SUPPLEMENTAL FIGURES

Supplemental Figure 1 – Single-cell RNA-Seq (scRNA-Seq) identifies enrichment in CXCR2 signaling mediators in MF HSPCs

Supplemental Figure 1: Single-cell RNA-Seq (scRNA-Seq) identifies enrichment in CXCR2 signaling mediators in MF HSPCs. (A) Uniform manifold approximation and projection (UMAP) demonstrating clustering of detectable cell populations based on single-cell transcriptional profiling. Each dot represents a single cell with color corresponding to cell type (CMP, common myeloid progenitor; DC, dendritic cell; GMP, granulocyte monocyte progenitor; HSC, hematopoietic stem cell; MEP, megakaryocyte erythroid progenitor). (B) Hierarchical clustering of detectable cell populations based on transcriptional profiling (CMP, common myeloid progenitor; DC, dendritic cell; Plts: platelets; GMP, granulocyte monocyte progenitor; HSC, hematopoietic stem cell; MEP, megakaryocyte erythroid progenitor; PMN: polymorphonuclear neutrophils). Each hashmark represents a single cell. Colors represent normalized scores. (C) Percent frequency of detectable cell populations identified by scRNA-Seq per patient. (D) Hierarchical clustering of differentially expressed genes in "low fibrotic" and "high fibrotic" MPN patients. Adjusted p-value <0.01 (Wald test) and abs (log2-fold change) >1. Purple, negative values; yellow, positive values. N=2-5/group. (E) UMAPs of common myeloid progenitor (CMP; left panel) and granulocyte-monocyte progenitor (GMP; right panel) populations colored by patient (ET, essential thrombocythemia; PV, polycythemia vera; MF, myelofibrosis). Each dot represents a single cell. (F) Violin plots showing relative expression of CXCR2-mediated cytokines CXCL8 (left panel), CXCL2 (middle panel), and CXCL3 (right panel) in CMPs of individual MPN patients by scRNA-Seq. Each dot represents a single cell.

Supplemental Figure 2 – CXCL8 is aberrantly secreted by MF CD34+ cells and correlates with clinical parameters.

Supplemental Figure 2: CXCL8 is aberrantly secreted by MF CD34+ cells and correlates with clinical parameters. (A) CXCL8 levels as detected by ELISA in isolated plasma from PV, ET, and MF MPN patients in comparison to healthy controls (CTRL). (CTRL N=8, PV N=16, ET N=16, MF N=35). *p<0.05, **p<0.01. Data shown represent mean ± SD. (B) Box plots depicting correlation between MPN sub-type and percent fraction of RANTES-only secreting cells as detected by single-cell cytokine analysis. **p<0.01, ***p<0.001, ns=non-significant. (C) Violin plot depicting correlation between bone marrow reticulin score (MF0-3) of MF patients and percent fraction of detected CXCL8-only secreting cells by single-cell cytokine analysis (MF0 N=5, MF1 N=7, MF2 N=8, MF3 N=7). **p<0.01. (D) Linear correlation analysis of percent fraction of CXCL8only secreting CD34+ cells detected by single-cell cytokine analysis and total white blood cell (WBC) count at time of sample collection. (E) Receiver operator curve demonstrating association between percent CXCL8-only secreting cells and MF sub-type in comparison to PV/ET. A=area under the curve; P=p-value. (F) Ratio of total CD33+ cell output (left panel) and CD41+ cell output (right panel) relative to untreated of cultured healthy donor (light blue) vs. MF (dark blue) CD34+ cells in response to exogenous CXCL8 as detected by flow cytometry. Representative of duplicate experiments from 3 healthy donor (HD) and 6 individual MF cases. *p<0.05. Data shown represent mean ± SD. (G) Representative histograms demonstrating fraction and intensity of MF CD34+ cells expressing CXCR1/2 receptors. (H) Ratio of granulocyte-macrophage progenitor (CFU-GM) colony output to control of cultured MF CD34+ cells in methylcellulose in response to increasing doses of exogenous CXCL8 stratified by degree of CXCR1/2 surface expression ("low:" <10% of cells, light blue; "high:" >10% of cells, dark blue). Representative of duplicate experiments from 4 of individual MF cases with low-CXCR1/2 and 6 of individual MF cases with high-CXCR1/2. *p<0.05, **p<0.01. (I) Percentage of total MF CD34+ cells expressing CXCR1 (left panel) or CXCR2 (right panel) as detected by flow cytometry based on JAK2^{V617F} mutational status of JAK2WT MF samples (light blue; N=5) vs. JAKV617F+ MF samples (dark blue; N=10). **p<0.01. (J) Linear correlation analysis of percent fraction of CXCL8-only secreting CD34+ cells detected by single-cell cytokine analysis and associated JAK2^{V617F} variant allele fraction (VAF) of bone marrow mononuclear cells at time of bone marrow biopsy.

