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SUPPLEMENTAL METHODS 
 
Study cohort 
The WGS cohort was compiled with both newly sequenced and publicly available data 
(Supplemental Table 1). Clinical records at Memorial Sloan Kettering Cancer Center 
(MSKCC) were screened to identify adult patients who had developed tMN following 
exposure to either of high-dose melphalan- or platinum-containing anti-neoplastic 
regimens. 18 tMN were eligible for sequencing (Supplemental Tables 1-2). Eight 
patients were exposed to melphalan as the sole cytotoxic therapy. The remaining 22 tMN 
genomes (from 21 patients) were imported from public datasets1,2. 21 de novo AML whole 
genomes (including three relapse samples) were imported from the TCGA3 (dbGaP 
000178) as comparators. 298 de novo AML and 22 tMN whole exomes were imported 
from the Beat AML dataset (dbGaP: phs001657). Additionally, non-myeloid secondary 
malignancies were sequenced: clinical records at MSKCC were screened to identify 
patients with hematologic and solid tumors that developed following exposure to 
melphalan. Specifically, we sequenced 5 patients with B-ALL following melphalan/ASCT 
and one patient with a secondary bladder tumor following exposure to melphalan/ASCT. 
The latter tumor was chosen for sequencing because unchanged melphalan is partially 
excreted in urine4, thus putting urothelium in direct contact with the mutagen and here 
providing evidence of clonal expansion of a single melphalan-exposed urothelial cell eight 
years following exposure 

In addition, we searched the MSKCC biobank for patients with secondary 
malignancies with multiple chromosomal gains following treatment with platinum-based 
chemotherapy.  

All samples and data were obtained and managed in accordance with the 
Declaration of Helsinki and the Institutional Review Board of MSKCC under protocols 14-
276 and 15-017. The study involved the use of human samples, which had been collected 
after written informed consent had been obtained.  

 
Sequencing and Analytical Methods 

A detailed description of the sequencing and analytical methods is provided in the 
Supplemental Methods. Briefly, for newly identified samples, following sample purity 
optimization and quality control, tumor samples and matched normal had WGS performed 
with an Illumina NovaSeq 6000 with target depth of 70x for tumor and 40x for normal. A 
variety of published tools were used for alignment, somatic mutations, indels, copy 
number, structural variation, phylogeny, and mutational signatures as previously 
described (Supplemental Methods)5,6. Target capture-based sequencing (MSK-
IMPACT) was performed on available peripheral blood or CD34+ selected autograft 



products collected prior to tMN diagnosis for identification of antecedent CH. Mutation 
calling followed stringent criteria using both variant callers and direct visualization of 
mutations with Integrated Genome Viewer7. Cell culture, transfection, and cytokine 
independence assay were performed as detailed by the Taylor Lab at the University of 
Miami. 
 
Sample preparation. Tumor samples for in-house sequencing were curated from three 
sources. Tumors from high purity samples (and solid tumors) that had previously had 
clinical molecular testing performed and had leftover cDNA directly sequenced. The two 
secondary multiple myeloma samples were sequenced directly from leftover DNA 
extracted from CD138-sorted plasma cell used for clinical SNP-array. For the remaining, 
frozen bone marrow mononuclear cell aliquots were obtained from an in-house biobank 
and were either sequenced directly following DNA extraction or were first sorted via 
fluorescence-activated cell sorting to improve sample purity. Matched normal were 
selected from frozen peripheral blood mononuclear cells, peripheral blood granulocytes, 
or CD34-selected autograft products were used as normal match (Supplemental Table 
1). The remaining 22 tMN genomes (from 21 patients) were imported from public 
datasets1,2 (dbGaP: phs000159 and EGAD00001005028). The imported genomes were 
analyzed via the same pipeline as the in-house samples as follows.  
 
