPAs in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 10C. Electrostatic potential surfaces of the CPAs in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 10D. Electrostatic potential surfaces of the CPAs in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 



S31 

 

 

Supplementary Figure 10E. Electrostatic potential surfaces of the CPAs in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 10F. Electrostatic potential surfaces of the CPAs in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 10G. Electrostatic potential surfaces of the CPAs in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 10H. Electrostatic potential surfaces of the CPAs in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 10I. Electrostatic potential surfaces of the CPAs in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 11. Electrostatic potential surfaces of the imines in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 12. Electrostatic potential surfaces of the thiols in the enantioselectivity 

dataset calculated at the B3LYP/def2-SVP level and the B3LYP/ def2-TZVPP level. "a.u." means atomic 

units. 
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Supplementary Figure 13. Test set performances of the SEMG-MIGNN models (Sterics- and 

Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) trained by 

the electron density inputs calculated at the B3LYP/def2-SVP level (a) and the B3LYP/def2-TZVPP 

level (b). The yield dataset is randomly split to 70% (training) and 30% (test). The enantioselectivity task is 

randomly split to 600 (training) and 475 (test) transformations. 
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3. Results of machine learning predictions 

3.1 Results of the yield regression performances of Baseline MG-GCN 

We performed ten trials of yield prediction using the Baseline MG-GCN model. The detailed prediction 

results are provided in Supplementary Table 6. Entry 8 is selected as a representative example in Figure 4 of 

main text.  

Supplementary Table 6. Results of yield prediction for Pd-catalyzed C–N cross coupling reactions using 

Baseline MG-GCN model. The yield dataset is randomly split to 70% (training) and 30% (test).  RMSE means 

Root Mean Square Error. 

Trial RMSE (%) R2 

1 18.11 0.560 

2 18.67 0.532 

3 18.36 0.547 

4 18.61 0.535 

5 18.32 0.549 

6 18.47 0.542 

7 18.32 0.549 

8 18.40 0.545 

9 18.43 0.544 

10 18.20 0.555 

Average 18.39 0.546 
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3.2 Results of the yield regression performances of SEMG-GCN 

We performed ten trials of yield prediction using the SEMG-GCN model. SEMG means Sterics- and 

Electronics-embedded Molecular Graph. The detailed prediction results are provided in Supplementary Table 

7. Entry 3 is selected as a representative example in Figure 4 of main text.  

Supplementary Table 7. Results of yield prediction for Pd-catalyzed C–N cross coupling reactions using 

SEMG-GCN model. SEMG means Sterics- and Electronics-embedded Molecular Graph. The yield dataset is 

randomly split to 70% (training) and 30% (test).  RMSE means Root Mean Square Error. 

Trial RMSE (%) R2 

1 17.68 0.585 

2 17.42 0.598 

3 17.56 0.592 

4 17.51 0.595 

5 17.51 0.593 

6 17.57 0.589 

7 17.54 0.592 

8 17.62 0.583 

9 17.49 0.594 

10 17.60 0.588 

Average 17.55 0.591 
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3.3 Results of the yield regression performances of Baseline MG-MIGNN 

We performed ten trials of yield prediction using the Baseline MG-MIGNN model. MIGNN means Molecular 

Interaction Graph Neural Network. The detailed prediction results are provided in Supplementary Table 8. 

Entry 8 is selected as a representative example in Figure 4 of main text.  

Supplementary Table 8. Results of yield prediction for Pd-catalyzed C–N cross coupling reactions using 

Baseline MG-MIGNN model. The yield dataset is randomly split to 70% (training) and 30% (test). MIGNN 

means Molecular Interaction Graph Neural Network. RMSE means Root Mean Square Error. 

Trial RMSE (%) R2 

1 7.63 0.923 

2 8.87 0.898 

3 6.90 0.935 

4 7.21 0.930 

5 8.77 0.897 

6 7.39 0.927 

7 7.33 0.928 

8 7.69 0.921 

9 6.97 0.935 

10 8.20 0.910 

Average 7.70 0.920 
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3.4 Results of the yield regression performances of SEMG-MIGNN (Sterics- and Electronics-
embedded Molecular Graph and Molecular Interaction Graph Neural Network) 

We performed ten trials of yield prediction using the SEMG-MIGNN model (Sterics- and Electronics-

embedded Molecular Graph and Molecular Interaction Graph Neural Network). The detailed prediction results 

are provided in Supplementary Table 9. Entry 6 is selected as a representative example in Figure 4 of main 

text.  