Supplemental Figure 3 – Extended RNA-Seq/ATAC-Seq patient data and publicly available MF gene expression dataset

Supplemental Figure 3: Extended RNA-Seq/ATAC-Seq patient data and publicly available **MF** gene expression dataset. (A) Uniform manifold approximation and projection (UMAP) visualization of N=8 MPN patient samples (see Supp. Table S3) available for gene expression (RNA-Seq) analysis. Each dot represents an individual patient. Light blue represents CXCL8 "non-secretors;" dark blue represents CXCL8 "secretors" as identified by their single-cell cytokine secretion analysis. (B) Total number of differentially regulated genes (blue represents significantly down-regulated genes; red significantly up-regulated genes) of CXCL8 secretor vs. non-secretor MPN patients by a fold change cutoff of ± 2 and a FDR of 1%. (C) Graphical representation of optimized gene expression sub-network analysis from gene expression profiles showing key nodes enriched by RNA-Seg in CXCL8 secretor vs. non-secretor MPN patients. (D) PCA plot demonstrating clustering of myelofibrosis patients segregated by CXCL8 expression levels and stratified by <20% and >80% from a publicly available microarray gene expression data set.⁷⁷ Each dot represents an individual patient. Dark blue represents "CXCL8 high" (>80%) MF patients (N=8); light blue represents "CXCL8 low" (<20%) MF patients (N=8) as based on their relative CXCL8 expression level. (E) Correlation analysis comparing the internal (MSKCC) RNA-Seq dataset to the publicly-available MF gene expression data set. (F) Hierarchal clustering demonstrating differentially expressed genes in select MF patients stratified by CXCL8 expression level (light blue = CXCL8 low; dark blue = CXCL8 high). Blue, negative values; red, positive values. (G) Gene Set Enrichment Analysis (GSEA) demonstrating enriched pathways in "CXCL8 high" vs. "CXCL8 low" MF patients from the publicly-available dataset presented as normalized enrichment score (NES) by FDR q-value. N=8/arm. (H) Representative GSEA plots demonstrating positive enrichment in the pro-inflammatory Hallmark TNF α via NF- κ B and mature leukocyte activation gene sets in CXCL8-high MF from the publicly-available dataset. (I) Total number of differential ATAC peaks segregating enhancers from promoter regions (defined as within 2kb of the transcription start site [TSS]) of CXCL8-high (N=3) vs. CXCL8-low (N=2) MPN patients. (J) Representative accessibility peaks at the CXCL8 locus extending from 6kb prior to the TSS to the 8kb beyond the 3'-UTR of CXCL8-secretor vs. non-secretor MPN patients.

Supplemental Figure 4 – *Cxcr2^{-/-}* knock-out validation, experimental set-up, and extended analysis of *VavCxcr2^{-/-}* hMPL^{W515L} mice