Whole-genome sequencing. Following quantification via PicoGreen and quality control 
by Agilent Bioanalyzer, ~500 ng of genomic DNA was sheared (LE220-plus Focused-
ultrasonicator; Covaris, catalog no., 500569) and sequencing libraries were prepared 
using a modified KAPA Hyper Prep Kit (Kapa Biosystems, KK8504). Briefly, libraries were 
subjected to a 0.5 × size select using aMPure XP Beads (Beckman Coulter, catalog no., 
A63882) after post-ligation cleanup. Libraries that were not amplified by PCR (07652_C) 
were pooled equivolume. Libraries amplified with five cycles of PCR (07652_D, 07652_F, 
and 07652_G) were pooled equimolar. Samples were run on a NovaSeq 6000 in a 150 
bp/150 bp paired-end run, using the NovaSeq 6000 SBS v1 kit and an S4 Flow Cell 
(Illumina), as described previously8. Target coverage depth was 70x for tumor and 40x 
for normal. 
 
Whole-genome analysis pipeline. Coverage for tumor and normal samples are reported 
in Extended Data Table 1. Short insert paired-end reads were aligned to the reference 
genome (GRCh37) using the Burrows–Wheeler Aligner (v0.5.9; ref. 17). All samples were 
uniformly analyzed by the following bioinformatic tools: somatic mutations were identified 
by CaVEman8; copy number analysis and tumor purity (i.e., cancer cell fraction) were 
evaluated using Battenberg (https://github.com/Wedge-Oxford/battenberg); structural 
variants were defined by BRASS (https://github.com/cancerit/BRASS) via discordant 
mapping of paired-end reads, passed through additional quality filters, and were manually 
curated to define complex events (i.e., templated insertions, chromothripsis, and 
chromoplexy) as described previously9. The phylogenetic tree of each case was 
reconstructed using Pyclone-VI (https://github.com/Roth-Lab/pyclone-vi) to determine 
clonal and subclonal variants. 

https://github.com/Wedge-Oxford/battenberg
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The exomes data downloaded from the public repository were aligned to the reference 
human genome (GRCh37) using Burrows-Wheeler Aligner, BWA (v0.7.17). Deduplicated 
aligned BAM files were analyzed using FACETS (v0.5.6, https://github.com/mskcc/facets) 
for copy number variants, CaVEMan (v1.13.14, https://github.com/cancerit/dockstore-
cgpwxs) for single nucleotide variants (SNVs) and Pindel (v3.2.0, 
https://github.com/cancerit/dockstore-cgpwxs) for small insertions-deletions. 

The genome regions that were significantly modified in our cohort were identified 
by using GISTIC2.0 (v2.0.23, https://www.genepattern.org). To improve the test’s 
statistical power, we ran our cohort of myeloid whole genomes (n=57; not including 
relapse cases) with Beat-AML samples (n=320). In this way we were able to detect the 
anomalous peaks and arms shared among all the sample. The analysis was executed 
using Gene Pattern web interface (http://genepattern.broadinstitute.org) and setting a q 
value threshold of 0.01. For further comparison, samples were split by status as de novo 
AML, tMN with chemotherapy mutational signature (i.e., chemotherapy-induced 
mutagenesis), and tMN without chemotherapy mutational signatures. Because mutational 
signatures were not run for exomes, Beat-AML tMN samples were excluded from this final 
comparison (n=22). 

We applied the dN/dScv method to detect genes under positive selection in our 
cohort10. To increase the statistical power, we included 320 de novo AML and tMN 
samples from the Beat-AML study. Importantly, the original Beat AML study called 
mutations with Varscan and MuTect2, which are not as specific as CaVEMan11. For 
mutational signatures from genomic data, we retained our pipeline as described. For the 
comparison of the driver mutation landscape, we rescued mutations that had been filtered 
out by CaVEMan that had been called in the original Beat AML study12 by Varscan and 
MuTect2. 
 