Supplementary Table 9. Results of yield prediction for Pd-catalyzed C–N cross coupling reactions using 

SEMG-MIGNN model (Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph 

Neural Network). The yield dataset is randomly split to 70% (training) and 30% (test). RMSE means Root 

Mean Square Error. 

Trial RMSE (%) R2 

1 4.51 0.975 

2 4.59 0.972 

3 4.61 0.972 

4 4.41 0.975 

5 5.20 0.965 

6 4.81 0.969 

7 4.78 0.969 

8 4.85 0.968 

9 5.13 0.965 

10 5.08 0.967 

Average 4.80 0.970 
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3.5 Results of the enantioselectivity regression performances of Baseline MG-GCN  

We performed ten trials of enantioselectivity prediction using the Baseline MG-GCN model. The detailed 

prediction results are provided in Supplementary Table 10. Entry 2 is selected as a representative example 

in Figure 5 of main text.  

Supplementary Table 10. Results of enantioselectivity prediction for chiral phosphoric acid-catalyzed thiol 

addition to N-acylimines using Baseline MG-GCN model. The enantioselectivity dataset is randomly split to 

600 (training) and 475 (test). RMSE means Root Mean Square Error. 

Trial RMSE (kcal mol-1) R2 

1 0.356 0.744 

2 0.332 0.778 

3 0.329 0.781 

4 0.320 0.792 

5 0.325 0.787 

6 0.338 0.770 

7 0.351 0.751 

8 0.329 0.781 

9 0.334 0.774 

10 0.307 0.810 

Average 0.332 0.777 
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3.6 Results of the enantioselectivity regression performances of SEMG-GCN  

We performed ten trials of enantioselectivity prediction using the SEMG-GCN model. SEMG means 

Sterics- and Electronics-embedded Molecular Graph. The detailed prediction results are provided in 

Supplementary Table 11. Entry 1 is selected as a representative example in Figure 5 of main text.  

Supplementary Table 11. Results of enantioselectivity prediction for chiral phosphoric acid-catalyzed thiol 

addition to N-acylimines using SEMG-GCN model. SEMG means Sterics- and Electronics-embedded 

Molecular Graph. The enantioselectivity dataset is randomly split to 600 (training) and 475 (test). RMSE 

means Root Mean Square Error. 

Trial RMSE (kcal mol-1) R2 

1 0.293 0.819 

2 0.312 0.795 

3 0.284 0.830 

4 0.299 0.810 

5 0.301 0.811 

6 0.292 0.817 

7 0.288 0.821 

8 0.283 0.830 

9 0.300 0.807 

10 0.298 0.812 

Average 0.295 0.815 
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3.7 Results of the enantioselectivity regression performances of Baseline MG-MIGNN  

We performed ten trials of enantioselectivity prediction using the Baseline MG-MIGNN model. MIGNN 

means Molecular Interaction Graph Neural Network. The detailed prediction results are provided in 

Supplementary Table 12. Entry 6 is selected as a representative example in Figure 5 of main text.  

Supplementary Table 12. Results of enantioselectivity prediction for chiral phosphoric acid-catalyzed thiol 

addition to N-acylimines using Baseline MG-MIGNN model. MIGNN means Molecular Interaction Graph 

Neural Network. The enantioselectivity dataset is randomly split to 600 (training) and 475 (test). RMSE means 

Root Mean Square Error. 

Trial RMSE (kcal mol-1) R2 

1 0.251 0.870 

2 0.236 0.884 

3 0.256 0.869 

4 0.234 0.890 

5 0.258 0.861 

6 0.240 0.880 

7 0.260 0.862 

8 0.235 0.887 

9 0.233 0.885 

10 0.250 0.870 

Average 0.245 0.876 
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3.8 Results of the enantioselectivity regression performances of SEMG-MIGNN  (Sterics- and 
Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) 

We performed ten trials of enantioselectivity prediction using the SEMG-MIGNN model (Sterics- and 

Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network). The detailed 

prediction results are provided in Supplementary Table 13. Entry 3 was selected as a representative example 

in Figure 5 of main text.  

Supplementary Table 13. Results of enantioselectivity prediction for chiral phosphoric acid-catalyzed thiol 

addition to N-acylimines using SEMG-MIGNN model (Sterics- and Electronics-embedded Molecular Graph 

and Molecular Interaction Graph Neural Network). The enantioselectivity dataset is randomly split to 600 

(training) and 475 (test). RMSE means Root Mean Square Error. 