Supplemental Figure 4: Cxcr2^{-/-} knock-out validation, experimental set-up, and extended analysis of Cxcr2^{-/-} hMPL^{W515L} mice. (A) Western blot analysis of canonical downstream Cxcr2 mediators in harvested murine bone marrow after 2 hours cultured with or without exogenous human CXCL8 (hCXCL8) for both Cxcr2^{f/f}:Cre⁻ wild-type (WT) and Cxcr2^{f/f}:Cre⁺ knock-out (KO) cells. Representative blots of N=3 mice/arm. (B) Schematic of experimental set up of the Cxcr2^{-/-} KO hMPL^{W515L} transplant studies. BM=bone marrow, lin-neg=lineage-negative, EV ctrl=empty vector control. (C) Confirmation of Cxcr2 loss on the surface of live peripheral blood (PB) mononuclear cells from Cxcr2^{t/f};Cre⁺ primary KO mice. N=6/arm. ****p<0.0001. Unpaired t-test. Data shown represent mean ± SEM. (D) Absolute Mac1+Gr1+ mature neutrophil populations in peripheral blood of Cxcr2^{f/f};Cre⁺ vs. Cxcr2^{f/f};Cre⁻ hMPL^{W515L} vs. empty vector (EV) transplanted mice at time of sacrifice. N=4-5 mice/arm. ***p<0.001, ****p<0.0001. Data shown represent mean ± SEM. Two-way ANOVA. (E) Spleen weights (mg) of Cxcr2^{f/f};Cre⁺ KO vs. Cxcr2^{f/f};Cre⁻ WT hMPL^{W515L} or EV control mice. N=4-5 mice/arm. *<0.05, ns-non-significant. Data shown represent mean ± SEM. (F) Homing assay assessing frequency of donor CD45.2 mutant cells in bone marrow of lethally irradiated recipient mice 48 hours following transplant of Cxcr2^{i/f};Cre⁺ KO vs. Cxcr2^{f/f};Cre⁻WT hMPL^{W515L} or EV control cells. N=4-5 mice/arm. (G) Peripheral blood mature cell fractions of mice transplanted with Cxcr2^{f/f};Cre⁺ KO vs. Cxcr2^{f/f};Cre⁻ WT EV cells 9 weeks posttransplant. N=4-5 mice/arm. (H) Percent CD41+ live cells as detected by flow cytometry in bone marrow of Cxcr2^{f/f};Cre⁺ vs. Cxcr2^{f/f};Cre⁻ hMPL^{W515L} transplanted mice at time of sacrifice 9 weeks post-transplant. N=4-6/arm. **p<0.01. Unpaired t-test. Data shown represent mean ± SEM. (I) Recorded bone marrow megakaryocyte number (MKs) per high powered field (HPF) from Cxcr2^{f/f};Cre⁺ KO vs. Cxcr2^{f/f};Cre⁻ WT hMPL^{W515L} transplanted mice. N=4-6/arm. ***p<0.001. (J) Bone marrow grade reticulin scores of Cxcr2^{f/f};Cre⁺ vs. Cxcr2^{f/f};Cre⁻ hMPL^{W515L} or EV transplanted mice. N=4-6/arm. **p<0.01. Two-way ANOVA. Data shown represent mean ± SEM. (K) Spleen arade reticulin scores (left) and representative hematoxylin and eosin (H&E) and reticulin images of spleen sections (right) from Cxcr2^{f/f};Cre⁺ KO vs. Cxcr2^{f/f};Cre⁻ WT hMPL^{W515L} mice in comparison to wild-type. 20X magnification.

Supplemental Figure 5 – Pharmacologic inhibition of CXCR1/2 improves hematologic parameters and reticulin fibrosis in the hMPL^{W515L} adoptive transfer model of myelofibrosis

Supplemental Figure 5: Pharmacologic inhibition of CXCR1/2 improves hematologic parameters and reticulin fibrosis in the hMPL^{W515L} adoptive transfer model of myelofibrosis. (A) Schematic of experimental outline for the reparixin/ruxolitinib in vivo drug trials. WT=wild-type, BM=bone marrow, lin-neg=lineage-negative. (B) Weights observed across treatment arms comparing the beginning and end of the 3-week trial period. N=6/arm. (C) White blood cell counts (WBC, K/uL), hematocrit levels (Hct, %), and platelet counts (PLT, K/uL), (D) % GFP fraction in peripheral blood, (E) % Mac1+Gr1+ fraction in peripheral blood, and (F) Spleen weights of lethally irradiated mice transplanted with wild-type MSCV-MigR1-IRES-GFP empty vector transfected bone marrow cells and treated with an identical dosing schedule and duration of reparixin (60mg/kg BID x21d) as hMPL^{W515L} mice. N=5/arm. (G) Spleen weights (mg) of hMPL^{W515L}-diseased mice treated with either vehicle, ruxolitinib, reparixin, or combination therapy. N=6/arm. *p<0.05, **p<0.01, ns=not significant. Data shown represent mean ± SEM. (H) Percentage of Mac1+Gr1+ neutrophil fractions in peripheral blood by flow cytometry of treated mice in comparison to vehicle at trial end point. ns=non-significant. Data shown represent mean ± SEM. (I) Representative H&E and reticulin images of hMPL^{W515L}-diseased spleen treated with ruxolitinib, reparixin, or combination therapy compared with vehicle-treated hMPL^{W515L} mice. N=6/arm. 20X magnification.