Mutational Signatures. Mutational signatures were analyzed across all whole genomes. 
To estimate the activity of mutational signatures, we first employed a three step process 
of de novo extraction, assignment, and fitting1. For the first step, we ran SigProfiler for 
SBS, DBS, and ID signatures13. All extracted signatures were then compared with the 
latest Catalogue of Somatic Mutations in Cancer (COSMIC) reference 
(https://cancer.sanger.ac.uk/cosmic/signatures/SBS) to identify the known mutational 
processes active in the cohort. In the case of ID signatures, the deconvolution and fitting 
solution was accepted outright. For SBS and DBS signatures, we required the addition of 
signatures not currently included in the most recent version (3.2) of the COSMIC 
catalogue (Supplemental Table 4). These are SBS-MM1 (melphalan)6, SBS-HSC (clock-
like signature in hematopoietic cells)14, E-DBS3 and E-DBS9 (platinum)15. We performed 
an adjusted deconvolution with the respective SBS and DBS COSMIC catalogues with 
the addition of these four signatures using a bespoke algorithm (https://github.com/UM-
Myeloma-Genomics/Signature-Assignment)1. The code generates a pairwise fitting 
contribution of user-supplied reference mutational signatures to de novo extracted 
signatures and is particularly useful for the addition and evaluation of signatures not 
included in the COSMIC reference. The top deconvolution combination with biologic 
rationale reflective of signatures known to be active in included tumor histologies was 
chosen for each de novo signature extraction unless the SigProfiler solution was more 
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appropriate. Deconvolution revisions are marked with an asterisk in Supplemental 
Figures 2-4 and reported in Supplemental Tables 6 and 71. For SBS, we applied mmsig 
(https://github.com/UM-Myeloma-Genomics/mmsig)16, a fitting algorithm, to confirm the 
presence and estimate the contribution of each mutational signature in each sample 
guided by the catalog of signatures extracted for each individual sample by SigProfiler's 
de novo refit, our revised deconvolution, and with revisions for processes known or not 
known to be active in disease histologies (i.e., addition of SBS8 for multiple myeloma 
samples, removal of flat SBS40 signature in all cases in favor of SBS5 and SBS-HSC). 
mmsig confidence intervals were generated by bootstrapping 1,000 mutational profiles 
from the multinomial distribution each time repeating the signature fitting procedure, and 
finally taking the 2.5th and 97.5th percentile for each signature. At least 40 mutations 
were required per sample for this analysis. For DBS and indels, we similarly used a 
modified version of mmsig capable of fitting our catalogue of DBS and indel signatures to 
each sample. Given the small number of DBS and indels, each sample’s process 
catalogue was based on Sigprofiler’s de novo refit and our pairwise deconvolution, and 
then fit with expectation maximization using mmsig. 
 
Chemotherapy-Related Mutational Signatures in Transitional Cell Carcinoma and 
in tMN Treated with Oral Melphalan. SBS signature de novo extraction for a single 
sample is technically ill-advised. We imported mutational signatures for the PCAWG 
cohort of Transitional Cell Carcinoma (n=23)13 and then we used MutationalPatterns 
plot_compare_profiles and cos_sim functions 
(https://github.com/UMCUGenetics/MutationalPatterns) to compare the case 96-profile 
with de novo signatures extracted by Sigprofiler. The difference in mutations was 
quantified and then compared directly to the SBS-MM1 mutational signature using cosine 
similarity (Supplemental Figure 7b). A similar approach was applied for tMN exposed 
only to oral melphalan in the absence of ASCT (Supplemental Figure 7a), in which SBS-
MM1 was not previously detected12,18. Mutational signatures were first extracted in the 
tumor and then for 18 de novo AML in the cohort. The difference in mutational profiles 
was then ascertained and compared to SBS-MM1 using cosine similarity. 
 
Chemotherapy-Related Mutational Signatures in Driver Genes of Platinum-
Exposed Individuals. Non-synonymous SNV in leukemic drivers from WGS of platinum-
exposed tMN (6 mutations, 5 patients) in our cohort were pooled with CH mutations from 
944 cancer patients exposed to platinum chemotherapies from Bolton et al.17 After 
excluding driver genes with less than 10 non-synonymous SNV18 and including only one 
mutation at a given chromosomal position to remove any hotspot bias, post-platinum SNV 
in driver genes totaled n= 749 for 19 driver genes defined by dndscv (see above). 
Signatures were then fit with mmsig expectation–maximization function for each gene to 
reveal the contribution of platinum mutational signatures to their respective mutational 
profiles. To avoid overfitting and false positivity calling, we sacrificed some sensitivity by 
fitting only the chemotherapy mutational signature peaks associated with strand bias to 
ensure specificity in this gene-level analysis16.  
 

