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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This work addresses an important topic in a rapidly developing field, and I am generally impressed 

with the ideas behind the model and the systematic way it has been tested and presented. 

However, it appears to be mostly an incremental improvement on previous studies and those 

aspects that at first appear to be a powerful addition, also raise questions about physical accuracy. 

Furthermore, no direct scientific problem is actually solved in this work, putting even more 

emphasis on the methodology alone. Overall, I would recommend publication in a journal more 

specialized in computational methods. 

- "For the embedding of the local electronic environment, the initial guess of HF electronic 

structure calculation by PySCF package37-39 is used" - even in the methods section later, it is not 

at all clear what the authors actually did in this step. I assume HF means Hartree-Fock? then this 

is a pretty bad reference for the electron density...why not use something more accurate? these 

are not big systems (even the largest is only 100+ atoms, not a problem for DFT). 

- The geometries of the molecules are given by a classical force field MMFF, which is a universal 

force field and hence at the low end of accuracy even for classical force fields. Again, why not use 

a more accurate method? with MMFF as an initial guess. 

- More generally, I dislike the PySCF package being mentioned as if just the code name itself tells 

the reader what is being done...it is a large package, with many options and it should be possible 

to reproduce the calculation as the authors have performed it. I could not find files/data for this 

aspect in the GitHub repository either. The methods should explain the key aspects and examples 

should be freely available in the repository. 

- If I look at Fig. 4/5, it is clear that the SEMG approach is better, but it is not much better...where 

is the improvement that makes this method disruptive rather than incremental, justifying 

publication in Nat. Comm.? I could see an argument in the interpretability of the model, but then 

the sensitivity of the result to the steric or electronic encodings makes me even more concerned 

about the low-level of accuracy in the structures. This needs to be benchmarked with higher order 

methods, although I am missing a compelling reason why the whole thing could not be done with 

higher order methods, previous work certainly is e.g. see ref 2. 

- In Fig. 6, is this actually good enough? the authors state that the worst performer gives an error 

of 0.3 and the rest are below 0.2, but what is the criteria for being useful in actual reactions? 

many of the reaction energies are 1 +/- 0.2, so it would not be useful to distinguish between 

them. 

Reviewer #2 (Remarks to the Author): 

The study by Li et al. describes the development of a graph neural network model with steric and 

electronic information (sterics- and electronics-embedded molecular graph, SEMG) for reaction 

prediction. The SEMG is used in a molecular interaction graph neural network (MIGNN) that is 

tested on two well-known datasets from Doyle and Denmark, respectively, and show adequate 

performance in line with previous studies using alternative models (see e.g. 10.1039.D1DD00006C 

for fingerprints). The authors perform synthesis experiments to augment the Denmark dataset, 

and show good performance on the new datapoints in comparison with baselines. The models are 

also interpreted, showing that the steric information is most informative on the stereoselectivity 

prediction task, while the electronic information is most informative on the yield prediction task, in 

line with chemical knowledge. 



Overall, I like the approach of the paper to add steric and electronic information in a rather 

unbiased way to the graph neural network model. I believe that it is one way forward to realize 

better generalization across chemical space and the model and the results are very important and 

interesting to the community. The paper is well written and I think it will be very understandable 

to a general chemistry audience. However, there are also issues that call the results into question 

that would need to be addressed adequately before I would consider it ready for publication. I 

suggest publication after major revisions. 

Major points: 

- The pioneering work by Green, Jensen and Coley (10.1039/D0SC04823B, 10.1063/5.0079574) 

on quantum-chemistry augmented neural networks for reactivity prediction is not cited. This prior 

work partly negates the authors claims to "this model for the first time embeds the digitalized 

steric and electronic information of atomic environment". Although these papers only included 

electronic indices, they need to be discussed extensively as prior work in the field. 

- Another prior work on the interaction model is 10.1039/D1SC02087K and in particular the 

"Reaction GAT". This prior work also needs to be discussed as it partly negates the authors claims 

of novelty claimed by the authors in "this model for the first time ... the molecular interaction 

module allows the effective learning of the synergistic control by multiple reaction components" 

- Was hyperparameter tuning done for the baseline models employed? There are no details in the 

paper or the supporting information. From what I can tell from the code repository, the 

hyperparameters are hardcoded. The baseline models would also need hyperparameter 

optimization to be adequate baselines. It's not exactly difficult to get really good performance on 

these two datasets, and I expect the baselines to do even better with hyperparameter tuning. 

- Overall, I feel that baselines is a weak point of this manuscript. The whole point is to show that 

the steric and electronic information is beneficial. Then it needs to be compared to the best 

available models without this information, for example "yield-BERT" or DRFP from the IBM group, 

to name a few. 

- No consideration is given to the uncertainties in the model scores. As the authors have used 

Monte Carlo cross-validation with 10 random splits, it is possible to calculate approximate standard 

errors of the mean for the RMSE, MAE and R2 scores that give some indication whether the 

studied models are actually significantly different from each other. 

- Another important piece of information missing is the learning curves (performance vs amount of 

data), where the models with steric and electronic information can be expected to perform better 

with less data (compare approach in 10.1039/D0SC04823B) 

- From what I can tell from the repository (e.g., data1_generation-SE.ipynb), min-max scaling is 

applied to the steric and electronic features before train test split. This is a classic case of data 

leakage that can cause inflated performance. The models need to be re-run without this data 

leakage. 

- The rotation and translation dependence is fixed with a standardization of the molecular 

geometry (step 2). It's my impression that the orientation is not uniquely defined by this 

procedure as the directions of the y and z axes (+-) with respect to the points is not defined. 

- Even if the standardization would be uniquely defined, the procedure seems sensitive to the 

conformer generation procedure. Currently, this is affected by a unset random seed 

(EmbedMolecule with default arguments). Furthermore, end users might generate their conformers 

in slightly different ways. I would like to see some sensitivity analysis to how much the predictions 

are affected by new conformers generated with the same EmbedMolecule functon(i.e. different 

conformers than what the model was trained for). 

- The section on extrapolation is currently unconvincing. Although performing additional 

experiments is a strong point of the paper, there is no assessment of how similar the catalysts are 

to the ones already in the training set (e.g. fingerprint similarity or more qualitative arguments). I 

would also like to see some more challenging splits, such as scaffold splits, keeping certain classes 

of reagents/reactants/catalysts out (see, e.g., 10.1080/1062936X.2021.1883107, 

10.1039/D0SC04823B). 

- The authors make a big point of their model being able to handle interaction "regardless of the 

original concatenated sequence". However, this is not shown in the study by e.g. permuting the 

order for new predictions with a model trained on a fixed order. I would suggest either showing 

this, or toning down the claims in the paper. My guess is that it would require data augmentation 

through permutation to achieve this type of invariance. 



Minor points: 

- The discussion of important targets for ML synthesis prediction (P1, left column) should also 

include reaction rates/activation energies. 

- The authors complain of the high computational cost of QM descriptors (P1, left column), but 

then go on to calculate their own descriptors based on the electron density and an LDA model. This 

would surely be on the same time scale as semi-empirical descriptor calculation, so I find the 

discussion inconsistent with what is actually done in this paper. 

- Figure 1, caption: Concatenation is only one of the approaches to handle encoding of multiple 

molecules with e.g. fingerprints. Two other ones are addition and difference. 

- P2, left column: It is said that chemical interpretability of fingerprints is low. I do not agree with 

this as fingerprints are often interpreted based on their mapping to chemical fragments, see, e.g., 

10.1039/D0SC00445F for an example. This interpretability is on par with attention based 

approaches like the one in the current manuscript. 

- P2, left column: It is stated that graph-based predictive models have generated a "strong 

momentum for artificial intelligence design of functional molecules." I think this is hardly shown in 

real applications, with the main drawback being the ability to generalize in chemical space. 

- The number of significant figures (e.g., 20.662) is surely too large 

- Figs. 4 & 5. Note in figure caption which repetition of the train-test split the predictions are from. 

- Can the authors please elaborate on the rationale for "eliminating the steric or electronic 

encodings" by setting them to zero? It is not immediately obvious that setting them to zero would 

eliminate their influence from the model. The behavior of highly parametrized non-linear models 

potentially far from any training data input range is unpredictable. 

- Figure 8b, lower right: There seems to be attention in the empty space. 

- P7, left panel: "This model interpretation offers an interesting chemical knowledge that the 

electronic effect plays a dominant role for the reaction yield of Pd-catalyzed Buchwald-Hartwig 

reaction, while the steric effect is limited for the explored reactants. This chemical insight indeed 

followed the mechanistic understandings and highlighted the interpretability of the SEMG design." 

This is not really a ground-breaking insight and can be gained from basically any quantum 

chemical descriptor model. 

- P7, left panel: "In addition, the models suggested that the identity of the catalyst backbone 

(BINAP vs. H8-BINAP) is worth the attention. These interpretation provided valuable hints for 

further engineering of the chiral phosphoric acid catalysts." These interpretations are also not very 

informative, as it basically says 'the backbone and the substituents of the catalyst (== the whole 

catalyst) are important' 

- ESI, S5: The rationale for the scaling of Denmark original DD_G values is not clear. If the 

argument is that there is a racemic background reaction, the influence of this background reaction 

would depend on the rate of the preferred reaction. This rate is unlikely to be constant over all the 

studied catalysts. Can the authors please specify their mechanistic model supporting this scaling 

factor. 

Reviewer #3 (Remarks to the Author): 

In this manuscript, the author described a novel steric- and electronic-embedded molecular graph 

(SEMG), the steric environment was generated by spherical projection of molecular stereostructure 

(SPMS), which was developed by the same group previously. The electronic part was generated by 

Grid method with the initial guess of HF electronic structure. In addition, a molecular interaction 

module was also developed to enhance the information exchange between reaction components. 

The SEMG-MIGNN model showed good performance both in yield and enantioselectivity predictions 

by using Doyle’s C-N cross coupling reaction datasets and Denmark’s N,S-acetal formation 

datasets. Experimental verifications showed good extrapolation ability for this model, model 

interpretation also gave meaningful information for mechanistic understandings. The results of this 

manuscript are good, and it may become suitable to be published after the following issues are 

addressed. 



1) The author used the MMFF-optimized 3D structure, for simple and rigid molecule, the geometry 

may be good enough with MMFF force field optimization, however, for large and flexible molecules, 

the geometries may vary dramatically, how this SEMG-MIGNN model deal with such molecules? 

