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Figure S1. Western bot quantification of NF-κB subunits in U2932 and RIVA cell lines. Each band is 
quantified relative to total protein loading (bottom). The change in expression in the U2932 cell line 
normalised to the expression in RIVA is displayed as a percentage (right). 



  

Figure S2. Quantification of published gene expression data (GSE103934) from a library of DLBCL cell lines (1). Expression of the indicated cytokine/chemokine 
is stratified by cell of origin (A) and RelA expression (B). RelA high = top 20%, and RelA low = bottom 20% of RelA expression. Box plots show mean and 
interquartile range with whiskers indicating the range of the data excluding outliers. * = P<0.05 by Kolmogorov–Smirnov (KS) test. 



  

Figure S3. Quantification of published gene expression data (GSE103934) from a library of DLBCL cell lines (1). Expression of the indicated 
cytokine/chemokine is stratified by RELB (A) and REL (cRel) expression (B). REL/RELB high = top 20%, and REL/RELB low = bottom 20% of RelA 
expression. Box plots show mean and interquartile range with whiskers indicating the range of the data excluding outliers. * = P<0.05 by Kolmogorov–Smirnov 
(KS) test. 



 
 

 
 
Figure S4. NF-κB activation state cannot be determined from NF-κB fingerprints. 
Computationally simulated NF-κB fingerprints in six cell population specific 
computational simulations informed by experimental NF-κB fingerprinting (Figure 
4B). Simulation are the same here as in Figure 4C, except for the U2932 cell line 
where basal IKK activity was increased 100x and the expression of RelA and RelB 
increased to recapitulate experiment fingerprint (Figure 4B). 1,000 cells were 
simulated in each cell population (6,000 simulations in total), with cell-to-cell 
variability incorporated as described previously (2), cell density is indicated with a 
contour plot and each cell population is shown in distinct colors. 
  



 

 
 
Figure S5. Computational modeling of DLBCL, including receptor-proximal signaling. 
A) Schematic of the computational model constructed by combining existing models 
of TLR signaling (3), BCR signaling (4), and NF-κB/IκB regulation (5). All models are 
run as published, with active IKK species summed from the BCR and TLR models to 
determine the active IKK input curve to the NF-κB model. Mutations present in 
DLBCL are indicated in purple. Detail of the combinatorial complexity of NF-κB dimer 
and inhibitor interactions are omitted. 
 
  



Supplemental Modeling Methodology 
 
All modeling files are available at https://github.com/SiFTW/NFkBModel. This 
repository includes the Jupyter notebooks for running the models and producing the 
figures. 
 
Software and versions 
Computational simulations were performed using the free DifferentialEquations.jl 
package, in the free Julia programming language (version 1.6.2). The version 
number for each package used in this study is provided below: 
[fbb218c0] BSON v0.3.6 
[336ed68f] CSV v0.10.8 
[a93c6f00] DataFrames v0.22.7 
[2b5f629d] DiffEqBase v6.84.0 
[0c46a032] DifferentialEquations v6.20.0 
[31c24e10] Distributions v0.25.45 
[5789e2e9] FileIO v1.16.0 
[6a86dc24] FiniteDiff v2.17.0 
[28b8d3ca] GR v0.64.4 
[09f84164] HypothesisTests v0.10.11 
[7073ff75] IJulia v1.23.3 `https://github.com/JuliaLang/IJulia.jl.git#master` 
[033835bb] JLD2 v0.4.3 
[b964fa9f] LaTeXStrings v1.3.0 
[b4fcebef] Lasso v0.6.2 
[21d151f5] LassoPlot v1.1.1 
[1dea7af3] OrdinaryDiffEq v5.71.2 
[69de0a69] Parsers v2.2.4 
[58dd65bb] Plotly v0.3.0 
[a03496cd] PlotlyBase v0.5.4 
[f0f68f2c] PlotlyJS v0.14.1 
[91a5bcdd] Plots v1.32.0 
[438e738f] PyCall v1.94.1 
[d330b81b] PyPlot v2.11.0 
[1a8c2f83] Query v1.0.0 
[102930c3] SmoothingSplines v0.3.1 
[f3b207a7] StatsPlots v0.14.34 
[c3572dad] Sundials v4.11.4 
[bd369af6] Tables v1.10.0 
[a759f4b9] TimerOutputs v0.5.22 
[0f1e0344] WebIO v0.8.20 
 
Generating models from reactions, parameters and rate laws. 
Computational models were encoded across three .csv files: reactions.csv, 
parameters.csv, and rateLaws.csv (available on GitHub 
https://github.com/SiFTW/NFkBModel). All parameters in all simulations were kept 
consistent with published parameters (5), with the exception of cell line-specific 
parameterizations defined below. Bespoke Python 3 code was used to assemble 
these files into a single Julia (.jl) file of equations written into a function compatible 



with the DifferentialEquations.jl package. This python code is available on GitHub 
(https://github.com/SiFTW/CSV2JuliaDiffEq).  
Two different collections of these CSV files were used in this manuscript. One 
defining the NF-κB, and one defining the model in which TLR, BCR and NF-κB 
signaling are combined. To assemble each of the two models, the CSV2Julia 
(https://github.com/SiFTW/CSV2JuliaDiffEq) command was run with the appropriate 
model definition CSV files as arguments to the CSV2Julia function.  
 
Solving models 
Simulation length, initial conditions, and algorithm used in generating solutions (such 
as tolerance) are provided in the Jupyter Notebooks 
https://github.com/SiFTW/NFkBModel). The steady state of each simulation was 
obtained through an extended simulation from the initial conditions (100,000 
minutes), and no species was found to be substantially changing by this time point. 
The endpoint of this steady state simulation was used as the initial conditions for the 
time course phase. For conditions where stimulation was required, this was added to 
the model at the start of the time course (t=0). 
 