https://github.com/UM-Myeloma-Genomics/mmsig
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Target capture-based sequencing. Peripheral blood samples and/or CD34-selected 
autograft products collected prior to chemotherapy exposure were collected from eleven 
patients with matched whole genomes (Supplemental Table 1, 14). Where possible, 
apheresis product was prioritized. Samples were sequenced using MSK-IMPACT, a Food 
and Drug Administration-authorized hybridization capture-based next-generation 
sequencing assay of protein-coding exons from 505 known cancer-associated genes 
(Supplemental Table 14)17,19. Matched normal was obtained by pooling IMPACT-505 
data from 8 healthy individuals.  
 
Target capture-based sequencing variant calling and filtering. Given the potential for 
extremely low VAF (i.e., small clone size) for CH mutations in normal samples preceding 
tumor expansion by many years, population-based CH screening techniques17 would fail 
to capture many low allelic frequency variants of interest and so directed mutation query 
was employed. Our approach consisted of two distinct strategies to characterize 
antecedent CH variants. Our first approach was targeted-sequencing-centric and was a 
modified workflow from Bolton et al17. First, stringent quality filters were applied to calls 
from a triple caller pipeline of Mutect, Strelka, and Caveman8,20,21. We required a SNV to 
be called by two or more callers, have a VAF of >0.02, have passed default quality flags, 
and not result in synonymous substitution. We further required at least 10 supporting 
forward and reverse reads in Mutect, and to further filter any germline SNPs, we removed 
any variants reported for any population in the gnomAD database at a frequency greater 
than 0.005. Indels were called with Pindel 22 and considered if they passed all quality 
flags. Further postprocessing filters to remove sequencing artifacts were employed as per 
Bolton et al.17 However, as we also had WGS data, we were also able to work in the 
reverse direction: for the list of all nonsynonynous mutations and indels identified in driver 
genes, each individual variant was queried directly in targeted sequencing bam files using 
Integrated Genome Viewer7 and following pileup at target panel loci. If at least one read 
for the mutation was identified, the mutation was considered present in the target 
sequencing sample. Variants were further confirmed and VAF was calculated by 
generating a pileup of reads for the targeted sequencing regions with SAMtools23 for both 
reference and alternate alleles. 
 
Germline Susceptibility Variants. To ascertain whether single nucleotide 
polymorphisms in germline susceptibility variants may have played a role in tMN 
development, we first compile a list of vetted variants from a comprehensive review 
performed by Takahashi24. A pileup was performed on bam files from matched normal 
and further downstream filtering was applied to limit our investigation to high quality 
variant calls. We removed calls with more than one alternate allele, required that calls be 
supported by both forward and reverse reads, removed synonymous variants, and 
removed calls with an alternate allele with unclear consequence. We also filtered out 
variants with high RPB, MQB, BQBm and MQOF. We further calculated strand bias for 
each variant with a Fisher test; with those displaying strand bias more likely to be false 
positive calls. Finally, we selected only variants with VAF>0.25 to ensure SNP status. 
Although single nucleotide polymorphisms were identified in genes involved in DNA 
damage response pathways, acknowledging samples size constraints, there was no 



enrichment for samples with chemotherapy-induced mutagenesis (Supplemental Table 
16).   
 