2) The molecular interaction module is interesting; however, the interaction matrix was not fully 

illustrated, how does the interaction of the molecular A and B or A and C was performed in the 

matrix? 

3) In the model training part, the author only tested the high through-put dataset such as Doyle 

and Denmark’s reaction dataset, how about the performance with literature-based dataset? The 

authors have reported an enantioselective hydrogenation dataset, I think this should be also 

tested with this dataset to validate the robustness of this model. Otherwise, publication is not well 

justified. 

4) It seems that the github link does not work, it should be reachable before publication. 



Response to Referee 1 

Comment: This work addresses an important topic in a rapidly developing field, and I 
am generally impressed with the ideas behind the model and the systematic way it has 
been tested and presented. However, it appears to be mostly an incremental 
improvement on previous studies and those aspects that at first appear to be a powerful 
addition, also raise questions about physical accuracy. Furthermore, no direct scientific 
problem is actually solved in this work, putting even more emphasis on the 
methodology alone. Overall, I would recommend publication in a journal more 
specialized in computational methods. 
 
Response: We thank the referee for the insightful suggestions and appreciate the 
recognition of our idea. The key scientific problem targeted in our work is how to 
integrate the classic knowledge of organic chemistry, namely steric and electronic 
effects, into chemical machine learning. We believe that the presented SEMG-MIGNN 
approach provides a general framework for the digitalization of these effects, which 
leverages the chemical knowledge to improve the AI predictions for reaction 
performance, leading to improved extrapolative ability and model interpretability.  
 
While there have been a series of exciting advances on the machine learning prediction 
of molecular synthesis, most existing approaches either use descriptors based on 
molecular strings or topology, which is challenging to directly reflect the controlling 
factors of reaction performance, or rely on the hand-picked physical organic parameters 
that require strong empirical knowledge of the underlying reaction mechanism and 
structure-performance relationship. Therefore, the integration of organic knowledge in 
chemical machine learning remains an open question. Our work addresses this 
scientific problem by offering a distinctive approach, with two key differences 
comparing with previous studies: first, we designed a way to implement the atom-level 
steric and electronic encodings, which improves the representation of local chemical 
environment and is applicable to any molecules with well-defined structure; second, we 
developed a graph neural network to learn the interactions through matrix operations in 
the modelling process, which effectively captures the complex relationship between 
reaction components. To further highlight the improving ability of the SEMG-MIGNN 
approach, we found that our model outperforms the state-of-the-art (SOTA) models in 
both yield and enantioselectivity tasks, which sets the current SOTA records to the best 
of our knowledge. We believe that the SEMG-MIGNN model will be applied to tackle 
challenging synthetic targets and stimulate more works to embed chemical knowledge 
into advanced AI frameworks, paving the way to promote the intelligent design of 
chemical reactions.  
 
Regarding the physical accuracy of the computed geometry and electron density, we 
fully understand the referee’s concerns and appreciate the insightful suggestions. We 
agree that the physical accuracy is the prerequisite to achieve the desired 
implementation of steric and electronic effects, especially for the aim to train the 



chemically aware models. In the revision process, we have carefully studied and 
addressed the issue of physical accuracy. We systematically compared the MMFF, xTB, 
and DFT-optimized geometries as well as the electronic densities calculated by thirty-
five theoretical methods comprised of five functionals and seven basis sets. Considering 
both physical accuracy and computational efficiency, we ultimately selected the xTB-
optimized geometry and B3LYP/def2-SVP-calculated electron density, which showed 
significant improvement in physical accuracy compared to the original method (MMFF 
and Hartree-Fock) and is still suitable for large-scale virtual screening (100,000 to 
1,000,000 molecules). Thanks to referee 1’s insightful suggestions, we retrained the 
machine learning models and updated the modelling results. 
 
Comment: "For the embedding of the local electronic environment, the initial guess of 
HF electronic structure calculation by PySCF package37-39 is used" - even in the 
methods section later, it is not at all clear what the authors actually did in this step. I 
assume HF means Hartree-Fock? then this is a pretty bad reference for the electron 
density...why not use something more accurate? these are not big systems (even the 
largest is only 100+ atoms, not a problem for DFT). 
 
Response: We thank the referee for this important suggestion on the physical accuracy 
of the electron density calculation. HF refers to Hartree-Fock method, which is a typical 
low-accuracy method for electron density calculation as the referee suggested. We 
initially chose the Hartree-Fock method for efficiency reasons; our goal is to allow the 
applications of the SEMG-MIGNN method in large-scale virtual screening, which 
typically involves processing molecules in the scale of tens of thousands to millions. 
However, as the referee pointed out, accuracy is a crucial concern, and physical 
accuracy is the foundation for the desired digitalization of steric and electronic effects. 
In light of this critical issue, we have thoroughly evaluated the electron densities 
calculated by various methods during the revision. We ultimately selected the 
theoretical level of B3LYP/def2-SVP to obtain the electron densities and process the 
model trainings.  
 
Based on the GFN2-xTB-optimized geometries (vide infra), the accuracies of the 
computed electron densities were evaluated for thirty-five levels of theory including the 
variations of five functionals (LDA-VWN, B3LYP, M06-2X, ωB97XD, PBE0) and 
seven basis sets (STO-3G, STO-6G, 3-21G, def2-SVP, 6-31G(d), 6-311+G**, def2-
TZVPP). The evaluation process is elaborated in Figure R1a. For a given molecule in 
the studied dataset, the electron densities of the same geometry were compared between 
two levels of theory: the reference level (B3LYP/def2-TZVPP) and the comparing level 
(the other thirty-four levels). The neighboring electron density of each atom was 
assessed to obtain a 7x7x7 tensor with the vdW diameter size. This creates a Nx7x7x7 
tensor for the entire molecule, which was flattened into an one-dimensional vector. 
Subsequently, the Euclidean distances between the two vectors were calculated to 
provide the quantified evaluation of the change of electron densities.  
 



The total of 97 molecules involved in the reactivity and enantioselectivity datasets were 
examined, and the average Euclidean distances of each level of theory are shown in 
Figure R1b. This analysis identified four main levels of accuracies for the studied 
computational methods. As the reviewer pointed out, the previously used Hartree-Fock 
method was not of the desired accuracy, especially comparing with the recommended 
DFT level. However, it is also worth noting that as the size of basis set increases, the 
calculation efficiency decreases significantly. Considering the trade-off between 
accuracy and efficiency, we have selected the level of B3LYP/def2-SVP (F5B4) for the 
electron density calculations. 

 
Fig. R1 Quantitative evaluation of the computed electron density at various 
theoretical levels. a Evaluation procedure of the Euclidean distance between the 
vectors of the computed electron densities. b Euclidean distances of the vectors 
generated by thirty-five theoretical levels.  
 



To further verify the physical accuracy of the selected B3LYP/def2-SVP level, we 
compared the electrostatic potential surfaces, which is an important representation of 
the spatial distribution of the electron density. Figure R2 shows the electrostatic 
potential surfaces of 2-chloropyridine calculated by B3LYP/def2-SVP and 
B3LYP/def2-TZVPP; under the same scale, the changes between the two levels of 
theory are quite limited. Detailed comparisons of all 97 molecules are provided in the 
revised Supplementary Information (Figures S5). These comparisons further 
demonstrated that the selected B3LYP/def2-SVP approach can provide physically 
accurate electron density.  

 

Fig. R2 Electrostatic potential surfaces of 2-chloropyridine calculated at the 
B3LYP/def2-SVP level (a) and the B3LYP/ def2-TZVPP level (b). 

In addition, we used the electron densities calculated by the B3LYP/def2-SVP and 
B3LYP/def2-TZVPP levels to train the SEMG-MIGNN models and compared the 
prediction performances. Figure R3 shows the model performances trained by different 
electron density inputs. In both yield and enantioselectivity prediction tasks, further 
increasing the physical accuracy from def2-SVP level (Figure R3a) to def2-TZVPP 
level (Figure R3b) only led to limited improvement of regression performances (R2: 
0.969 vs. 0.971 in yield task; 0.915 vs. 0.918 in enantioselectivity task). These 
additional evaluations supported that the selected B3LYP/def2-SVP level of theory can 
provide solid accuracy for the electron density and support the desired machine learning 
modelling. The related discussions have been included in the revised Supplementary 
Information.  
 



 

Fig. R3 Test set performances of the SEMG-MIGNN models trained by the 
electron density inputs calculated at the B3LYP/def2-SVP level (a) and the 
B3LYP/def2-TZVPP level (b). The yield dataset is randomly split to 70% (training) 
and 30% (test). The enantioselectivity task is randomly split to 600 (training) and 475 
(test) transformations.  

Comment: The geometries of the molecules are given by a classical force field MMFF, 
which is a universal force field and hence at the low end of accuracy even for classical 
force fields. Again, why not use a more accurate method? with MMFF as an initial 
guess. 
 
Response: Thank the referee for the important suggestion on the physical accuracy of 
molecular geometries. Similar to the electronic density calculation, we initially chose 
MMFF as the method for geometry optimization due to the considerations of 
computational efficiency in large-scale virtual screening. When handling datasets 



ranging from tens of thousands to millions of molecules (e.g. 133,885 molecules in the 
QM9 dataset), the cost of geometry optimization is a critical factor that determines the 
feasibility of the theoretical level. However, as the referee pointed out, the physical 
accuracy of molecular geometries is also essential for training the desired machine 
learning model that can comprehend the correct structure-performance relationship 
instead of simple statistical fitting.  
 
In the revision, we compared the geometries optimized by the MMFF, GFN2-xTB, and 
DFT (B3LYP/def2-SVP) methods, and representative results are shown in Figure R4. 
Using the B3LYP/def2-SVP structures as reference, the root-mean-square deviation 
(RMSD) of the MMFF and GFN2-xTB were computed. Based on these comparisons, 
we acknowledge that the concerns raised by referee 1 and 3 about the accuracy of 
MMFF geometries are indeed correct. MMFF is not suitable for the geometry 
optimization of complex molecules, giving incorrect orientations for certain key 
substituents (such as the highlighted ones in Figure R4) and yielding an unsatisfying 
level of RMSD. In comparison, GFN2-xTB significantly improved the accuracy of 
geometry optimization, achieving a level close to that of DFT optimization while still 
meeting our requirements for high-throughput virtual screening. Therefore, we 
eventually chose GFN2-xTB level of theory for geometry optimization, retrained the 
machine learning models and updated the prediction results.  