Trial RMSE (kcal mol-1) R2 

1 0.189 0.917 

2 0.188 0.920 

3 0.197 0.915 

4 0.197 0.913 

5 0.190 0.918 

6 0.199 0.911 

7 0.197 0.916 

8 0.202 0.910 

9 0.200 0.914 

10 0.199 0.913 

Average 0.196 0.915 
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3.9 Results of other tested descriptors  

We tested four widely applied molecular descriptors (One-Hot, RDKit descriptors, Morgan Fingerprint, 

and Atom-centered Symmetry Functions) using thirteen regression algorithms (AdaBoost, Bagging 

Regression, Decision Trees, Extra-Trees, Gradient Boosting, k-Nearest Neighbors Regression, Kernel Ridge 

Regression, Linear Support Vector Regression, Random Forest Regression, Ridge, Support Vector 

Regression, XGBoost, and Neural Network) to predict the yields of C–N cross coupling reaction and the 

enantioselectivity of asymmetric N,S-acetal formation. Supplementary Figure 14 shows the results of yield 

predictions, and Supplementary Figure 15 shows the results of enantioselectivity predictions.  

Using the best algorithm for each type of descriptor, hyperparameter optimization was applied. The 

details of the hyperparameter optimization are provided in Supplementary Table 4, and the optimization 

results are summarized in Supplementary Table 14 and Supplementary Table 15. The optimized 

hyperparameters were subsequently used in the related machine learnings. 

 

Supplementary Figure 14. RMSEs (Root Mean Square Errors, in %) of yield predictions using widely 
applied molecular descriptors. The yield dataset is randomly split to 70% (training) and 30% (test). The red 
frame represents the best model corresponding to the four baseline descriptors. 

 

Supplementary Figure 15. RMSEs (Root Mean Square Errors, in kcal mol-1) of enantioselectivity 
predictions using widely applied molecular descriptors. The enantioselectivity dataset is randomly split 
to 600 (training) and 475 (test). The red frame represents the best model corresponding to the four baseline 
descriptors. 
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Supplementary Table 14. Modelling performances in yield tasks after the hyperparameter optimization. The 

yield dataset is randomly split to 70% (training) and 30% (test). SEMG means Sterics- and Electronics-

embedded Molecular Graph. MIGNN means Molecular Interaction Graph Neural Network. RMSE means Root 

Mean Square Error. 

Target 
Descriptor 

Name 
Model Name 

R2 of Optimal 
Parameters 

RMSE (in %) of 
Optimal 

Parameters 

Yield OH XGBoost 0.912 8.048 

Yield RDKit XGBoost 0.934 6.960 

Yield MF XGBoost 0.938 6.761 

Yield ACSFs XGBoost 0.929 7.238 

Yield Baseline MG GCN 0.546 18.39 

Yield SEMG GCN 0.591 17.55 

Yield Baseline MG MIGNN 0.920 7.700 

Yield SEMG MIGNN 0.970 4.800 

 
 
Supplementary Table 15. Modelling performances in enantioselectivity tasks after the hyperparameter 

optimization. The enantioselectivity task is randomly split to 600 (training) and 475 (test) transformations. 

SEMG means Sterics- and Electronics-embedded Molecular Graph. MIGNN means Molecular Interaction 

Graph Neural Network. RMSE means Root Mean Square Error. 

Target 
Descriptor 

Name 
Model Name 

R2 of Optimal 
Parameters 

RMSE (in kcal 
mol-1)  of Optimal 

Parameters 

Enantioselectivity OH RandomForest 0.885 0.233 

Enantioselectivity RDKit Gradient Boosting 0.900 0.217 

Enantioselectivity MF Gradient Boosting 0.901 0.217 

Enantioselectivity ACSFs Gradient Boosting 0.900 0.217 

Enantioselectivity Baseline MG GCN 0.777 0.332 

Enantioselectivity SEMG GCN 0.815 0.295 

Enantioselectivity Baseline MG MIGNN 0.876 0.245 

Enantioselectivity SEMG MIGNN 0.915 0.196 

 

 

  



S49 

 

3.10 Evaluation of structural sensitivity of the SEMG-MIGNN model (Sterics- and Electronics-
embedded Molecular Graph and Molecular Interaction Graph Neural Network) 

We tested the impact of the initial structure on the modelling performance. Ten different random seeds 

were applied for the generation of the molecular structures using the EmbedMolecule module of RDKit. 