Cell culture, SMARCA4 transfection and cytokine independence assay. Ba/F3 cells 
were gifted to Dr. Taylor from Dr. Omar Abdel-Wahab (Memorial Sloan Kettering Cancer 
Center). The cells were cultured in RPMI media supplemented with 10% FBS, 1% 
Penicillin/Streptomycin and 10 µg/mL of mouse IL3 (mIL3) and were maintained at 37oC 
and 5% CO2. pQCXIH BRG1 was a gift from Joan Massague (Addgene plasmid # 19148; 
RRID:Addgene_19148). The BRG1/SMARCA4 plasmid was linearized with SalI and 
transfected into Ba/F3 cells via electroporation (Neon transfection system, ThermoFisher, 
Waltham, MA). Hygromycin was utilized to select for SMARCA4 overexpressing Ba/F3 
cells and overexpression was confirmed by immunoblotting with BRGI/SMARCA4 
antibody (Cell Signaling E906E, 1:500 dilution). SMARCA4 or vector expressing Ba/F3 
cells were then cultured in media without IL3. Cells were seeded in triplicates at a starting 
concentration of 100,000 cells/mL and were counted daily using Vi-Cell BLU automated 
cell counter (Beckman Coulter, Indianapolis, IN) and plotted using GraphPad Prism 
Version 9 Software.   
 
Molecular Time and Absolute Timing of Gains. The relative timing of large 
chromosomal duplications (multi-gain events) was estimated with the mol_time function 
(https://github.com/UM-Myeloma-Genomics/mol_time). As previously described, this 
approach allows for the relative timing of gains of large chromosomal segments6,25 by 
using the corrected ratio of clonal single nucleotide variants duplicated or non-duplicated 
across the gains: VAF 66% if duplicated and found on two alleles (pre-gain mutation) and 
VAF 33% if non-duplicated and found on one allele (post-gain mutation). VAFs were 
corrected for sample purity (i.e., cancer cell fraction) by combining Battenberg’s 
estimation of tumor purity and the density and distribution of SNV VAF within clonal diploid 
regions of each sample genome. We required that gains have a minimum of 40 clonal 
mutations to be included in analysis for accuracy concerns6. For the purposes of 
increasing power to accurately detect mutational signatures, gains occurring in an 
overlapping time window estimate were collapsed (i.e, multi-gain event within the same 
molecular time). For myeloid cases, this provided evidence of relative timing of gain with 
respect to tumor diagnosis and corroborated results of the following duplicated mutation 
analysis. 

For two multiple myeloma cases, mutational signatures were quantified for pre- 
and post-gain mutations. The mutational burden of clock-like mutations (SBS5) was then 
used to ascertain each patient’s individual SBS5 mutation rate. This was accomplished 
by pooling the two secondary multiple myeloma tumors and the multiple myeloma 
longitudinal cohort from Rustad et al., 2020 to use a linear mixed effects model to estimate 
SBS5 accumulation over time6,26. Then, to convert molecular time estimates into absolute 
time: i) the most recent common ancestor was estimated dividing clonal SBS5 mutations 
by the individual SBS5 mutation rate with interval of confidence derived from the upper 
and lower bounds of standard deviation for the patient-specific mutation rate; ii) the multi-
gain event was estimated by dividing the number of clonal SBS5 pre-gain mutations by 
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the mutation rate corrected for size of the gains and the interval of confidence derived 
from the mutation rate as above; iii) the multi-gain event was additionally estimated by 
multiplying the MRCA by the molecular time estimate with interval of confidence 
generated from bootstrapping the molecular time estimate 1000 times. Only gains with at 
least 40 clonal mutations were included for the purpose of accuracy. 
 
Duplicated Mutational Burden and Chemotherapy Barcoding. In an approach similar 
to that used for estimated timing of gains using duplicated clock-like mutations6,25, we 
leveraged mutations that were duplicated across gains (i.e., VAF 66%) to determine 
variants that predated the copy number gain. VAFs were corrected for sample purity (i.e., 
cancer cell fraction) by combining Battenberg’s estimation of tumor purity and the density 
and distribution of SNV VAF within clonal diploid regions of each sample genome. 
Mutations from within different gains were collapsed if molecular time (above) supported 
the gains as occurring in the same time window. For IID_H198325, IID_198331, and 
IID_H198328 the molecular time was not possible to be estimated because of either low 
mutational burden or excess of unassigned mutations. Given the patterns observed in the 
other tMN, the gains from these samples were treated as having occurred in the same 
molecular time for the purposes of this approach. 