 

Fig. R4 Comparisons of the optimized geometries of representative molecules in 
yield (a) and enantioselectivity (b) datasets at various levels of theory. RMSDs are 
computed using the B3LYP/def2-SVP geometries as references. 



To ensure the reliability of the GFN2-xTB geometries in terms of modelling accuracy, 
we further compared the regression performances of SEMG-MIGNN models trained 
by GFN2-xTB (Figure R5a) and B3LYP/def2-SVP (Figure R5b) geometries. In both 
yield and enantioselectivity prediction tasks, the two models have comparable 
predictive abilities. These comparisons further supported that the selected GFN2-xTB 
level of theory can provide the required accuracy for geometry optimization and enable 
the desired machine learning modelling. These benchmark results are included in the 
revised Supplementary Information. 

 

Fig. R5 Test set performances of the SEMG-MIGNN models trained by the 
geometries optimized at the GFN2-xTB level (a) and the B3LYP/def2-SVP level 
(b). The yield dataset is randomly split to 70% (training) and 30% (test). The 
enantioselectivity task is randomly split to 600 (training) and 475 (test) transformations. 
 
 
 



Comment: More generally, I dislike the PySCF package being mentioned as if just the 
code name itself tells the reader what is being done...it is a large package, with many 
options and it should be possible to reproduce the calculation as the authors have 
performed it. I could not find files/data for this aspect in the GitHub repository either. 
The methods should explain the key aspects and examples should be freely available in 
the repository. 
  
Response: We thank the referee for the valuable feedback and apologize for not 
providing the complete calculation details and the computational files in the previous 
version. In the revised Methods section, we have included a full explanation of all the 
computational details. In addition, all the input and output files involved in this article 
are now provided in our GitHub repository (https://github.com/Shuwen-Li/SEMG-
MIGNN), from which the readers can access and reproduce. 
 
Comment: If I look at Fig. 4/5, it is clear that the SEMG approach is better, but it is 
not much better...where is the improvement that makes this method disruptive rather 
than incremental, justifying publication in Nat. Comm.? I could see an argument in the 
interpretability of the model, but then the sensitivity of the result to the steric or 
electronic encodings makes me even more concerned about the low-level of accuracy 
in the structures. This needs to be benchmarked with higher order methods, although I 
am missing a compelling reason why the whole thing could not be done with higher 
order methods, previous work certainly is e.g. see ref 2. 
 
Response: We appreciate the critical questions raised by the referee. We believe that 
the key innovation of the proposed SEMG-MIGNN model is that it provides a general 
framework to encode the steric and electronic effects that chemists are familiar with, 
thereby providing a new strategy to embed chemical knowledge into the advanced 
graph AI model and realizing accurate and interpretable reaction modelling.  
 
As the referee suggested, there have already been a series of exciting studies on reaction 
prediction that have laid a sound foundation for this emerging area. However, previous 
reaction modelling studies often fell into two extremes of reaction encodings: simple 
strings/topology-based descriptors or customized physical chemical parameters. While 
the former approach aims for model generality, it requires strong data support to achieve 
reliable model training and may have difficulty tracing the physical organic origins. 
The latter can achieve powerful reactivity and selectivity predictions using very simple 
regression methods (i.e. multivariate linear regression), but the descriptors are highly 
customized and require sophisticated understanding of the reaction mechanisms and 
controlling factors.  
 
In contrast to the above modelling strategies, the core of our work lies in the design of 
SEMG, which can embed local chemical environments into graph model and provide 
an effective way to digitalize atomic-level steric and electronic effects. Based on this, 
we developed the MIGNN framework to enhance the model's learning of molecular 



interactions, which is also rarely addressed in previous modelling studies. We believe 
that these key distinctions provide new ideas for the data-driven modelling of synthetic 
transformation, and the excellent performances of SEMG-MIGNN model in a series of 
challenging tasks (vide infra) further validated the effectiveness of these designs. This 
work will stimulate more studies to realize the bridging of chemical knowledge and 
reaction modelling, paving the way towards AI design of synthetic transformation. We 
have also elaborated and emphasized these points in the revised manuscript. 
 
Regarding the model performance, we agree with the referee that the previous 
evaluations did not fully exploit the potential of the SEMG-MIGNN model, and it may 
seem that the SEMG-MIGNN approach does not offer disruptive prediction ability 
comparing to the common modelling strategies. Referee 2 also raised the concerns on 
baseline comparisons and required further evaluations of our model comparing with the 
SOTA models as well as more challenging application scenarios. During the revision, 
we evaluated the SEMG-MIGNN model in a series of challenging tasks and 
demonstrated its powerful predictive ability.  
 
In the yield prediction task, we further compared the SEMG-MIGNN model with 
several SOTA models, including the MFF encoding by Glorius (Chem 6, 2020, 1379), 
Reymond's Yield BERT model (Nat. Mach. Intell 2021, 3, 144; Mach. Learn.: Sci. 
Technol. 2021, 2, 015016) and DRFP model (Digital Discovery, 2022, 1, 91). Table R1 
shows the model performances in various data splitting scenarios and additive 
extrapolation tasks. The SEMG-MIGNN model provides the best performance in most 
tasks, especially Test 4. These SEMG-MIGNN results also set the current SOTA records 
for the yield prediction of Buchwald-Hartwig reaction to the best of our knowledge. In 
addition, the SEMG-MIGNN model demonstrated excellent performances in 
enantioselectivity prediction and noticeable advancements comparing with the MFF 
and DRFP models, especially in the extrapolation tasks (Table R2). The predictive 
ability of the SEMG-MIGNN model were also validated in the experimental tests of 
chiral phosphoric acids (Figure R6, vide infra). These comparisons further 
demonstrated that the design of SEMG-MIGNN is effective, and the strategy of 
introducing chemical knowledge in reaction modelling is worth attention for the 
community. 
 
For the concerns on physical accuracy, we fully agree with the referee’s comments and 
appreciate the insightful suggestions on method benchmarking. The referee is indeed 
correct. Without physical accuracy, the generated molecular geometries and electronic 
structures cannot support the desired learning of steric and electronic effects, and thus 
the predictive reaction modelling cannot be achieved. In the above benchmarking 
discussions, we carefully evaluated the geometries and electron densities generated by 
various theoretical levels. Thanks to the referee’s suggestion, we were able to choose a 
significantly more accurate level of theory, GFN2-xTB optimization and B3LYP/def2-
SVP electronic structure calculation, to generate the model inputs.  
 



Table R1. Prediction performances of yield tasks using various SOTA models. 

Data Splitting R2 of Yield-BERT R2 of DRFP R2 of MFF R2 of SEMG-MIGNN 

Random 90/10 0.962 ± 0.040 0.965 ± 0.010 0.943 ± 0.010 0.970 ± 0.010 

Random 80/20 0.957 ± 0.010 0.953 ± 0.005 0.931 ± 0.010 0.971 ± 0.005 

Random 70/30 0.952 ± 0.005 0.951 ± 0.005 0.921 ± 0.010 0.969 ± 0.005 

Random 60/40 0.934 ± 0.010 0.932 ± 0.010 0.918 ± 0.010 0.963 ± 0.010 

Random 50/50 0.922 ± 0.010 0.929 ± 0.010 0.904 ± 0.010 0.941 ± 0.010 

Random 40/60 0.901 ± 0.010 0.899 ± 0.010 0.881 ± 0.020 0.921 ± 0.010 

Random 30/70 0.883 ± 0.010 0.897 ± 0.010 0.863 ± 0.010 0.903 ± 0.010 

Random 20/80 0.862 ± 0.010 0.878 ± 0.010 0.839 ± 0.010 0.883 ± 0.010 

Random 10/90 0.791 ± 0.020 0.813 ± 0.010 0.773 ± 0.010 0.834 ± 0.010 

Test 1a 0.843 ± 0.010 0.809 ± 0.010 0.853 ± 0.010 0.848 ± 0.010 

Test 2a  0.841 ± 0.030 0.832 ± 0.003 0.713 ± 0.005 0.867 ± 0.010 

Test 3a 0.753 ± 0.040 0.710 ± 0.001 0.641 ± 0.005 0.776 ± 0.020 

Test 4a 0.492 ± 0.050 0.491 ± 0.004 0.178 ± 0.010 0.677 ± 0.020 

Avg.1-4 0.732 0.711 0.596 0.792 

aTests 1 to 4 are the extrapolative tests of additives, whose data splitting are determined in Doyle’s original study (Science, 2018, 360, 186). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table R2. Prediction performances of enantioselectivity tasks using various SOTA models. 

Data Splitting 

DRFP MFF SEMG-MIGNN 

R2     RMSE  R2 RMSE R2 RMSE 

Random 90/10 0.903 ± 0.010 0.190 ± 0.010 0.910 ± 0.010 0.183 ± 0.010 0.927 ± 0.005 0.180 ± 0.010 

Random 80/20 0.890 ± 0.010 0.223 ± 0.010 0.908 ± 0.010 0.194 ± 0.020 0.929 ± 0.005 0.179 ± 0.010 

Random 70/30 0.886 ± 0.010 0.201 ± 0.010 0.895 ± 0.010 0.212 ± 0.020 0.92 ± 0.010 0.189 ± 0.010 

Random 60/40 0.873 ± 0.020 0.240 ± 0.020 0.890 ± 0.010 0.230 ± 0.020 0.915 ± 0.010 0.195 ± 0.010 

Random 50/50 0.869 ± 0.020 0.248 ± 0.030 0.888 ± 0.020 0.227 ± 0.030 0.905 ± 0.010 0.205 ± 0.020 

Random 40/60 0.864 ± 0.020 0.256 ± 0.030 0.885 ± 0.020 0.238 ± 0.030 0.865 ± 0.010 0.245 ± 0.020 

Random 30/70 0.863 ± 0.020 0.259 ± 0.030 0.868 ± 0.020 0.243 ± 0.030 0.872 ± 0.010 0.240 ± 0.020 

Random 20/80 0.833 ± 0.030 0.286 ± 0.040 0.861 ± 0.030 0.258 ± 0.030 0.834 ± 0.010 0.281 ± 0.020 

Random 10/90 0.823 ± 0.020 0.291 ± 0.020 0.776 ± 0.030 0.426 ± 0.030 0.721 ± 0.010 0.370 ± 0.020 

Iminea 0.904 ± 0.005 0.235 ± 0.005 0.911 ± 0.005 0.226 ± 0.005 0.902 ± 0.005 0.238 ± 0.005 

Thiola -1.585 ± 0.020 0.773 ± 0.020 -1.283 ± 0.020 0.726 ± 0.020 0.611 ± 0.010 0.300 ± 0.010 

Catalysta 0.127 ± 0.020 0.561 ± 0.020 0.402 ± 0.020 0.464 ± 0.020 0.753 ± 0.010 0.298 ± 0.010 

Transformationa 0.885 ± 0.005 0.233 ± 0.005 0.835 ± 0.005 0.264 ± 0.005 0.912 ± 0.005 0.205 ± 0.005 

aThese data splitting tasks refer to the extrapolative predictions based on the scaffold splitting of the reaction components. Details are 

elaborated in Figure R7. RMSEs are in kcal/mol. 