Subsequently, we performed the geometry optimizations and electronic structure calculations through the 

same process. The changes in prediction performances are summarized in Supplementary Table 16 (yield 

task) and Supplementary Table 17 (enantioselectivity task), which showed marginal influence from the 

selection of random seed. These additional results demonstrate that the model is not sensitive to the initial 

random seed for structural generation. The corresponding random seeds are also provided on our GitHub 

repository (https://github.com/Shuwen-Li/SEMG-MIGNN) for readers to reproduce. 

Supplementary Table 16. Modelling performances in yield prediction task (70% training and 30% test) using 

different random seeds for the generation of initial structure. RMSE means Root Mean Square Error. 

Seed RMSE (%) R2 

1 4.88 0.968 

2 4.59 0.972 

3 4.79 0.969 

4 4.41 0.975 

5 5.19 0.964 

6 4.79 0.969 

7 4.50 0.974 

8 4.85 0.968 

9 5.11 0.965 

10 4.71 0.970 
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Supplementary Table 17. Modelling performances in enantioselectivity prediction task (600 training and 475 

test) using different random seeds for the generation of initial structure. RMSE means Root Mean Square 

Error. 

Seed RMSE (kcal mol-1) R2 

1 0.199 0.912 

2 0.206 0.907 

3 0.196 0.915 

4 0.199 0.913 

5 0.190 0.918 

6 0.203 0.909 

7 0.186 0.922 

8 0.199 0.913 

9 0.205 0.906 

10 0.195 0.916 
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3.11 Learning curves of SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and 
Molecular Interaction Graph Neural Network) 

We have explored the learning curve of the SEMG-MIGNN model (Sterics- and Electronics-embedded 

Molecular Graph and Molecular Interaction Graph Neural Network) with different ratio of training data 

(Supplementary Figure 16). We repeated the prediction ten times, and the shadow in the figure represents 

the range of error in these ten predictions. In both yield and enantioselectivity tasks, the SEMG-MIGNN model 

(Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) can 

achieve an acceptable performance with 20% of the training data, and its predictive ability approached 

convergence with 70% or more the training data.  

 

 
Supplementary Figure 16. Learning curves of the SEMG-MIGNN model (Sterics- and Electronics-

embedded Molecular Graph and Molecular Interaction Graph Neural Network) in yield and 

enantioselectivity tasks. We repeated the prediction ten times, and the shadow in the figure 

represents the range of error in these ten predictions. a Learning curves of the SEMG-MIGNN model 

(Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) in 

yield task. b Learning curves of the SEMG-MIGNN model (Sterics- and Electronics-embedded Molecular 

Graph and Molecular Interaction Graph Neural Network) in enantioselectivity task. 

 

 
  



S52 

 

3.12 Details of the machine learning modelling of the external experimental tests 

 

Supplementary Figure 17. Details of the 11 experimentally tested CPAs for external verifications of 

the SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction 

Graph Neural Network) predictions. 

 

To evaluate the structural differences between the 43 CPAs in Denmark’s dataset and the 11 CPAs 

(Supplementary Figure 17) in our experimental tests, we used the correlation coefficient of Morgan molecular 

fingerprints. The correlation coefficients of Tanimoto similarity is shown in Supplementary Figure 18a. These 

results indicated that the CPAs in our experimental evaluations have noticeable differences in terms of the 

topological structure. The median value of the correlation coefficient is 0.56, whose structures are shown in 

Supplementary Figure 18b. Supplementary Table 18 summarized the experimental and predicted 

enantioselectivities for the various tested models. 
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Supplementary Figure 18. Fingerprint similarity of CPAs between the training set and the external test 

set. a Distribution of the correlation coefficient of Tanimoto similarity using Morgan molecular fingerprints. b 

The pair of CPAs that has the median value of Fingerprint similarity. 

 

Supplementary Table 18. Experimental and predicted enantioselectivities (in kcal mol-1) for the 

experimentally tested chiral phosphoric acid catalysts. SEMG-MIGNN means Sterics- and Electronics-

embedded Molecular Graph and Molecular Interaction Graph Neural Network. 