Cell-to-cell variability 
Cell-to-cell variability was approximated (assuming pre-existing differences in 
expression and degradation rates) as described previously (2). Table S1 shows the 
parameters which are distributed within the NF-κB model. 
 
Table S1 
Parameter Value Description 
k1_IkBaDegIKK 0.0014 Degradation rate of IκBα by IKK 
k1_IkBbDegIKK 0.0014 Degradation rate of IκBβ by IKK 
k1_IkBeDegIKK 0.0014 Degradation rate of IκBε by IKK 
k1_IkBDeg 0.00024 Degradation rate of IκB in IκB:NF-κB complexes 
k1_NFkBDeg 0.00024 Degradation rate of NF-κB dimers in IκB:NF-κB 

complexes 
k1_tIkBb 0.0012 Constant rate of IκBβ gene transcription 
kmax_IkBaSynth 0.0048 Kmax for IκBα gene transcription, RelA dimer 

dependent 
kmax_IkBeSynth 7.20E-05 Kmax for IκBε gene transcription, RelA dimer 

dependent 
k1_tIkBaDeg 0.029 Degradation rate for IκBα transcript 
k1_tIkBbDeg 0.0029 Degradation rate for IκBβ transcript 
k1_tIkBeDeg 0.0038 Degradation rate for IκBε transcript 
k1_IkBadeg 0.12 Degradation rate for IκBα 
k1_IkBbdeg 0.12 Degradation rate for IκBβ 
k1_IkBedeg 0.01155 Degradation rate for IκBε 
k1_IkBddeg 0.003 Degradation rate for IκBδ 
k1_RelASynth 1.15E-04 Constant rate of RelA gene transcription 
basal_p50Synth 1.75E-05 Constant basal rate of p50 gene transcription 
basal_RelBSynth 5.14E-05 Constant basal rate of RelB gene transcription 
basal_cRelSynth 3.60E-05 Constant basal rate of cRel gene transcription 
k1_tRelAdeg 0.0029 Degradation rate for RelA transcript 



k1_tp50deg 0.0029 Degradation rate for p50 transcript 
k1_tRelBdeg 0.0029 Degradation rate for RelB transcript 
k1_tp100deg 0.00096 Degradation rate for p100 transcript 
k1_tcReldeg 0.00096 Degradation rate for cRel transcript 
k1_monDeg 0.0228 Degradation rate for unbound NF-κB monomers and 

p100 
k1_NIKSynth 0.042 Constant basal rate of NIK synthesis 
k1_NIKConstDeg 0.0092 Basal rate of NIK degradation 
kmax_p100Synth 1.44E-05 Kmax for p100 gene transcription 

 
Increased RelA/cRel and RelB simulations. 
To produce the simulations in Figure 1 C-D, the rates of transcription for RelA, cRel, 
and RelB were multiplied by 10, producing the increased RelA, increased cRel, and 
increased RelB models respectively. Each of these simulations was simulated to 
steady state followed by a time course response to increased canonical stimulation 
beginning at t=0. Other than the canonical stimulation, simulated as an increase in 
NEMO-IKK, all parameters were kept consistent from the time course-phase in the 
steady state-phase. 
 
Models from gene expression data 
In order to produce cell line-specific models from gene expression data, parameters 
for the rates of transcription of RelA, cRel, and RelB, p50, p100 were adjusted. 
U2932 and RIVA-specific models were created by adjusting these parameters. Gene 
expression data was downloaded from the Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103934)(6). The gene 
expression (in log10 counts per million reads) was standardized per gene, such that 
the expression of a particular gene across all cell lines has 0 mean and 1 standard 
deviation (a z-distribution). The default parameter for expression of each gene was 
multiplied by 10z-score. As such a gene with average expression would not have its 
expression scaled (100 = 1), while a gene with expression 1 standard deviation 
higher than the average would have 10 fold higher expression (101=10). The result 
was two models, adjusted from the published B-cell model, incorporating cell line-
specific gene expression. 
 
Models recapitulating NF-κB fingerprints 
To fit the NF-κB model to flow cytometry data from the NF-κB fingerprints RelA and 
RelB transcription rates were manually adjusted (Figure 4). In addition to the models 
in which only RelA and RelB was adjusted, cell line-specific models were created 
with elevated basal NEMO-IKK activity by multiplying the level of activity during the 
steady state phase 100 fold. As this resulted in changes to the levels of RelA and 
RelB, expression of these parameters was adjusted to compensate for the increase 
in NEMO activity and recapitulate NF-κB fingerprints (Figure S4).  
 
Creating a model combining NF-κB, TLR and BCR signaling 
CSV files encoding the reactions, rate laws, and parameters for the NF-κB model 
(above), were combined with files encoding published TLR and BCR models (3, 4). 
An additional linking module was defined as linking reactions, linking parameters, 
and linking rateLaws (see the moduleDefinitionFiles 



https://github.com/SiFTW/NFkBModel). The model was linked through a single 
added molecular species defined as “totalActiveIKK”, which was defined as the sum 
of active NEMO-IKK species from the TLR model and the BCR model. As both these 
models included different abundances of NEMO-IKK, a scaling factor was applied to 
ensure both modules equally contribute to “totalActiveIKK” and therefore the NF-κB 
model. Modules (TLR, BCR, NF-κB, and linking) were combined using a bespoke 
Julia script (combineModels.jl, https://github.com/SiFTW/NFkBModel) to create a 
single set of CSV files that represent the combined model. 
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