Supplemental Figure 6 – CXCR1/2 inhibition demonstrates therapeutic efficacy in primary MF patient cells *in vitro*.

Supplemental Figure 6: CXCR1/2 inhibition demonstrates therapeutic efficacy in primary MF patient cells *in vitro*. (A) Ratio of total CD33+ cell (left) and CD41+ cell (right) output relative to untreated of cultured healthy donor (HD; light blue) vs. myelofibrosis (MF; dark blue) CD34+ cells in response to exogenous CXCL8 doses (50ng vs. 100ng) with or without the CXCR1/2 inhibitor Ladarixin (10uM). Representative of duplicate experiments from 3 healthy donor (HD) and 6 individual MF cases. *p<0.05. Data shown represent mean \pm SD. (B) Fold-change in detectable VEGF levels in conditioned media (CM) elicited by either healthy donor vs. MF megakaryocytes (MKs) with or without the addition of reparixin (REP; 10uM). Representative of duplicate experiments from 3 healthy donor vs. MF megakaryocytes (MKs) with or without the addition of reparixin (REP; 10uM). Representative of uplicate experiments from 3 healthy donor (HD) and 4 individual MF cases. *p<0.05. Data shown represent meain \pm SD. (C) Total levels of VEGF in conditioned media (CM) of cultured stromal cells, either alone or together with healthy vs. MF MKs with or without the addition of reparixin (REP; 10uM). Representative of duplicate experiments from 3 healthy donor (HD) and 3 individual MF cases. *p<0.05. Data shown represent mean \pm SD.

SUPPLEMENTAL TABLES

Supplemental Table 1 – Selected patients for single cell transcriptional (scRNA-Seq) analysis

ID	Diagnosis	Age	Sex	Driver Mutation	JAK2 ^{V617F} VAF	Grade reticulin fibrosis	Sequenced cell number (after filtration)	Sample Origin
MF1	Primary myelofibrosis	76	F	JAK2 ^{V617F}	82.5%	3+/3	801	Patient Blood
PV1	Polycythemia vera	59	F	JAK2 ^{V617F}	69.4%	0-1+/3	892	Patient Blood
PV2	Polycythemia vera	41	М	JAK2 ^{V617F}	14.2%	1-2+/3	772	Patient Blood
PV3	Polycythemia vera	46	М	JAK2 ^{V617F}	25.1%	0/3	700	Patient Blood
ET1	Essential thrombocythemia	74	F	Triple neg.	N/A	1+/3	532	Patient Blood
ET2	Essential thrombocythemia	40	М	CALR	N/A	0-1+/3	505	Patient Blood
ET3 (ET w/ MF)	Essential thrombocythemia with fibrosis	73	М	JAK2 ^{V617F}	7.6%	2+/3	997	Patient Blood

MF: myelofibrosis; PV: polycythemia vera; ET: essential thrombocythemia; VAF: variant allele fraction