CPA Experimental Value ACSFs/GB DRFP21 MFF22 SEMG-MIGNN 

1 1.15 1.812 1.826 1.882 1.046 

2 0.98 0.858 1.177 1.037 0.765 

3 0.92 0.857 1.500 1.004 0.710 

4 0.84 1.725 1.438 1.281 0.724 

5 0.77 1.543 1.360 0.883 0.798 

6 0.73 0.932 1.154 0.895 0.750 

7 0.68 0.799 1.155 0.883 0.763 

8 0.67 0.943 1.342 1.308 0.826 

9 0.65 0.851 1.358 0.836 0.487 

10 0.52 0.827 1.365 0.857 0.557 

11 0.08 0.316 1.154 0.280 0.289 

R2  -1.811 -5.207 -0.845 0.745 

MAE (kcal mol-1)  0.349 0.622 0.287 0.117 

RMAE (kcal mol-1)  0.443 0.658 0.359 0.127 
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3.13 Results of enantioselectivity regression performances on asymmetric hydrogenation of olefins 

We further compared the performance of SEMG-MIGNN (Sterics- and Electronics-embedded Molecular 

Graph and Molecular Interaction Graph Neural Network) with MFF22-RF, DRFP21-XGB models on the 

asymmetric hydrogenation of olefins. The data of representative Rh/BINOL-phosphite-catalyzed 

hydrogenation reaction of tri-substituted olefins was used based on our previous database study23. The 10-

fold cross validation performances are compared in Supplementary Figure 19. SEMG-MIGNN (Sterics- and 

Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) exhibited satisfying 

prediction performance in this transformation, with a R2 of 0.777 and a RMSE (Root Mean Square Error) of 

0.427 kcal mol-1, which outperforms DRFP21 and MFF22 approaches.  

 

 

 
Supplementary Figure 19. Enantioselectivity prediction of Rh/BINOL-phosphite-catalyzed 

hydrogenation reaction of tri-substituted olefins using SEMG-MIGNN (Sterics- and Electronics-

embedded Molecular Graph and Molecular Interaction Graph Neural Network), DRFP21 (Differential 

Reaction Fingerprint) and MFF22 (Multiple Fingerprint Feature) models. a Predicted performance of 

DRFP (Differential Reaction Fingerprint). b Predicted performance of MFF (Multiple Fingerprint Feature). c 

Predicted performance of SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and 

Molecular Interaction Graph Neural Network). The models are trained using 10-fold cross validation. 
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4. Comparison between SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and 
Molecular Interaction Graph Neural Network) and other SOTA models 

4.1 Details of the tested SOTA models 

For the Yield-BERT model24, all the prediction tasks were trained using the default parameters of the 

original study24.  

For the DRFP21 encoding, we used XGBoost algorithm as in the original study21 and performed the 

hyperparameter optimization. The range of the hyperparameter optimization included: n_estimators= 

[100,200,300,400,500,600], max_depth= [None, 10, 20, 30]). The best parameters for yield tasks were 

n_estimators= 100 and max_depth= 10. The best parameters for enantioselectivity tasks were n_estimators= 

100 and max_depth= None. 

For the MFF22 encoding, the best fingerprint for yield tasks was Morgan-Circular Fingerprint-radii 2 (3096 

bits), and the best fingerprint for enantioselectivity tasks was RDKit linear Fingerprint-radii 6 (3096 bits). In 

addition, we used the Random Forest algorithm as in the original study22 and performed hyperparameter 

optimization. The range of the hyperparameter optimization included: n_estimators: [100,200,300,400], 

max_depth: [None, 10, 20, 30]. The best parameters for yield tasks were n_estimators= 100 and max_depth= 

None. The best parameters for enantioselectivity tasks were n_estimators= 100 and max_depth= None. 
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4.2 Yield prediction in C–N cross coupling reaction 

We compared the SEMG-MIGNN model (Sterics- and Electronics-embedded Molecular Graph and 

Molecular Interaction Graph Neural Network) with the Yield BERT, DRFP, MFF models in a series of yield 

prediction tasks. We tested 13 prediction tasks (Supplementary Table 19), including different ratios of random 

data splitting and extrapolative predictions for 4 additives. In the random data splitting, SEMG-MIGNN 

(Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) 

outperformed the other three tested models in all nine tasks. For the extrapolative predictions of the additives, 

SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural 

Network) achieved the best performance in tests 2 to 4.  

 

Supplementary Table 19. Prediction performances of yield tasks using various SOTA models. SEMG-

MIGNN means Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural 

Network. 