 

 

Comment: In Fig. 6, is this actually good enough? the authors state that the worst 
performer gives an error of 0.3 and the rest are below 0.2, but what is the criteria for 
being useful in actual reactions? many of the reaction energies are 1 +/- 0.2, so it would 
not be useful to distinguish between them. 
 
Response: Regarding the accuracy requirement for the enantioselectivity prediction in 
actual reactions, the ee values typically range between 0% to 99%. This corresponds to 
a ΔΔG value within 3.2 kcal/mol at room temperature. Therefore, we believe that the 
accuracy of 0.2 kcal/mol is sufficient to provide chemically meaningful predictions for 
actual enantioselective transformations. This is also consistent with the current SOTA 
records for the machine learning of Denmark’s dataset. For random data splitting, 
Denmark’s original study has a mean absolute error (MAE) of 0.152 kcal/mol (Science 
363, 2019, eaau5631), and Glorius’ MFF model can achieve a MAE of 0.144 kcal/mol 
(Chem 6, 2020, 1379). 
 
 



For the 11 additional CPA tests in Fig. 6, the distribution of ΔΔG values is indeed fairly 
narrow as the referee pointed out (0.08 kcal/mol to 1.15 kcal/mol). This is because the 
commercially available CPAs are limited; removing the 43 CPAs that are already 
present in Denmark’s dataset, there are quite few CPAs left which can be purchased and 
have the structural diversity to support the extrapolative challenges. This is the major 
reason for the narrow distribution of ΔΔG values produced by the tested CPAs.  
 
However, we want to emphasize that the extrapolative tests of the 11 CPAs are still 
statistically meaningful. Figure R6 compares the regression performances of the 
SEMG-MIGNN model with other SOTA models (DRFP and MFF). The SEMG-
MIGNN model achieved a R2 of 0.745 and a RMSE of 0.127 kcal/mol; while the 
accuracies of the MFF model and the DRFP model are significantly worse, with R2 
values of -0.845 and -5.207 respectively. These comparisons further highlighted the 
accuracy of the SEMG-MIGNN model in the extrapolation tasks, which is highly 
desirable in chemical predictions. Based on the SEMG-MIGNN predictions, if we were 
to choose the best catalyst prior to the experimental screening, the top-1 candidate CPA-
1 is indeed the correct selection with a 0.1 kcal/mol prediction error, which further 
support that the model can provide useful differentiation of the candidate CPAs. 

 

Fig. R6 Extrapolative enantioselectivity predictions of new chiral phosphoric acids 
by the DRFP, MFF and SEMG-MIGNN models.  



Response to Referee 2 

Comment: The study by Li et al. describes the development of a graph neural network 
model with steric and electronic information (sterics- and electronics-embedded 
molecular graph, SEMG) for reaction prediction. The SEMG is used in a molecular 
interaction graph neural network (MIGNN) that is tested on two well-known datasets 
from Doyle and Denmark, respectively, and show adequate performance in line with 
previous studies using alternative models (see e.g. 10.1039.D1DD00006C for 
fingerprints). The authors perform synthesis experiments to augment the Denmark 
dataset, and show good performance on the new datapoints in comparison with 
baselines. The models are also interpreted, showing that the steric information is most 
informative on the stereoselectivity prediction task, while the electronic information is 
most informative on the yield prediction task, in line with chemical knowledge. 
 
Overall, I like the approach of the paper to add steric and electronic information in a 
rather unbiased way to the graph neural network model. I believe that it is one way 
forward to realize better generalization across chemical space and the model and the 
results are very important and interesting to the community. The paper is well written 
and I think it will be very understandable to a general chemistry audience. However, 
there are also issues that call the results into question that would need to be addressed 
adequately before I would consider it ready for publication. I suggest publication after 
major revisions. 
 
Response: We appreciate the referee’s valuable feedbacks and are grateful for the 
opportunity to improve our work. We share the same view that the digitalization of 
chemical knowledge and its unbiased embedding in machine learning modelling is a 
useful step towards the improvement of generalization ability across the chemical space. 
Such models will provide opportunity to make chemically meaningful and valuable 
predictions that can guide and inspire new chemical discoveries. We hope the design of 
SEMG-MIGNN can provide a helpful reference architecture for the community, 
together pushing the digital transformation of synthetic chemistry. 
 
We also take the suggestions on the background introduction and model evaluation 
seriously. During the revision, we carefully revised and expanded the discussion of 
prior arts. These discussions properly acknowledge the important contributions made 
by the pioneering researchers in this field and place our work in the appropriate context. 
In addition, we have conducted thorough examinations of the SEMG-MIGNN model 
in a wide range of challenging scenarios and compared its performance with the SOTA 
models. To our delight, the SEMG-MIGNN model outperforms the SOTA models in 
the majority of tasks for both yield and enantioselectivity prediction. Thanks to the 
referee’s suggestion, these additions have significantly improved our work and further 
validated the effectiveness of the SEMG-MIGNN design. 
 
 



Comment: The pioneering work by Green, Jensen and Coley (10.1039/D0SC04823B, 
10.1063/5.0079574) on quantum-chemistry augmented neural networks for reactivity 
prediction is not cited. This prior work partly negates the authors claims to "this model 
for the first time embeds the digitalized steric and electronic information of atomic 
environment". Although these papers only included electronic indices, they need to be 
discussed extensively as prior work in the field. 
 
Response: We appreciate the referee’s insightful suggestions. We completely agree that 
the pioneering studies by Green, Jensen, Coley and co-workers on quantum-chemistry 
augmented neural networks should be discussed extensively in our paper. These 
landmark studies (10.1039/D0SC04823B cited as ref. 17 in the original version and 
10.1063/5.0079574 cited as ref. 42 in the revised version) provide an innovative 
strategy for incorporating electronic information into graph neural networks in a site-
specific fashion, which significantly improved the prediction of regioselectivity and 
reactivity. 
 
In the revised manuscript, we have included a detailed discussion of the related studies 
on the embedding of chemical information in graph models. Particularly, we have 
highlighted the key advances which inspired the design of the SEMG-MIGNN model, 
as well as discussed our innovations. These additional discussions provided a more 
comprehensive introduction to the prior arts and placed our work in the appropriate 
context. 
 
Comment: Another prior work on the interaction model is 10.1039/D1SC02087K and 
in particular the "Reaction GAT". This prior work also needs to be discussed as it partly 
negates the authors claims of novelty claimed by the authors in "this model for the first 
time ... the molecular interaction module allows the effective learning of the synergistic 
control by multiple reaction components" 
 
Response: Thank the referee for this important reminder. We appreciate the insightful 
suggestion and agree with the necessity to discuss the prior work from Liu, Yu, and co-
workers (10.1039/D1SC02087K). Their "Reaction GAT" module in DeepReac+ 
connects the GAT-processed molecular vectors through a hyper-graph, allowing the 
model to enhance information interaction between reaction components. Although our 
MIGNN model differs in terms of modelling approach, both works aim to address the 
same chemical issue. We have carefully revised the relevant discussions and 
emphasized the excellent solutions provided by Liu, Yu and co-workers. 
 
Comment: Was hyperparameter tuning done for the baseline models employed? There 
are no details in the paper or the supporting information. From what I can tell from the 
code repository, the hyperparameters are hardcoded. The baseline models would also 
need hyperparameter optimization to be adequate baselines. It's not exactly difficult to 
get really good performance on these two datasets, and I expect the baselines to do even 
better with hyperparameter tuning. 



Response: Following the referee's suggestion, we have further conducted 
hyperparameter optimization for the baseline models during the revision. For the GCN 
model, the range of the hyperparameter optimization included: convolution layer = [1, 
2, 3], multi graph = [mean, sum, max], output = [mean, sum, max]. For the MIGNN 
model, the range of the hyperparameter optimization included:  linear_depth = 
[0,1,2,3,4,5,6,7,8,9,10], hidden_size = [8,16,32,64,128,256], atom_attention = [0,1,2], 
inter_attention = [0,1,2], end_attention = [0,1,2], fc_size = [8,16,32,64,128,256], and 
final_act = ['sigmoid',’none’]. 
 
As a result of the hyperparameter optimization, the baseline models showed improved 
performance, but still remained a certain gap from the SEMG-MIGNN. Table R3 
summarizes the changes in model performance prior to and after the hyperparameter 
optimization. For the yield prediction task, SEMG-MIGNN has the best performance 
with R2 of 0.970 after the hyperparameter optimization. SEMG-MIGNN also achieved 
the highest R2 of 0.915 in the enantioselectivity task. Additionally, we also conducted 
the hyperparameter optimization for the common molecular descriptors (OH, RDKit, 
MF, ACSFs) to ensure the comparisons at the same level. The details of the 
hyperparameter optimization have been clarified in the revised Supplementary 
Information. 
 
Table R3. Modelling performances in yield and enantioselectivity tasks using baseline models 

prior to and after the hyperparameter optimization. The yield dataset is randomly split to 70% 

(training) and 30% (test). The enantioselectivity task is randomly split to 600 (training) and 475 

(test) transformations. 