Supplemental Table 2 – Selected patients for single-cell cytokine analysis

ID	Diagnosis	Age	Sex	Driver mutation	Grade reticulin fibrosis	% CXCL8 secreting CD34+ cells
MF1	PMF	76	F	JAK2 ^{V617F}	3+/3	44.74
MF2	PMF	74	F	JAK2 ^{V617F}	2-3/3	81.79
MF3	PV to MF	67	F	JAK2 ^{V617F}	3+/3	92.63
MF4	ET to MF	53	F	JAK2 ^{V617F}	3+/3	69.22
MF5	PMF	68	М	CALR	2-3/3	76.32
MF6	PMF	72	М	MPL	3+/3	90.38
MF7	ET to MF	72	F	CALR	3+/3	4.67
MF8	PMF	81	М	JAK2 ^{V617F}	1+/3	8.79
MF9	PMF	64	F	JAK2 ^{V617F}	2+/3	17.31
MF10	ET to MF	67	F	MPL	1-2+/3	18.0
MF11	PV to MF	75	М	JAK2 ^{V617F}	2-3+/3	6.98
PV1	PV	59	F	JAK2 ^{V617F}	0-1+/3	25.49
PV2	PV	41	М	JAK2 ^{V617F}	1-2+/3	1.38
PV3	PV	46	М	JAK2 ^{V617F}	0/3	2.66
PV4	PV	70	М	JAK2 ^{V617F}	1-2+/3	3.30
PV5	PV	63	F	JAK2 ^{V617F}	2-3+/3	54.46
PV6	PV	57	М	JAK2 ^{V617F}	2+/3	48.05
PV7	PV	71	М	JAK2 ^{V617F}	1-2+/3	11.62
PV8	PV	66	М	JAK2 ^{V617F}	NA	54.27
PV9	PV	50	М	JAK2 ^{V617F}	1-2+/3	6.15
PV10	PV	84	F	JAK2 ^{V617F}	NA	1.09
PV11	PV	70	F	JAK2 ^{V617F}	NA	8.06
PV12	PV	69	М	JAK2 ^{V617F}	1+/3	5.25
PV13	PV	62	F	JAK2 ^{V617F}	NA	7.07
FT1	FT	74	F	Tripe neg.	1+/3	1.68
ET2	ET	40	M	CALR	0-1+/3	3.71
ET3	ET	73	M	JAK2 ^{V617F}	2+/3	14.6
ET4	ET	51	F	JAK2 ^{V617F}	1+/3	0.18
ET5	ET	75	М	JAK2 ^{V617F}	0+/3	0.44
ET6	ET	73	М	MPL	1+/3	0.85
ET7	ET	49	М	JAK2 ^{V617F}	0-1/3	0.16
ET8	ET	71	F	JAK2 ^{V617F}	1-2/3	10.55
ET9	ET	73	F	CALR	1+/3	4.92
ET10	ET	72	F	JAK2 ^{V617F}	N/A	0
ET11	ET	72	F	JAK2 ^{V617F}	0/3	5.29
ET12	ET	72	F	Triple neg.	1+/3	0.18
ET13	ET	61	F	JAK2V617F	1-2+/3	0
ET14	ET	66	М	JAK2 ^{V617F}	1+/3	0.93

PMF: primary myelofibrosis; PV: polycythemia vera; ET: essential thrombocythemia

Supplemental Table 3	3 – Selected patients for bulk	k RNA-Seq (+ ATAC-Seq) analysis
			/ /

ID	Diagnosis	Age	Sex	Driver mutation	JAK2 ^{V617F} VAF	Grade reticulin fibrosis	%CXCL8 secreting CD34+ cells	Sample Origin	
CXCL8 secretors									
MF2*	PMF	74	F	JAK2 ^{V617F}	N/A	2-3+	81.79%	Patient Blood	
MF3*	PV to MF	67	F	JAK2 ^{V617F}	0.69	3+/3	92.63%	Patient Blood	
MF6*	PMF	72	М	MPL	0.94	3+/3	90.38%	Patient Blood	
CXCL8 non-secretors									
MF10	ET to MF	67	F	MPL	0.24	1-2/+3 to 3+/3	18.0%	Patient Blood	
MF11	PV to MF	75	М	JAK2 ^{V617F}	0.42	2-3+/3	6.98%	Patient Blood	
PV4*	PV	70	М	JAK2 ^{V617F}	N/A	1+, focal 2+/3	3.30%	Patient Blood	
ET2*	ET	40	М	CALR	0.9	0-1+/3	3.71%	Patient Blood	
ET6	ET	73	М	MPL	0.24	1+/3	0.85%	Patient Blood	

MF: primary myelofibrosis; PV: polycythemia vera; ET: essential thrombocythemia. VAF: variant allele *Denotes patients on whom integrated RNA-Seq/ATAC-Seq analysis was performed