Tumor phylogeny from Pyclone, above, revealed clonal and subclonal mutations 
and all SNV were subsequently grouped into clonal duplicated and non-duplicated 
groups, and subclonal (non-duplicated) groups. Mutational signature analysis was run on 
each group of intra-gain mutations, as above, to determine pre- and post-gain mutational 
processes active before and after the gain. At least 40 total mutations per multi-gain were 
required in a group to confidently ascertain mutational signature contribution.  
 A similar approach was applied to amplifications that were caused by 
chromothripsis events27. After correction of VAF for sample purity, mutations across gains 
deemed part of chromothripsis events9 were pooled and separated into duplicated and 
non-duplicated groups. Clustered mutations (i.e., kataegis) were filtered out so as not to 
skew results towards distinct mutational signatures (e.g., APOBEC)1. Mutational 
signature analysis was performed for events with 40 or more clonal mutations.  

Clinical correlation with timing of chemotherapy and associated signatures was 
then compared to molecular time estimates and according to duplication status to 
reconstruct evolutionary timelines relative to chemotherapy exposure.  
The code used for this chemotherapy barcoding approach is available at: 
https://github.com/UM-Myeloma-Genomics/Timing-of-Gains-with-Chemotherapy-
Barcoding/tree/main 
 
Statistical Analysis 
Each specific statistical test is annotated in the text. Fisher’s Exact Test and the 
Wilcoxon Ranked Sum test were used to compare differences between groups. A false 
discovery rate was used to correct for multiple hypothesis testing. P-values <0.05 and q 
values <0.1 were considered statistically significant. Survival data were analyzed and 
visualized with Kaplan-Meier methods.  
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Supplemental Figures 

 
Supplemental Figure 1. Clinical summary of therapy-related neoplasms included in 
this study. a) Depiction of autologous stem cell transplantation. b) Kaplan-Meier curves 
for therapy-related AML and MDS from the whole genome cohort. 
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Supplemental Figure 2. Single Base Substitution (SBS) signatures. Output from 
SigProfiler SBS96 signatures de novo extraction. SBS signatures annotated with an 
asterisk have been revised using a pairwise deconvolution solution containing non-
COSMIC mutational signatures (Methods). The remaining are original SigProfiler 
suggested deconvolution solutions. 
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Supplemental Figure 3. Double Base Substitution (DBS) signatures. Output from 
SigProfiler DBS78 signatures interpreted using a pairwise deconvolution solution 
containing non-COSMIC mutational signatures (Methods).  
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Supplemental Figure 4. Indel (ID) signatures. Output from SigProfiler ID83 signatures 
revised using a pairwise deconvolution solution (Methods). 
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Supplemental Figure 5. Impact of exposure to chemotherapy on indels and SBS 
burden. a) Number of indels attributable to the ID8 indel signature between radiation 
(rad)-exposed patients with or without concurrent chemotherapy SBS mutational 
signature. b) Comparison of SBS mutational burden in post-melphalan therapy-related 
myeloid neoplasms with or without the SBS-MM1 signature. The p-values were estimated 
using Wilcoxon test. 
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Supplemental Figure 6. Schema for the measurement of chemotherapy-related 
mutational signatures in bulk whole genome sequencing data. a) Measurement of 
chemotherapy-associated mutational signatures depends on a single cell, bearing a 
unique chemotherapy-associated mutational catalogue, to expand to clonal dominance 
(single cell expansion model). b) Polyclonal expansion following chemotherapy exposure 
does not yield a measurable chemotherapy-associated signature. c) Another explanation 
for lack of signature expression is escape from exposure entirely via leukapheresis and 
reinfusion. Rather than observing both platinum and melphalan signatures following 
sequential exposure in the same patient (d), only platinum signatures are present 
suggesting escape to subsequent melphalan exposure via leukapheresis. 
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Supplemental Figure 7. Detecting the SBS-MM1 (melphalan) signature in two 
tumors without potential for transplant-mediated escape. a) SBS difference between 
mutational profile for a tMN developing after oral melphalan exposure (IID_H201267) and 
the cumulative profiles of n=18 de novo AML WGS (top). The difference (removing 
negative contributions) compared to the SBS-MM1 mutational signature profile (bottom). 
b) SBS difference between mutational profile for a melphalan-exposed transitional cell 
carcinoma (TCC) and the cumulative profiles of n=23 PCAWG TCC (top). The difference 
(removing negative contributions) compared to the SBS-MM1 mutational signature profile 
(bottom). 
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Supplemental Figure 8. Mutations in driver genes in therapy related myeloid 
neoplasms. Oncoplot of driver SNV defined using dndscv for 316 de novo AML and 61 
tMN combining WGS and Beat AML exomes. 
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Supplemental Figure 9. Example of Clonal Hematopoiesis. Screenshot from 
Integrated Genome Viewer (IGV) showing a small TP53 mutant clone in a sample taken 
from the leukapheresis product. This clone expanded into a tumor without a melphalan 
signature, having escaped direct exposure to chemotherapy and resultant mutagenesis. 
 