Prediction Task Descriptor Model  
R2 Prior to 

Optimization 

R2 After 

Optimization 

Yield OH XGBoost 0.911 0.912 

Yield RDKit XGBoost 0.930 0.934 

Yield MF XGBoost 0.930 0.938 

Yield ACSFs XGBoost 0.923 0.929 

Yield Baseline MG GCN 0.423 0.546 

Yield SEMG GCN 0.559 0.591 

Yield Baseline MG MIGNN 0.917 0.920 

Yield SEMG MIGNN 0.952 0.970 

Enantioselectivity OH RandomForest 0.885 0.885 

Enantioselectivity RDKit Gradient Boosting 0.900 0.900 

Enantioselectivity MF Gradient Boosting 0.900 0.901 

Enantioselectivity ACSFs Gradient Boosting 0.896 0.900 

Enantioselectivity Baseline MG GCN 0.361 0.777 

Enantioselectivity SEMG GCN 0.802 0.815 

Enantioselectivity Baseline MG MIGNN 0.838 0.876 

Enantioselectivity SEMG MIGNN 0.903 0.915 

 
 



Comment: Overall, I feel that baselines is a weak point of this manuscript. The whole 
point is to show that the steric and electronic information is beneficial. Then it needs to 
be compared to the best available models without this information, for example "yield-
BERT" or DRFP from the IBM group, to name a few. 
 
Response: Thank the referee for this important suggestion. We fully agree that 
comparing SEMG-MIGNN to SOTA models, especially in the challenging prediction 
tasks, is crucial for the evaluation of the SEMG-MIGNN design and verifying the idea 
of incorporating the steric and electronic information into graph model. In the revision, 
we compared the SEMG-MIGNN model with the best available models in a series of 
yield and enantioselectivity prediction tasks. These models include the Yield BERT and 
DRFP as suggested by the referee, as well as the recently developed MFF approach by 
Glorius (Chem 6, 2020, 1379). To our delight, SEMG-MIGNN outperforms the SOTA 
models in the majority of tasks for both yield and enantioselectivity predictions. 
 
Table R4 compares the performance of SOTA models in yield prediction. We tested 13 
prediction tasks, including different ratios of random data splitting and extrapolative 
predictions for 4 additives. In the random data splitting, SEMG-MIGNN outperformed 
the other tested models in all nine tasks. For the extrapolative predictions of the 
additives, SEMG-MIGNN achieved the best performance in tests 2 to 4, and MFF 
provided better predictions in test 1 (R2 of 0.853, MFF; R2 of 0.848, SEMG-MIGNN). 
It is worth noting that for the challenging extrapolative predictions, SEMG-MIGNN 
showed a noticeable advantage, especially in Test 4. These results further demonstrated 
that the SEMG-MIGNN model has exceptional ability in yield prediction. 
 
We further compared the SOTA models in 13 enantioselectivity prediction tasks. In 
addition to the 9 random data splitting tasks with different ratios of training data, we 
also divided the imines, thiols, and catalysts based on the molecular scaffold, thereby 
producing the extrapolative challenges according to the referee's suggestion. Figure R7 
elaborates the details of these scaffold-based data splitting. The division of imines 
classified imine-5 with bicyclic naphthyl substituent as the test set, while only 
monocyclic aryl substituents were included in the training set. Thiols were classified to 
aromatic thiols (training set) and aliphatic thiols (test set). For the phosphoric acid 
catalysts, they were divided to the training set of BINAP CPAs and the test set of H8-
BINAP CPAs. In addition to these scaffold-based splitting, we also examined the 
transformation-based splitting; the 9 transformations involving imine-1 and thiol-1 
were divided to the test set, while the remaining 16 transformations were used as the 
training set. The above data splitting posed a series of extrapolative challenges for the 
machine learning models and examined the prediction performances under application 
scenarios. 
 
 
 
 



Table R4. Prediction performances of yield tasks using various SOTA models. 

Data Splitting R2 of Yield-BERT R2 of DRFP R2 of MFF R2 of SEMG-MIGNN 

Random 90/10 0.962 ± 0.040 0.965 ± 0.005 0.943 ± 0.010 0.970 ± 0.005 

Random 80/20 0.957 ± 0.010 0.953 ± 0.005 0.931 ± 0.010 0.971 ± 0.005 

Random 70/30 0.952 ± 0.005 0.951 ± 0.005 0.921 ± 0.010 0.969 ± 0.005 

Random 60/40 0.934 ± 0.010 0.932 ± 0.010 0.918 ± 0.010 0.963 ± 0.010 

Random 50/50 0.922 ± 0.010 0.929 ± 0.010 0.904 ± 0.010 0.941 ± 0.010 

Random 40/60 0.901 ± 0.010 0.899 ± 0.010 0.881 ± 0.020 0.921 ± 0.010 

Random 30/70 0.883 ± 0.010 0.897 ± 0.010 0.863 ± 0.010 0.903 ± 0.010 

Random 20/80 0.862 ± 0.010 0.878 ± 0.010 0.839 ± 0.010 0.883 ± 0.010 

Random 10/90 0.791 ± 0.020 0.813 ± 0.010 0.773 ± 0.010 0.834 ± 0.010 

Test 1a 0.843 ± 0.010 0.809 ± 0.010 0.853 ± 0.010 0.848 ± 0.010 

Test 2a  0.841 ± 0.030 0.832 ± 0.003 0.713 ± 0.005 0.867 ± 0.010 

Test 3a 0.753 ± 0.040 0.710 ± 0.001 0.641 ± 0.005 0.776 ± 0.020 

Test 4a 0.492 ± 0.050 0.491 ± 0.004 0.178 ± 0.010 0.677 ± 0.020 

Avg.1-4 0.732 0.711 0.596 0.792 

aTests 1 to 4 are the extrapolative tests of additives, whose data splitting are determined in Doyle’s original study (Science, 2018, 360, 186). 

 
Table R5 summarized the performances of DRFP, MFF, and SEMG-MIGNN models in 
the enantioselectivity prediction tasks. Yield-BERT was not considered because it was 
not developed for enantioselectivity prediction. Our model presented noticeable 
improvements in most scenarios. In the random data splitting, only in the case of very 
limited training data (10% and 20% training data), SEMG-MIGNN is worse than DRFP 
or MFF. While in the other random data splitting scenarios, SEMG-MIGNN 
outcompeted the DRFP and MFF models.  
 
Particularly noteworthy is the extrapolative predictions, where the improvement of 
SEMG-MIGNN is evident. In the extrapolations of thiol and catalyst, DRFP and MFF 
showed poor or even incorrect predictions, while the predictions of SEMG-MIGNN are 
still competent without pitfall scenarios. For the transformation-out splitting, SEMG-
MIGNN is also the only model with a R2 over 0.9. These results demonstrated that the 
SEMG-MIGNN model also has the desired performance in enantioselectivity 
prediction, especially in challenging extrapolation tasks. 
 



 
Fig. R7 Data splitting of Denmark’s enantioselectivity dataset based on molecular 
scaffolds and transformations. 
  



Table R5. Prediction performances of enantioselectivity tasks using various SOTA models. 

Data Splitting 

DRFP MFF SEMG-MIGNN 

R2     RMSE  R2 RMSE R2 RMSE 

Random 90/10 0.903 ± 0.010 0.190 ± 0.010 0.910 ± 0.010 0.183 ± 0.010 0.927 ± 0.005 0.180 ± 0.010 

Random 80/20 0.890 ± 0.010 0.223 ± 0.010 0.908 ± 0.010 0.194 ± 0.020 0.929 ± 0.005 0.179 ± 0.010 

Random 70/30 0.886 ± 0.010 0.201 ± 0.010 0.895 ± 0.010 0.212 ± 0.020 0.920 ± 0.010 0.189 ± 0.010 

Random 60/40 0.873 ± 0.020 0.240 ± 0.020 0.890 ± 0.010 0.230 ± 0.020 0.915 ± 0.010 0.195 ± 0.010 

Random 50/50 0.869 ± 0.020 0.248 ± 0.030 0.888 ± 0.020 0.227 ± 0.030 0.905 ± 0.010 0.205 ± 0.010 

Random 40/60 0.864 ± 0.020 0.256 ± 0.030 0.885 ± 0.020 0.238 ± 0.030 0.865 ± 0.010 0.245 ± 0.010 

Random 30/70 0.863 ± 0.020 0.259 ± 0.030 0.868 ± 0.020 0.243 ± 0.030 0.872 ± 0.010 0.240 ± 0.010 

Random 20/80 0.833 ± 0.030 0.286 ± 0.040 0.861 ± 0.030 0.258 ± 0.030 0.834 ± 0.010 0.281 ± 0.010 

Random 10/90 0.823 ± 0.020 0.291 ± 0.020 0.776 ± 0.030 0.426 ± 0.030 0.721 ± 0.010 0.370 ± 0.010 

Iminea 0.904 ± 0.005 0.235 ± 0.005 0.911 ± 0.005 0.226 ± 0.005 0.902 ± 0.005 0.238 ± 0.005 

Thiola -1.585 ± 0.020 0.773 ± 0.020 -1.283 ± 0.020 0.726 ± 0.020 0.611 ± 0.010 0.300 ± 0.010 

Catalysta 0.127 ± 0.020 0.561 ± 0.020 0.402 ± 0.020 0.464 ± 0.020 0.753 ± 0.010 0.298 ± 0.010 

Transformationa 0.885 ± 0.005 0.233 ± 0.005 0.835 ± 0.005 0.264 ± 0.005 0.912 ± 0.005 0.205 ± 0.005 

aThese data splitting tasks refer to the extrapolative predictions based on the scaffold splitting of the reaction components. Details are 

elaborated in Figure R7. RMSEs are in kcal/mol. 

 

Comment: No consideration is given to the uncertainties in the model scores. As the 
authors have used Monte Carlo cross-validation with 10 random splits, it is possible to 
calculate approximate standard errors of the mean for the RMSE, MAE and R2 scores 
that give some indication whether the studied models are actually significantly different 
from each other. 
 
Response: We have now included the approximate standard errors of the RMSE, MAE 
and R2 scores for the Monte Carlo cross-validations. These results have been updated 
in the revised manuscript and Supplementary Information, providing additional insights 
into the model uncertainties. 
 
 
Comment: Another important piece of information missing is the learning curves 
(performance vs amount of data), where the models with steric and electronic 
information can be expected to perform better with less data (compare approach in 
10.1039/D0SC04823B) 
 



Response: We have further tested the performance of the SEMG-MIGNN model with 
different amounts of training data. Figure R8 shows the model’s learning curves. In 
both yield and enantioselectivity tasks, the SEMG-MIGNN model can achieve an 
acceptable performance with 20% of the training data, and its predictive ability 
approached convergence with 70% or more the training data. Related details have been 
included in the revised Supplementary Information. 

