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43
Year N Mean Na Mean He Mean Ho Mean Fis Mean AR
2014 273 4.9 0.52 0.49 0.06 4.77
2015 152 5.0 0.51 0.49 0.04 4.81
2016 97 4.6 0.52 0.50 0.04 4.53
2017 113 5.1 0.52 0.48 0.09 5.05
2018 134 4.8 0.51 0.49 0.04 4.73
ALL YEARS | 769 4.9 0.52 0.49 0.05 4,78

44  Table S1 — Badger meta population genetic summary statistics averaged across 14

45  microsatellite loci. N = no. of animals genotyped successfully; Na = no. of alleles observed
46  per locus; He = expected heterozygosity; Ho = observed heterozygosity; Fis = fixation index
47  (level of inbreeding per locus); AR = Allelic richness.

48

tMRCA (yrs before 2017) 95% HPD
Skyline strict clock 324 31.0-36.8
Skyline relaxed clock 323 31.0-36.8
Simple coalescent strict 41.9 33.3-52.8

clock
Simple coalescent relaxed 45.7 32.0-72.3

clock

49 Table S2 - Endemic clade time to most recent common ancestor (tMRCA) for strict and
50 relaxed clock variants of the skyline and simple constant population coalescent phylogenetic
51 models.

52
Model Log Marginal | SD Bayes 2 [sD2 + sp? Model
Likelihood factor (BF) 2 +5D% comparison
(ML)
strict 7266.61 5.13 trict
constant skyline
Strict skyline | -7258.94 5.13 7.67 14.51 Strict
constant
Relaxed 7745.35 51 Rela.xed
constant skyline
Relaxed 7696.13 4.75 49.22 13.94 Relaxed
skyline constant
53

54  Table S3 - Strict and relaxed clock, skyline and constant population model outputs. Log
55  Marginal Likelihoods and standard deviation (SD). Bayes factor (BF) = logML model 2 —
56  logML modell. 2V(SD?model2+SD%modein) is calculated from the standard deviations of both
57  models being compared.

58  Provided it exceeds the figure calculated for 2V(SD%model2+SD?modei1), BF of 3-20 is positive
59  support for 2" model being superior & BF of 20-150 is strong support as per Kass and
60  Rafferty, 1995 [60].



61
62

63
64

65
66

67
68

69
70

Supplementary Figures

H

Sampling Date
2014
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Supplementary Figure S1 — A: Locations of 45 M. bovis culture positive badgers by year. B:
Maximum likelihood phylogeny of 45 M. bovis endemic lineage isolates from TB positive
badgers.
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Figure S2 - Linear regressions of badger IBD relationships — pairwise microsatellite / STR
genetic distance vs Euclidean distance for all capture years.
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Supplementary Figure S3 — Sampling frequency across all years by host for endemic 6.263
lineage.
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Supplementary Figure S4 - Skyline effective population size of the endemic clade through
time plot for the strict clock model.
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Supplementary Figure S5 — Skyline effective population size of the endemic clade through
time plot for the relaxed clock model.
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Supplementary Figure S6 — Transphylo medoid transmission tree of the endemic clade for
the strict clock model. Branch colour changes and red stars indicate inferred host change
events.
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95
96 Supplementary Figure S7 — Transphylo medoid transmission tree of the endemic clade for

97 the relaxed clock model. Branch colour changes and red stars indicate inferred host change
98 events.
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Supplementary Figure S8 — Transphylo distribution of time from infection to transmission
(generation time) for A: strict clock model, B: relaxed clock model.
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Supplementary Figure S9 — Transphylo distribution of time from infection to detection for
A: strict clock model, B: relaxed clock model.
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Supplementary Figure S10 - Maximum likelihood phylogeny (53 SNPs) of non-endemic

lineage 20.131.
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Supplementary Figure S11 — Maximum likelihood phylogeny (92 SNPs) of non-endemic

lineage 4.140.
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Supplementary Text

Utility of WGS for bovine TB surveillance.

Our data are consistent with the findings that WGS provides unparalleled resolution for
epidemiological investigations of zoonotic disease [1] — indexing additional pathogen
variation to stratify isolates that are homogeneous according to the classical tuberculosis
molecular epidemiological tools of spoligotyping and MLVA [2-3].

Regarding the latter tools, we find perfect congruence between spoligotype and MLVA data
and the basal nodes defining major lineages of the phylogeny for all isolates from the TVR
region (main text Figure 2). This concordance is a testament to the clonality of M. bovis [4-5]
and is indicative that existing databases of classical molecular markers, can be used to target
‘hotspots’ of persistent, endemic infection for closer investigation using WGS.