Data Splitting R2 of Yield-BERT24 R2 of DRFP21 R2 of MFF22 R2 of SEMG-MIGNN 

Random 90/10 0.962 ± 0.040 0.965 ± 0.010 0.943 ± 0.010 0.970 ± 0.010 

Random 80/20 0.957 ± 0.010 0.953 ± 0.005 0.931 ± 0.010 0.971 ± 0.005 

Random 70/30 0.952 ± 0.005 0.951 ± 0.005 0.930 ± 0.010 0.969 ± 0.005 

Random 60/40 0.934 ± 0.010 0.932 ± 0.010 0.918 ± 0.010 0.963 ± 0.010 

Random 50/50 0.922 ± 0.010 0.929 ± 0.010 0.904 ± 0.010 0.941 ± 0.010 

Random 40/60 0.901 ± 0.010 0.899 ± 0.010 0.881 ± 0.020 0.921 ± 0.010 

Random 30/70 0.883 ± 0.010 0.897 ± 0.010 0.863 ± 0.010 0.903 ± 0.010 

Random 20/80 0.862 ± 0.010 0.878 ± 0.010 0.839 ± 0.010 0.883 ± 0.010 

Random 10/90 0.791 ± 0.020 0.813 ± 0.010 0.773 ± 0.010 0.834 ± 0.010 

Test 1a 0.843 ± 0.010 0.809 ± 0.010 0.853 ± 0.010 0.848 ± 0.010 

Test 2a  0.841 ± 0.030 0.832 ± 0.003 0.713 ± 0.005 0.867 ± 0.010 

Test 3a 0.753 ± 0.040 0.710 ± 0.001 0.641 ± 0.005 0.776 ± 0.020 

Test 4a 0.492 ± 0.050 0.491 ± 0.004 0.178 ± 0.010 0.677 ± 0.020 

Avg.1-4 0.732 0.711 0.596 0.792 

Note: The best values are shown in bold. aTests 1 to 4 are the extrapolative tests of additives, whose data splitting are 
determined in Doyle’s original study25 and applied in other modelling studies21-22, 24. 
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In addition, we have re-divided the yield datasets from the perspective of scaffold splitting, and evaluated 

the SOTA models in a series of prediction tasks. Supplementary Figure 20 shows the details of scaffold 

splitting in the yield dataset. For aryl halides, the substituted arenes were selected in the training set, and the 

pyridines were included in the test set. For Buchwald ligands, we chose the two ligands with the additional 

methoxy substituent as the training set and the rest two ligands as the test set. For base, the guanidine-type 

organic bases are used for the training set, and phosphazene are included in the test set. For the oxazole 

additives, we selected the mono-substituted ones as the training set and the di-substituted ones as the test 

set. The above scaffold-based splittings have clear organic chemistry meanings and pose extrapolative 

challenges from the synthetic perspective.  

Supplementary Figure 21 and Supplementary Table 20 summarizes the results of the extrapolation tasks 

for yield prediction using the SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and 

Molecular Interaction Graph Neural Network), Yield-BERT24, DRFP21, and MFF models. SEMG-MIGNN 

(Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) 

model demonstrated noticeable advantage. The arene-to-pyridine extrapolation task of aryl halides is the 

most difficult among the four extrapolation challenges; SEMG-MIGNN (Sterics- and Electronics-embedded 

Molecular Graph and Molecular Interaction Graph Neural Network) achieved a regression performance with 

R2 of 0.576, which is significantly higher than the R2 of the other three models (0.230, Yield-BERT24; 0.222, 

DRFP21; 0.449, MFF). In the extrapolation tasks for additive, ligand, and base, the tested SOTA models also 

did not achieve satisfying regression performances, with R2 ranging from 0.3 to 0.5, making it difficult to 

provide synthetically useful predictions. However, our SEMG-MIGNN model (Sterics- and Electronics-

embedded Molecular Graph and Molecular Interaction Graph Neural Network) achieved R2 of 0.851 in the 

additive task, 0.816 in the ligand task, and 0.658 in the base task.  