 

Fig. R8 Learning curves of the SEMG-MIGNN model in yield (a) and 
enantioselectivity (b) tasks. 
 
Comment: From what I can tell from the repository (e.g., data1_generation-SE.ipynb), 
min-max scaling is applied to the steric and electronic features before train test split. 
This is a classic case of data leakage that can cause inflated performance. The models 
need to be re-run without this data leakage. 
 
Response: We thank the referee for this important suggestion. We did apply min-max 
scaling to the steric and electronic features before the data splitting, which indeed 
caused data leakage as pointed out by the referee. In the revision, we have re-trained 
the models without the normalization and compared the results. Figure R9 showed the 
modelling results with the incorrect normalization and without normalization. Indeed, 
the prediction results have a marginal improvement with the incorrect normalization of 
the entire dataset. We have removed the normalization and updated all the modelling 
results in the revision. 

 
Fig. R9 Modelling performances with or without the unified normalization. a 
Results in yield prediction task (random 70/30). b Results in enantioselectivity 
prediction task (random 600/475). 



Comment: The rotation and translation dependence is fixed with a standardization of 
the molecular geometry (step 2). It's my impression that the orientation is not uniquely 
defined by this procedure as the directions of the y and z axes (+-) with respect to the 
points is not defined. 
 
Response: Thank the referee for pointing out the missing details in our description of 
the standardization procedure. Our code determined the direction of the y and z axes 
during the standardization process. We have clarified the details in the Methods section 
to avoid misunderstandings. 
 
Figure R10, using cyclohexylthiol as an example, illustrates the workflow of the 
standardization process. For each molecule, we selected three key atoms to determine 
the orientation of the molecule: the center of gravity, the atom closest to the center of 
gravity (atom1), and the atom furthest from the center of gravity (atom2). In step 1, the 
center of gravity is placed at the origin of the xyz coordinate system. In step 2, atom1 
is rotated to the positive half of the z-axis, which determines the direction of the 
molecule along the z-axis. In step 3, atom2 is rotated to the yz plane and placed at the 
positive half of the y-axis, which determines the direction of the molecule along the y-
axis. These three steps standardize the orientation of the molecule, ensuring the 
consistency of the encodings generated from different initial coordinates. 

 

Fig. R10 Standardization procedure of the molecular orientation using 
cyclohexylthiol as an example.  
 
Comment: Even if the standardization would be uniquely defined, the procedure seems 
sensitive to the conformer generation procedure. Currently, this is affected by a unset 
random seed (EmbedMolecule with default arguments). Furthermore, end users might 
generate their conformers in slightly different ways. I would like to see some sensitivity 
analysis to how much the predictions are affected by new conformers generated with 
the same EmbedMolecule functon(i.e. different conformers than what the model was 
trained for). 



Response: In the revision, we further tested the impact of the initial structure on the 
modelling performance. Ten different random seeds were applied for the generation of 
the molecular structures using the EmbedMolecule module. Subsequently, we 
performed the geometry optimizations and electronic structure calculations through the 
same process. The changes in optimized structures and prediction performances are 
summarized in Table R6 (yield task) and Table R7 (enantioselectivity task), which 
showed marginal influence from the selection of random seed. These additional results 
demonstrate that the model is not sensitive to the initial random seed. Related 
discussions are included in the revised Supplementary Information. The corresponding 
random seeds are also provided on my GitHub repository (https://github.com/Shuwen-
Li/SEMG-MIGNN) for readers to reproduce. 

 

Table R6. Structural RMSDs and modelling performances in yield prediction task (70% 

training and 30% test) using different random seeds for the generation of initial structure. 

Seed Averaged RMSD (Å)a RMSE (%) R2 

1 -- 4.88 0.968 

2 1.12 4.59 0.972 

3 0.99 4.79 0.969 

4 1.12 4.41 0.975 

5 1.17 5.19 0.964 

6 1.18 4.79 0.969 

7 1.20 4.50 0.974 

8 1.23 4.85 0.968 

9 1.16 5.11 0.965 

10 1.19 4.71 0.970 

aThe structural RMSDs were determined using the structures of seed 1 as the reference. The 

computed RMSDs of 44 molecules are averaged. 

 

 

 

 

 



Table R7. Structural RMSDs and modelling performances in enantioselectivity prediction task 

(600 training and 475 test) using different random seeds for the generation of initial structure. 

Seed Averaged RMSD (Å)a RMSE (kcal/mol) R2 

1 -- 0.199 0.912 

2 2.79 0.206 0.907 

3 2.71 0.196 0.915 

4 2.93 0.199 0.913 

5 2.74 0.190 0.918 

6 2.95 0.203 0.909 

7 2.92 0.186 0.922 

8 2.93 0.199 0.913 

9 2.93 0.205 0.906 

10 2.78 0.195 0.916 

aThe structural RMSDs were determined using the structures of seed 1 as the reference. The 

computed RMSDs of 53 molecules are averaged. 

 
Comment: The section on extrapolation is currently unconvincing. Although 
performing additional experiments is a strong point of the paper, there is no assessment 
of how similar the catalysts are to the ones already in the training set (e.g. fingerprint 
similarity or more qualitative arguments). I would also like to see some more 
challenging splits, such as scaffold splits, keeping certain classes of 
reagents/reactants/catalysts out (see, e.g., 10.1080/1062936X.2021.1883107, 
10.1039/D0SC04823B). 
 
Response: Thank the referee for this important suggestion. We fully agree that the 
quantification of the structural differences between the Denmark dataset and the newly 
tested CPAs, as well as additional challenging splits, are crucial for demonstrating the 
model's extrapolative ability. 
 
Following the referee’s suggestion, we used the correlation coefficient of Morgan 
molecular fingerprints to evaluable the structural differences between the 43 CPAs in 
Denmark’s dataset and the 11 CPAs we tested experimentally. The distribution of the 
correlation coefficients is shown in Figure R11a. These results indicated that the CPAs 
in our experimental evaluations have noticeable differences in terms of the topological 
structure. The median value of the correlation coefficient is 0.56, whose structures are 
shown in Figure R11b. Related discussions are included in the revised Supplementary 
Information. 
 
 



 
Fig. R11 Quantifying the structural similarities between the experimentally tested 
CPAs and the CPAs in Denmark’s dataset. a. Distribution of the correlation 
coefficients in Morgan molecular fingerprints. b. The chemical structure of the pair of 
CPAs that have the median value of correlation coefficient.  
 

In addition, we have re-divided the datasets of yield and enantioselectivity from the 
perspectives of scaffold splitting and transformation-out, and compared the SEMG-
MIGNN model with other SOTA models in a series of prediction tasks. Figure R12 
shows the details of scaffold splitting in the yield dataset. For aryl halides, the 
substituted arenes were selected in the training set, and the pyridines were included in 
the test set. For Buchwald ligands, we chose the two ligands with the additional 
methoxy substituent as the training set and the rest two ligands as the test set. For base, 
the guanidine-type organic bases are used for the training set, and phosphazene are 
included in the test set. For the oxazole additives, we selected the mono-substituted 
ones as the training set and the di-substituted ones as the test set. The above scaffold-
based splittings have clear organic chemistry meanings and pose extrapolative 
challenges from the synthetic perspective. We also want to note that the transformation-
out splitting cannot be performed on Doyle’s yield dataset, due to the fact that there is 
only one molecule (p-toluidine) as the N-coupling partner. 
 

Figure R13 summarizes the results of the extrapolation tasks for yield prediction using 
the SEMG-MIGNN model and other recommended SOTA models (Yield-BERT, DRFP, 
and MFF). SEMG-MIGNN model demonstrated noticeable advantage. The arene-to-
pyridine extrapolation task of aryl halides is the most difficult among the four 
extrapolation challenges; SEMG-MIGNN achieved a regression performance with R2 
of 0.576, which is significantly higher than the R2 of the other three models (0.230, 
Yield-BERT; 0.222, DRFP; 0.449, MFF). In the extrapolation tasks for additive, ligand, 
and base, the tested SOTA models also did not achieve satisfying regression 
performances, with R2 ranging from 0.3 to 0.5, making it difficult to provide 
synthetically useful predictions. However, our SEMG-MIGNN model achieved R2 of 
0.851 in the additive task, 0.816 in the ligand task, and 0.658 in the base task. These 
results further demonstrated that the SEMG-MIGNN design has exceptional ability for 
the extrapolative prediction tasks and can effectively transfer the structure-performance 
relationship between molecular scaffolds. 



 
Fig. R12 Scaffold splitting of Doyle’s yield dataset.  
 



 
Fig. R13 Modelling results in the scaffold-based extrapolation tasks of yield 
prediction using SEMG-MIGNN and other SOTA models. a Summary of the 
regression performances. b Regression performances of Yield-BERT model. c 
Regression performances of DRFP model. d Regression performances of MFF model. 
e Regression performances of SEMG-MIGNN model. 



We also performed the scaffold-based splitting on Denmark’s enantioselectivity dataset 
and examined the model performances for the extrapolation tasks. Figure R14 
elaborates the details of the extrapolation splittings. The division of imines classified 
imine-5 with bicyclic naphthyl substituent as the test set, while only monocyclic aryl 
substituents were included in the training set. Thiols were classified to aliphatic thiols 
(test set) and aromatic thiols (training set). For the phosphoric acid catalysts, they were 
divided to the training set of BINAP CPAs and the test set of H8-BINAP CPAs. In 
addition to these scaffold-based splitting, we also examined the transformation-based 
splitting; the 9 transformations involving imine-1 and thiol-1 were divided to the test 
set, while the remaining 16 transformations were used as the training set. 

 
Fig. R14 Data splitting of Denmark’s enantioselectivity dataset based on molecular 
scaffolds and transformations. 



 

Fig. R15 Modelling results in the extrapolation tasks of enantioselectivity 
prediction using SEMG-MIGNN and other SOTA models. a Summary of the 
regression performances. b Regression performances of DRFP model. c Regression 
performances of MFF model. d Regression performances of SEMG-MIGNN model. 
RMSEs are in kcal/mol. 
 