Contemporary transmission of slowly evolving pathogens, such as members of the
Mycobacterium tuberculosis complex (MTBC), is typically characterised by little within-clade
diversity and resulting reduced SNP distances / phylogenetic branch lengths between isolates
[6]. Previous studies have suggested various minimal SNP distance thresholds, for the
definition of contemporaneous, epidemiologically linked isolates. Five and twelve SNP
distances have been proposed to be consistent with such transmission clusters in M.
tuberculosis outbreaks in the United Kingdom [7], whilst ten SNP thresholds have been
proposed in other studies with M. tuberculosis and M. bovis [8-12]. Meehan et al (2018) [6]
have observed that in M. tuberculosis, SNP distances between one and five can represent
transmission events up to 10 years apart. Given that MTBC evolution appears to consistently
involve relaxed molecular clock like behaviour across lineages [12-14], it is perhaps not
surprising that selecting a definitive threshold for contemporary transmission is difficult, and
as a result, those set can appear arbitrary. In addition to the issues with relative clock like
behaviour of different M. bovis lineages, intensity of sample collection and representation of
multiple time points can be crucial to establishing robust substitution rates [1]. The general
rule of thumb remains however - the shorter the SNP distance between isolates, the more
likely they are more closely epidemiologically linked. In this study, the lineage we know to be
endemic in the study area from years of MLVA surveillance, exhibits the shortest average
pairwise SNP distance between isolates (7.6 s.d. 4.0 — see Table 1), which is likely indicative
of contemporary transmission in the region, and compares favourably to the thresholds
discussed above.

The advantage that WGS will provide in disease tracing compared to historical molecular
epidemiology methods in the M. bovis epi-system, is that outbreaks can be traced back to
higher resolution, WGS-defined lineages and sequence types, found in more precise locations
than those defined by genetically homogeneous, MLVA home ranges that can cover
substantial geographical areas [2-3]. A recent and pertinent example of this, is an outbreak
from Cumbria in northwest England, which genome sequencing revealed was linked to the
outbreak area under study here [15].
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Monitoring of non-endemic lineages

Sequence data are useful for identifying probable incursions of non-endemic disease lineages
into new areas, and for potentially determining if the incursion results in contemporary
transmission and persistence. Intra-lineage, inter-isolate SNP distances greater than that
observed for the endemic 6.263 lineage, are possibly indicative of a lack of contemporary
transmission, likely associated with lineages which are non-endemic in the study region as per
previous observations from Northern Ireland wide molecular epidemiological surveillance [2-
3]. This certainly appears to hold true for lineages 1.140, 2.142 and 3.140, which exhibit
average pairwise inter-isolate distances of between 17.6 and 21.6 SNPs. Lineages 5.140 and
19.140 are only represented by two isolates each, but for both lineages, inter-isolate
distances are again observed to be larger than the endemic lineage at 79 SNPs and 13 SNPs
respectively. Given this observation, and the fact that we know these five lineages are outside
of their MLVA defined home ranges [3], it seems probable that they could have arrived in the
study area through multiple, long distance, cattle movements. It is noteworthy, but
anecdotal, that these lineages are comprised solely of isolates from cattle, suggestive perhaps
that the lack of contemporary transmission for these incursive strains has resulted in no
infection reaching the wildlife population. However, with deficiencies in sampling, badger
“trappability’ and TB test diagnostics as discussed in the supplementary materials, one cannot
be definitive that a non-endemic, visiting pathogen lineage has not established a focus of
infection in the study area. Only continued surveillance over a wider temporal window could
assess that. The establishment of long-term genome-based surveillance systems could in the
future help to inform on successful incursions (Gardy and Loman, 2018) [16].

The 20.131 lineage exhibits mean inter-isolate SNP distances which are comparable to that of
the endemic 6.263 lineage (main text Table 1). However, only four isolates of this lineage,
from two badgers (See Supplementary Figure S10), were found within the study area, with
the majority sampled from a neighbouring region in which this strain has a focus of infection.
The short inter-isolate distances observed are therefore more likely to be consistent with
contemporary transmission in the neighbouring region. It is noteworthy however that the
two badgers sampled for this lineage and found in the study zone were found in isolation,
with no associated, contemporary, study zone cattle isolates. It could be that badgers have
dispersed from the neighbouring region into the study zone, carrying infection with them,
which has yet to appear in the cattle population. However, it is also possible that an
undetected reservoir of cattle may have entered the study zone and transmitted infection to
local badgers. Alternatively, an undetected reservoir not picked up by sampling could be
residing within the zone. With so few isolates of the 20.131 lineage from within the study
area, and the previously mentioned biases in sampling, it is impossible to be definitive. Again,
detailed, longitudinal, genome facilitated surveillance would perhaps be able to inform more
fully on this incursive lineage in this region.

Interestingly, one of the historically non-endemic lineages (4.140) [3], does appear to be
persisting in the TVR zone, with multiple badger-sourced isolates observed to exhibit shorter
inter-isolate SNP distances (0-1) between each-other and cattle from the area
(Supplementary Figure S11), consistent with more contemporary transmission events. The
latter observation does highlight the usefulness of this WGS based approach for on-going
surveillance, and for detecting incursions that establish new foci in new regions. It seems
most probable from this case, that new foci of non-endemic lineages are introduced by cattle
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movements, with subsequent spill-over to badgers. A similar chain of events has been
described for the RBCT area by van Tonder et al (2021) [17].
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