 

 

 

 

 



S58 

 

 

Supplementary Figure 20. Scaffold splitting of Doyle’s yield dataset. The blue and green colours 

of molecules represent the differences between the training set (blue) and the test set (green). a For 

aryl halides, the substituted arenes were selected in the training set, and the pyridines were included in the 

test set. b For Buchwald ligands, we chose the two ligands with the additional methoxy substituent as the 

training set and the rest two ligands as the test set. c For base, the guanidine-type organic bases are used 

for the training set, and phosphazene are included in the test set. d For the oxazole additives, we selected 

the mono-substituted ones as the training set and the di-substituted ones as the test set. 
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Supplementary Figure 21. Modelling results in the scaffold-based extrapolation tasks of yield 

prediction using SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and Molecular 

Interaction Graph Neural Network) and other SOTA models. a Regression performances of Yield-BERT 

model. b Regression performances of DRFP model (Differential Reaction Fingerprint). c Regression 

performances of MFF model (Multiple Fingerprint Feature). d Regression performances of SEMG-MIGNN 

model (Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural 

Network). The data splittings are elaborated in Supplementary Figure 20.  
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Supplementary Table 20. Comparison of yield prediction between the SEMG-MIGNN model (Sterics- and 

Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) with other SOTA 

models in scaffold-based extrapolation tasks (in %). RMSE means Root Mean Square Error. 

 Data Splitting 
Yield-BERT24 DRFP21 MFF22 SEMG-MIGNN 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Aryl Halide 0.230 26.04 0.222 26.19 0.449 22.04 0.576 19.34 

Additive 0.369 21.29 0.300 22.43 0.347 21.66 0.851 10.36 

Ligand 0.390 20.04 0.488 18.35 0.460 18.85 0.816 11.02 

Base 0.389 19.04 0.357 19.90 0.307 20.66 0.658 14.52 

Note: The best values are shown in bold. The data splitting details of the scaffold-based extrapolation tasks 

are elaborated in Supplementary Information (Supplementary Figure 20). 

4.3 Enantioselectivity prediction in asymmetric N,S-acetal formation 

We also compared the SOTA models in 13 enantioselectivity prediction tasks. In addition to the 9 random 

data splitting tasks with different ratios of training data, we also divided the imines, thiols, and catalysts based 

on the molecular scaffold. Supplementary Figure 22 elaborates the details of these scaffold-based data 

splitting. The division of imines classified imine-5 with bicyclic naphthyl substituent as the test set, while only 

monocyclic aryl substituents were included in the training set. Thiols were classified to aliphatic thiols (test 

set) and aromatic thiols (training set). For the phosphoric acid catalysts, they were divided to the training set 

of BINAP CPAs and the test set of H8-BINAP CPAs. In addition to these scaffold-based splitting, we also 

examined the transformation-based splitting; the 9 transformations involving imine-1 and thiol-1 were divided 

to the test set, while the remaining 16 transformations were used as the training set. The above data splitting 

posed a series of extrapolative challenges for the machine learning models and examined the prediction 

performances under application scenarios. 

Supplementary Table 21 summarized the performances of DRFP, MFF, and SEMG-MIGNN models 

(Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network). 

Yield-BERT was not considered because it was not developed for enantioselectivity prediction.24 Our model 

presented noticeable improvements in most scenarios. In the random data splitting, only in the case of very 

limited training data (10% and 20% training data), SEMG-MIGNN (Sterics- and Electronics-embedded 

Molecular Graph and Molecular Interaction Graph Neural Network) is worse than DRFP and MFF. While in 

the other random data splitting scenarios, SEMG-MIGNN (Sterics- and Electronics-embedded Molecular 

Graph and Molecular Interaction Graph Neural Network) outcompeted the DRFP and MFF models. In the 

extrapolations of thiol and catalyst, DRFP and MFF showed poor or even incorrect predictions, while the 

predictions of SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction 

Graph Neural Network) are still competent without pitfall scenarios. For the transformation-out splitting, 

SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural 

Network) is also the only model with a R2 over 0.9. These results demonstrated that the SEMG-MIGNN model 
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(Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph Neural Network) also 

has an outstanding performance in enantioselectivity prediction, especially in challenging extrapolation tasks. 

 

 

Supplementary Figure 22. Data splitting of Denmark’s enantioselectivity dataset based on molecular 

scaffolds and transformations. The blue and green colours of molecules represent the differences 

between the training set (blue) and the test set (green). For the transformation, the blue shadings 

means training set and the green shadings means test set. a The division of imines classified imine-5 

with bicyclic naphthyl substituent as the test set, and the monocyclic aryl substituents were included in the 

training set. b Thiols were classified to aliphatic thiols (test set) and aromatic thiols (training set). c For the 

phosphoric acid catalysts, they were divided to the training set of BINAP CPAs and the test set of H8-BINAP 