  TP53



Supplemental Figure 10. Copy number and structural variant differences in all 
therapy-related myeloid neoplasms and de novo AML. a) Top. Cumulative copy 
number profile for all de novo AML samples (n = 316; 18 genomes from TCGA and 298 
exomes from Beat AML). Bottom. Cumulative copy number for 39 tMN genomes and 22 
tMN exomes. GISTIC peaks and CNV arm-level events enriched in tMN with 
chemotherapy signatures (p<0.05, FDR<0.1; Fisher test) are annotated with an asterisk 
for significance as compared to: tMN without chemotherapy signatures, grey; de novo 
AML, red; both, black. b) Structural variant landscape across all de novo AML (Top; n=18) 
and tMN genomes (Bottom; n=39). SV breakpoints are binned into 1 megabase 
segments. For visual purposes, simple events point upward from the x-axis and complex 
events (e.g. chromothripsis) point downward. c) Boxplot of number of complex structural 
variants by presence of chemotherapy signature among tMN cases. The p-value was 
estimated using Wilcoxon test. 

  



Supplemental Figure 11. Simple and complex structural variants involving the 
SMARCA4 and MECOM loci in tMN genomes. The horizontal black line indicates the 
total copy number; the dashed orange line indicates the minor copy number. The vertical 
lines represent SV breakpoints, color-coded based on SV class: blue = inversion, green 
= tandem-duplication; red = deletion; black = translocation. 
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Supplemental Figure 12. SMARCA4 in de novo AML and Ba/F3 cell line. a) Copy 
number profile from the only de novo AML tumor (among n=298 cases in the BEAT-AML 
study) to contain a high copies amplification of the SMARCA4 locus. b): Western blot 
showing expression of SMARCA4 in transfected cells compared to vector for cytokine 
independence assay. 
 

 
  

SMARCA4

β-Actin

Ve
cto
r

SM
AR
CA
4

2217

0
2
4
6
8
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122

a

b SM
AR
CA
4



Supplemental Figure 13. Molecular time and clock-like single base substitution 
mutation rate in multiple myeloma, de novo and therapy-related myeloid 
neoplasms. a) Linear regressions showing the (lack of) association between clock-like 
SBS mutations and age of tumor, regardless of presence or absence of chemotherapy-
induced mutagenesis (i.e., chemotherapy-associated mutational signatures). P-values 
and R squares were estimated using lm R function. b) Molecular time estimates for large 
gains in eligible tumors. Events occurring closer to tumor sequencing (i.e., diagnosis) are 
later in molecular time (i.e., closer to 1). c) Individual SBS5 mutation rate estimate for 
multiple myeloma using linear mixed effect model. The SBS5 mutational burden was 
derived from the phylogenetic branches of each patient (dots). A total of 77 WGS (multiple 
myeloma and smoldering myeloma) from 47 patients cases from a prior study (Rustad et 
al. Nat Comm 2020) were included together with two newly sequenced post-platinum 
multiple myeloma tumors. 
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