We compared the SEMG-MIGNN model with other SOTA models (DRFP, and MFF) 
in the extrapolation tasks for the enantioselectivity prediction, and the results are 
summarized in Figure R15. SEMG-MIGNN model outperforms the other tested models 
in most cases except the imine extrapolation. For the extrapolation of imines, all the 
evaluated models can provide satisfying regression performance (R2 higher than 0.90), 
and the DRFP and MFF model has the best result (R2 = 0.911). For the thiol 



extrapolation task, it is noteworthy that the DRFP and MFF models would fell, giving 
incorrect predictions with negative R2; while the SEMG-MIGNN model can still 
provide reasonable predictions with a R2

 of 0.611 and RMSE of 0.300 kcal/mol. Similar 
situation exists for the catalyst extrapolation. The regression with DRFP model only 
achieved a R2 = 0.116, and that with MFF model has a R2 = 0.402. In contrast, the 
predictions with SEMG-MIGNN model showed significant improvement in the catalyst 
extrapolation, with R2 = 0.753 and RMSE of 0.298 kcal/mol. For the transformation-
out splitting, the SEMG-MIGNN model still has the highest regression performance 
with a R2 = 0.912. We also want to note that the predictions in the experimentally tested 
CPAs also confirmed that the SEMG-MIGNN model outcompetes the DRFP and MFF 
models with noticeable improvement (R2 of 0.745, SEMG-MIGNN; R2 of -5.207, 
DRFP; R2 of -0.845, MFF; Figure R6). These extrapolation challenges provide strong 
support for the predictive ability of the SEMG-MIGNN model, which have been 
included in the revised manuscript.   
 
Comment: The authors make a big point of their model being able to handle interaction 
"regardless of the original concatenated sequence". However, this is not shown in the 
study by e.g. permuting the order for new predictions with a model trained on a fixed 
order. I would suggest either showing this, or toning down the claims in the paper. My 
guess is that it would require data augmentation through permutation to achieve this 
type of invariance. 
 
Response: We are grateful for bringing this important issue to our attention. The referee 
is correct that our previous statements on the concatenated sequence were misleading. 
The original discussions were only meant to emphasize that all possible combinations 
of reaction components have been represented in the matrix operation, which avoid the 
need for strict requirements of data formatting in reaction modelling (i.e. reactant-
catalyst-product). However, a unified data format is still necessary throughout the 
modelling process. As a result, our model currently does not have the ability to provide 
the same predictions with permuted order. The referee’s suggestion regarding this 
matter is correct, and we have revised the related discussions in the manuscript. 
 
Comment: The discussion of important targets for ML synthesis prediction (P1, left 
column) should also include reaction rates/activation energies. 
 
Response: Following the referee’s suggestion, we have included the discussions on 
reaction rates and activation energies in the revised manuscript. This information 
certainly enriches our discussion on ML synthesis prediction. 
 
Comment: The authors complain of the high computational cost of QM descriptors (P1, 
left column), but then go on to calculate their own descriptors based on the electron 
density and an LDA model. This would surely be on the same time scale as semi-
empirical descriptor calculation, so I find the discussion inconsistent with what is 
actually done in this paper. 



Response: We agree with the referee that our model still requires certain computational 
cost, for which the previous discussions may mislead the readers. We have corrected 
the related discussions in the revised manuscript. 
 
Comment: Figure 1, caption: Concatenation is only one of the approaches to handle 
encoding of multiple molecules with e.g. fingerprints. Two other ones are addition and 
difference. 
 
Response: We have revised Figure 1’s caption to accurately reflect the available 
approaches for handling multiple molecules.  
 
Comment: P2, left column: It is said that chemical interpretability of fingerprints is 
low. I do not agree with this as fingerprints are often interpreted based on their mapping 
to chemical fragments, see, e.g., 10.1039/D0SC00445F for an example. This 
interpretability is on par with attention based approaches like the one in the current 
manuscript. 
 
Response: We thank the referee for this important notice. We agree that the fingerprints 
can be interpreted to provide mechanistic insights, as described in the suggested 
reference. We have made the revisions to accurately reflect the chemical interpretability 
of fingerprints. 
 
Comment: P2, left column: It is stated that graph-based predictive models have 
generated a "strong momentum for artificial intelligence design of functional 
molecules." I think this is hardly shown in real applications, with the main drawback 
being the ability to generalize in chemical space. 
 
Response: We appreciate the referee’s insight and agree that there are still challenges 
for the graph-based models to achieve the desired ability to generalize in chemical space. 
We have revised the related discussions. 
 
Comment: The number of significant figures (e.g., 20.662) is surely too large 
 
Response: We have checked and corrected the number of significant figures throughout 
the manuscript and Supplementary Information.  
 
Comment: Figs. 4 & 5. Note in figure caption which repetition of the train-test split 
the predictions are from. 
 
Response: We have revised the figure captions to clarify the details of the data splitting.  
 
 
 
 



Comment: Can the authors please elaborate on the rationale for "eliminating the steric 
or electronic encodings" by setting them to zero? It is not immediately obvious that 
setting them to zero would eliminate their influence from the model. The behavior of 
highly parametrized non-linear models potentially far from any training data input 
range is unpredictable. 
 
Response: We understand the referee’s concern about the model analysis of the steric 
and electronic contributions. For highly parameterized non-linear models, there lacks a 
universally accepted way to decompose the fragmental contributions. Setting the direct 
mathematical outcome of the concerned encodings to zero is a working approach to 
quantify the perturbation of the prediction results, which offers useful information on 
the trained structure-performance model. We think this is a reasonable way to evaluate 
how much the steric and electronic encodings can perturb the prediction results, which 
is mechanistically relevant.   
 
However, as the referee pointed out, this does not mean that the perturbation quantifies 
the overall contributions of the steric or electronic encodings, since their sum is not the 
total prediction value. We also clarified the related discussions to avoid 
misunderstandings.  
 
Comment: Figure 8b, lower right: There seems to be attention in the empty space. 
 
Response: Thank the referee for this notice. We have corrected Figure 8b for this 
mistake. 
 
Comment: P7, left panel: "This model interpretation offers an interesting chemical 
knowledge that the electronic effect plays a dominant role for the reaction yield of Pd-
catalyzed Buchwald-Hartwig reaction, while the steric effect is limited for the explored 
reactants. This chemical insight indeed followed the mechanistic understandings and 
highlighted the interpretability of the SEMG design." This is not really a ground-
breaking insight and can be gained from basically any quantum chemical descriptor 
model. 
 
Response: We agree with the referee that other physical parameters with clear steric 
and electronic definitions would probably reach the same conclusions. We have toned 
down the related discussions to avoid over-emphasizing the model interpretation.  
 
Comment: P7, left panel: "In addition, the models suggested that the identity of the 
catalyst backbone (BINAP vs. H8-BINAP) is worth the attention. These interpretation 
provided valuable hints for further engineering of the chiral phosphoric acid catalysts." 
These interpretations are also not very informative, as it basically says 'the backbone 
and the substituents of the catalyst (== the whole catalyst) are important' 
 
 



Response: We agree with the referee that the interpretation may not be that 
straightforward as reflected by the high-dimensional nature of the structure-
enantioselectivity relationship. Perhaps the most useful way of catalyst engineering is 
to perform high-throughput virtual screening with the trained model. We have revised 
related discussions to avoid over-emphasizing the attention-based interpretation.  
 
Comment: ESI, S5: The rationale for the scaling of Denmark original DD_G values is 
not clear. If the argument is that there is a racemic background reaction, the influence 
of this background reaction would depend on the rate of the preferred reaction. This 
rate is unlikely to be constant over all the studied catalysts. Can the authors please 
specify their mechanistic model supporting this scaling factor.  
 
Response: We thank the referee for this important question. The influence of the 
racemic background reaction, probably catalyzed by the trace amount of inseparable 
Lewis acid, is indeed related to the rate of the CPA-catalyzed transformation. During 
the experimental explorations, we noticed that the imine addition is very fast, and we 
tried our best to eliminate the influence of background reaction. We have tried various 
means of purification and more stringent reaction setups, such as new glassware for 
each transformation, but we still cannot completely avoid the reduction of 
enantioselectivity (95% ee in our repetition for the reference CPA) comparing to 
Denmark’s study (99% ee, Science 363, 2019, eaau5631). Nonetheless, our scaling 
factor is a reasonable compromise. The mechanistic reasoning is elaborated as follows: 
 

Without the background reaction, ΔΔ𝐺‡ = −𝑅𝑇ln
ଵା

ଵି
= −𝑅𝑇[ln(1 + 𝑒𝑒) − ln(1 − 𝑒𝑒)] 

With the background reaction, ΔΔ𝐺௪/
‡ =  −𝑅𝑇[ln൫1 + 𝑒𝑒௪/൯ − ln൫1 − 𝑒𝑒௪/൯] 

Applying second-order Taylor expansion: 
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𝑘_௧௧
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Because the substrates were synthesized by the same reaction and subsequently purified, 
the content of the Lewis acid should be comparable, and the corresponding background 
reaction rate is approximately constant (𝑘_௧௧). In addition, since all the chiral catalysts 
are CPA, the total rates of the catalytic reactions (𝑘_௧௧) should also be approximately 
comparable (𝑘_௧௧  is the total reaction rate under CPA catalysis, which does not 
require the enantioselectivity to be the same). Therefore, even there is a discrepancy in 
the actual enantioselectivity, due to the limited fluctuation of the catalytic reaction rate, 

we believe the 
ீ‡

ீೢ/್
‡   can be considered as a constant because of the above 

approximation.  



Response to Referee 3 

Comment: In this manuscript, the author described a novel steric- and electronic-
embedded molecular graph (SEMG), the steric environment was generated by spherical 
projection of molecular stereostructure (SPMS), which was developed by the same 
group previously. The electronic part was generated by Grid method with the initial 
guess of HF electronic structure. In addition, a molecular interaction module was also 
developed to enhance the information exchange between reaction components. The 
SEMG-MIGNN model showed good performance both in yield and enantioselectivity 
predictions by using Doyle’s C-N cross coupling reaction datasets and Denmark’s N,S-
acetal formation datasets. Experimental verifications showed good extrapolation ability 
for this model, model interpretation also gave meaningful information for mechanistic 
understandings. The results of this manuscript are good, and it may become suitable to 
be published after the following issues are addressed. 
 
Response: Thank the referee for the valuable comments and suggestions. We appreciate 
the opportunity to revise the manuscript. 
 
Comment: The author used the MMFF-optimized 3D structure, for simple and rigid 
molecule, the geometry may be good enough with MMFF force field optimization, 
however, for large and flexible molecules, the geometries may vary dramatically, how 
this SEMG-MIGNN model deal with such molecules? 
 