CPAs. d For the transformation-based splitting; the 9 transformations involving imine-1 and thiol-1 were 

divided to the test set, while the remaining 16 transformations were used as the training set. 
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Supplementary Figure 23. Modelling results in the extrapolation tasks of enantioselectivity prediction 

using SEMG-MIGNN (Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction 

Graph Neural Network) and other SOTA models. a Regression performances of DRFP model (Differential 

Reaction Fingerprint). b Regression performances of MFF model (Multiple Fingerprint Feature). c Regression 

performances of SEMG-MIGNN model (Sterics- and Electronics-embedded Molecular Graph and Molecular 

Interaction Graph Neural Network). RMSEs (Root Mean Square Error) are in kcal mol-1. The data splittings 

are elaborated in Supplementary Figure 22. 
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Supplementary Table 21. Prediction performances of enantioselectivity tasks using various SOTA models. 

SEMG-MIGNN means Sterics- and Electronics-embedded Molecular Graph and Molecular Interaction Graph 

Neural Network. RMSE means Root Mean Square Error. 

Data Splitting 

DRFP21 MFF SEMG-MIGNN 

R2 RMSE R2 RMSE R2 RMSE 

Random 90/10 0.903 ± 0.010 0.190 ± 0.010 0.910 ± 0.010 0.183 ± 0.010 0.927 ± 0.005 0.180 ± 0.010 

Random 80/20 0.890 ± 0.010 0.223 ± 0.010 0.908 ± 0.010 0.194 ± 0.020 0.929 ± 0.005 0.179 ± 0.010 

Random 70/30 0.886 ± 0.010 0.201 ± 0.010 0.895 ± 0.010 0.212 ± 0.020 0.920 ± 0.010 0.189 ± 0.010 

Random 60/40 0.873 ± 0.020 0.240 ± 0.020 0.890 ± 0.010 0.230 ± 0.020 0.915 ± 0.010 0.195 ± 0.010 

Random 50/50 0.869 ± 0.020 0.248 ± 0.030 0.888 ± 0.020 0.227 ± 0.030 0.905 ± 0.010 0.205 ± 0.020 

Random 40/60 0.864 ± 0.020 0.256 ± 0.030 0.885 ± 0.020 0.238 ± 0.030 0.887 ± 0.010 0.221 ± 0.020 

Random 30/70 0.863 ± 0.020 0.259 ± 0.030 0.868 ± 0.020 0.243 ± 0.030 0.872 ± 0.010 0.240 ± 0.020 

Random 20/80 0.833 ± 0.030 0.286 ± 0.040 0.861 ± 0.030 0.258 ± 0.030 0.834 ± 0.010 0.281 ± 0.020 

Random 10/90 0.823 ± 0.020 0.291 ± 0.020 0.776 ± 0.030 0.426 ± 0.030 0.721 ± 0.010 0.370 ± 0.020 

Iminea 0.904 ± 0.005 0.235 ± 0.005 0.911 ± 0.005 0.226 ± 0.005 0.902 ± 0.005 0.238 ± 0.005 

Thiola -1.585 ± 0.020 0.773 ± 0.020 -1.283 ± 0.020 0.726 ± 0.020 0.611 ± 0.010 0.300 ± 0.010 

Catalysta 0.127 ± 0.020 0.561 ± 0.020 0.402 ± 0.020 0.464 ± 0.020 0.760 ± 0.010 0.294 ± 0.010 

Transformationa 0.885 ± 0.005 0.233 ± 0.005 0.835 ± 0.005 0.264 ± 0.005 0.912 ± 0.005 0.205 ± 0.005 

Note: The best values are shown in bold. aThese data splitting tasks refer to the extrapolative predictions based on the 
scaffold splitting of the reaction components. Details are elaborated in Supplementary Figure 22. RMSEs (Root Mean Square 
Errors) are in kcal mol-1. 
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5. Results of experiment 

5.1 Experimental results of 11 new acids 

The results of enantioselectivity and yield of the 11 new chiral phosphoric acid-catalyzed thiol addition to 

N-acylimines are shown in Supplementary Figure 24. 

 

Supplementary Figure 24. Experimental results of 11 new acids, including yield and ee. 
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5.2 HPLC Spectra 

CPA-0： 

 

 

CPA-1： 
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CPA-2： 

 

 

CPA-3： 
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CPA-4： 
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CPA-6： 
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CPA-8： 
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CPA-10： 
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6. Data and code availability 

All the involved codes and data in this study were freely available at https://github.com/Shuwen-Li/SEMG-

MIGNN. 
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