Response: Thank the referee for the important suggestion on the physical accuracy of 
molecular geometries. We initially chose MMFF as the method for geometry 
optimization due to the considerations of computational efficiency in large-scale virtual 
screening. However, as the referee pointed out, the physical accuracy of molecular 
geometries is also essential for training the desired machine learning model that can 
comprehend the correct structure-performance relationship instead of simple statistical 
fitting.  
 
In the revision, we compared the geometries optimized by the MMFF, GFN2-xTB, and 
DFT (B3LYP/def2-SVP) methods, and representative results are shown in Figure R16. 
Using the B3LYP/def2-SVP structures as reference, the root-mean-square deviation 
(RMSD) of the MMFF and GFN2-xTB were computed. Based on these comparisons, 
we acknowledge that the concerns raised by referee about the accuracy of MMFF 
geometries are indeed correct. MMFF is not suitable for the geometry optimization of 
complex molecules, giving incorrect orientations for certain key substituents (such as 
the highlighted ones in Figure R16) and yielding an unsatisfying level of RMSD. In 
comparison, GFN2-xTB significantly improved the accuracy of geometry optimization, 
achieving a level close to that of DFT optimization while still meeting our requirements 
for high-throughput virtual screening. Therefore, we eventually chose GFN2-xTB level 
of theory for geometry optimization, retrained the machine learning models and 
updated the prediction results.  



 

Fig. R16 Comparisons of the optimized geometries of representative molecules in 
yield (a) and enantioselectivity (b) datasets at various levels of theory. RMSDs are 
computed using the B3LYP/def2-SVP geometries as references. 
 
To ensure the reliability of the GFN2-xTB geometries in terms of modelling accuracy, 
we further compared the regression performances of SEMG-MIGNN models trained 
by GFN2-xTB (Figure R17a) and B3LYP/def2-SVP (Figure R17b) geometries. In both 
yield and enantioselectivity prediction tasks, the two models have comparable 
predictive abilities. These comparisons further supported that the selected GFN2-xTB 
level of theory can provide the required accuracy for geometry optimization and enable 
the desired machine learning modelling. These benchmark results are included in the 
revised Supplementary Information. 
 
To ensure the reliability of the ML results, we also tested the impact of the initial 
structure on the modelling performance. Ten different random seeds were applied for 
the generation of the molecular structures using the EmbedMolecule module. 
Subsequently, we performed the geometry optimizations and electronic structure 
calculations through the same process. The changes in optimized structures and 
prediction performances are summarized in Table R8 (yield task) and Table R9 
(enantioselectivity task), which showed marginal influence from the selection of 
random seed. These additional results demonstrate that the revised model is not 
sensitive to initial conformation. Related discussions are included in the revised 
Supplementary Information.  



 

Fig. R17 Test set performances of the SEMG-MIGNN models trained by the 
geometries optimized at the GFN2-xTB level (a) and the B3LYP/def2-SVP level 
(b). The yield dataset is randomly split to 70% (training) and 30% (test). The 
enantioselectivity task is randomly split to 600 (training) and 475 (test) transformations. 
 
 
 
 
 
 
 
 
 
 



Table R8. Structural RMSDs and modelling performances in yield prediction task (70% 

training and 30% test) using different random seeds for the generation of initial structure. 

Seed Averaged RMSD(Å)a RMSE (%) R2 

1 -- 4.88 0.968 

2 1.12 4.59 0.972 

3 0.99 4.79 0.969 

4 1.12 4.41 0.975 

5 1.17 5.19 0.964 

6 1.18 4.79 0.969 

7 1.20 4.50 0.974 

8 1.23 4.85 0.968 

9 1.16 5.11 0.965 

10 1.19 4.71 0.970 

aThe structural RMSDs were determined using the structures of seed 1 as the reference.  

 

 

Table R9. Structural RMSDs and modelling performances in enantioselectivity prediction task 

(600 training and 475 test) using different random seeds for the generation of initial structure. 

Seed Averaged RMSD(Å)a RMSE (kcal/mol) R2 

1 -- 0.199 0.912 

2 2.79 0.206 0.907 

3 2.71 0.196 0.915 

4 2.93 0.199 0.913 

5 2.74 0.190 0.918 

6 2.95 0.203 0.909 

7 2.92 0.186 0.922 

8 2.93 0.199 0.913 

9 2.93 0.205 0.906 

10 2.78 0.195 0.916 

aThe structural RMSDs were determined using the structures of seed 1 as the reference. 

 



Comment: The molecular interaction module is interesting; however, the interaction 
matrix was not fully illustrated, how does the interaction of the molecular A and B or A 
and C was performed in the matrix?   
 
Response: Our design aims to achieve the information interaction through matrix 
multiplication. Figure R18 illustrates the details of the interaction matrix. The 
encodings of each reaction component are concatenated to create the one-dimensional 
matrix expression X (or an undirected vector) of the total transformation. The matrix X 
and its transpose matrix XT are combined to form the interaction matrix, which includes 
the interactions between each reaction component. Taking the interaction between A 
and B as an example, the highlighted two matrices are the multiplication of the one-
dimensional matrix corresponding to A and the transpose of the one-dimensional matrix 
corresponding to B (A× BT), and the multiplication of the one-dimensional matrix 
corresponding to B and the transpose of the one-dimensional matrix corresponding to 
A (B×AT). The related details have also been added in the revised Methods section. 
 

 
Fig. R18 Details of the matrix operations in the design of interaction module. 
  



Comment: In the model training part, the author only tested the high through-put 
dataset such as Doyle and Denmark’s reaction dataset, how about the performance with 
literature-based dataset? The authors have reported an enantioselective hydrogenation 
dataset, I think this should be also tested with this dataset to validate the robustness of 
this model. Otherwise, publication is not well justified. 
 
Response: We appreciate the important question raised by the referee. We fully agree 
that additional model evaluations are crucial to justify the design of SEMG-MIGNN. 
Following the referee's suggestion, we further compared the performance of SEMG-
MIGNN with other SOTA models (MFF, Chem 6, 2020, 1379; DRFP, Digital Discovery, 
2022, 1, 91) on the asymmetric hydrogenation of olefins. The representative 
Rh/BINOL-phosphite-catalyzed hydrogenation reaction of tri-substituted olefins was 
studied, and the 10-fold cross validation performances are compared in Figure R19. To 
our delight, SEMG-MIGNN also exhibited satisfying prediction performance in this 
transformation, with a R2 of 0.777 and a RMSE of 0.381 kcal/mol, which outperforms 
DRFP and MFF approaches. Additionally, in light of referee 2’s suggestions, we have 
also validated the predictive ability of SEMG-MIGNN model on additional challenging 
extrapolation tasks (Figures R12 to R15). These results collectively provide strong 
support for the effectiveness of the SEMG-MIGNN design. 
 
 

 

 

Fig. R19 Enantioselectivity prediction of Rh/BINOL-phosphite-catalyzed 
hydrogenation reaction of tri-substituted olefins using SEMG-MIGNN and other 
SOTA models. The models were trained using 10-fold cross validation.  



Comment: It seems that the github link does not work, it should be reachable before 
publication. 
 
Response: Thank the referee for bringing this issue to our attention. We have updated 
the content on our GitHub repository and verified that the link 
(https://github.com/Shuwen-Li/SEMG-MIGNN) is now valid. 
 
 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

I think the authors have made a comprehensive effort to answer the comments of all the referees 

and would be happy for the manuscript to proceed to publication. 

Reviewer #2 (Remarks to the Author):

I would like to congratulate the authors on the extremely extensive revisions to the manuscript, 

which have significantly improved it and addressed all my previous concerns. It is rare to see such 

well-considered revisions and such a well-written response letter and I applaud that. In particular 

the very good results for extrapolation tasks is a notable advance compared to previous methods. 

I strongly recommend that the paper should be published in Nature Communications and it will be 

of great interest to the community. 

Minor point: Please clarify what the "correlation coefficients" are that were used to calculate the 

structural differences between the new CPAs and those in the Denmark dataset. Normally this is 

done with the Tanimoto similarity. 

Reviewer #3 (Remarks to the Author):

The revised manuscript by Hong and co-workers addressed the issues we pointed before, the new 

models were based on more accurate DFT calculated structures and the model performance was 

further improved. I appreciate the effort the authors made to introduce chemical knowledge-based 

sterics and electronics information into the MG model, I think the manuscript is well organized and 

suitable to be published in Nat. Commun.



Response to Referee 1

Comment: I think the authors have made a comprehensive effort to answer the 

comments of all the referees and would be happy for the manuscript to proceed to 

publication.

Response:  We appreciate the referee's recognition of our work. The professional 

suggestion significantly improved the quality of our research. We hope that the design 

of SEMG-MIGNN can offer a useful method to address challenges in synthetic 

chemistry.

Response to Referee 2

Comment: I would like to congratulate the authors on the extremely extensive 

revisions to the manuscript, which have significantly improved it and addressed all my 

previous concerns. It is rare to see such well-considered revisions and such a well-

written response letter and I applaud that. In particular the very good results for 

extrapolation tasks is a notable advance compared to previous methods. I strongly 

recommend that the paper should be published in Nature Communications and it will 

be of great interest to the community. 

Response: We are grateful for the referee's appreciation and recognition of our research. 

Thanks for the valuable comments and suggestions, which have been helpful in guiding 

us to improve our work.

Comment: Please clarify what the "correlation coefficients" are that were used to 

calculate the structural differences between the new CPAs and those in the Denmark 

dataset. Normally this is done with the Tanimoto similarity.

Response: We thank the referee for this important notice. The structural differences 

between the tested CPAs and those in Denmark’s dataset are evaluated by the 

correlation coefficient of Tanimoto similarity using Morgan molecular fingerprints. To 

avoid misunderstanding, we add the details of it in manuscript and supplementary 

information.

Response to Referee 3

Comment: The revised manuscript by Hong and co-workers addressed the issues we 

pointed before, the new models were based on more accurate DFT calculated structures 

and the model performance was further improved. I appreciate the effort the authors 

made to introduce chemical knowledge-based sterics and electronics information into 

the MG model, I think the manuscript is well organized and suitable to be published in 

Nat. Commun.

Response: We are grateful for the referee's support and recognition of our work. Thanks 



for the insightful suggestions, which have helped us to improve the quality of our work.
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