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S1 Text11

1. Detailed derivation of the balance equations12

The equations below will be simplified by adopting the Einstein summation convention: a repeated lower and upper index13

denotes a summation over this index (often indicating a matrix multiplication). Let us consider a Lagrangian including14

inequality constraints on metabolite concentrations,15

[1]16

The necessary KKT conditions are the same as in the main text, plus extra conditions for the constraints on metabolite17

concentrations, including18

Mm
j f j ≥ 0 (primal feasibility) [2]19

20

σmMm
j f j = 0 (complementary slackness) [3]21

The last equation corresponds to σmbm = 0, but since cells in optimal states will only express those proteins that are actually22

needed to catalyze reactions, we can be even more restrictive and require a stronger version of the last equation:23

σmMm
j fj = 0 . [4]24

This equation encodes the following: if σm ̸= 0, the metabolite m is inactive (cm = 0), and then all of the reactions j connected25

to it (j such that Mm
j ̸= 0) must also be inactive (fj = 0). We also note that because the turnover times τ differ from zero,26

the complementary slackness of reaction j (Eq. 50 in the main text) is equivalent to27

θjfj = 0 . [5]28

Now we solve the necessary equality conditions, first considering the stationarity29

∂jL = ∂jµ + λγj + θl f l Ej
j + θj τj + σm Mm

j = 0 . [6]30

By considering the stronger version of the complementary slackness for reactions (Eq. 5), we cancel the sum on θl, resulting in31

∂jµ + λγj + θj τj + σm Mm
j = 0 . [7]32

Now we multiply (element-wise) by fj33

(∂jµ) fj + λγj fj + θj τj fj + σm Mm
j fj = 0 [8]34

and consider the stronger version of the complementary slackness (Eq. 4) on metabolites, and the complementary slackness on35

reactions (Eq. 50 in the main text), resulting in Eq. 52 in the main text. Summing over all j and using the density constraint36

(Eq. 18 in the main text) results in Eq. 53 in the main text. Now the complete expression for λ in terms of f is given by37

substituting the expression for the growth rate derivatives (Eq. 31 in the main text),38

λ = − µ

ba

(
Ma

j f j − µ τj f j − µ fl El
j f j
)

. [9]39

The first term in parentheses equals ba according to Eq. 15 in the main text, and the third equals −ba according to Eq. 14 in40

the main text, so that both terms cancel each other. This results exactly in Eq. 28 in the main text.41

Finally, combining Eqs. 52, 28 in the main text, we obtain a general form for the balance equations,42 (
∂jµ− µ2

ba fl El
h fhγj

)
fj = 0 , [10]43

where both indices l and h are used to indicate summation over all reactions. Using Eq. 27 in the main text for the derivative,44

we have45 (
Ma

j − µτj − µ fl El
j + µ fl El

h fhγj

)
fj = 0 . [11]46

We use Eqs. 9,10,11 in the main text to express this in terms of v, c,47 (
Ma

j − µτj − vl
∂τ l

∂ci
M i

j + vl
∂τ l

∂ci

ci

ρ
γj

)
vj = 0 , [12]48

Using vl = pl/τl from Eq. 4 in the main text, we obtain49 (
Ma

j − µτj −
pl

τl

∂τ l

∂ci
M i

j + pl

τl

∂τ l

∂ci

ci

ρ
γj

)
vj = 0 . [13]50

By multiplying out vj , we get Eq. 29 in the main text.51
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2. Rate laws and kinetic parameters52

For simplicity, it may be convenient to assume that each component τ j in the vector of turnover times τ has a general functional53

form that depends only on a set K of kinetic parameters relating reactions j with metabolites m and external reactants n. The54

simplest general rate law would be the irreversible Michaelis-Menten kinetics, which for a reaction l determines55

τ l(c, x) = 1
kl(c, x) = 1

kl
cat

∏
m

(
1 + Kl

m

cm

)∏
n

(
1 + Kl

n

xn

)
, [14]56

where the kinetic parameters are the corresponding turnover number kl
cat, and Michaelis constants Kl

m for metabolites m,57

and Kl
n for external reactants n. We may consider that all metabolites m and external reactants n that are not substrates58

in reaction l have corresponding Michaelis constants equal to zero, so the above equation doesn’t depend on their respective59

concentrations. Note only transport reactions s depend on external concentrations x, so Ke
n = 0 for all e, n, and Kr

n = 0 for all60

n.61

In that case of all reactions following the irreversible Michaelis-Menten kinetics (14), the (direct) elasticity εl
m with respect62

to a metabolite m is63

εl
m = ∂τ l

∂bm
= ρ

∂τ l

∂cm
= −

∏
m′ ̸=m

(
1 + Kl

m′

cm′

)∏
n

(
1 + Kl

n

xn

)
ρ Kl

m

kl
cat(cm)2 , [15]64

where m′ are metabolites different than m. The corresponding indirect elasticity El
j with respect to a reaction j is65

El
j = ∂τ l

∂f j
= εl

mMm
j = −

∏
m′ ̸=m

(
1 + Kl

m′

cm′

)∏
n

(
1 + Kl

n

xn

)
ρ Kl

m

kl
cat(cm)2 Mm

j . [16]66

where we note εl
i M i

j = εl
m Mm

j since here εl
a = 0 (the Michaelis-Menten kinetics (14) doesn’t depend on the total protein67

concentration ca). When j = e is an enzymatic reaction, the scaling of El
e by the respective −fe and τ l provides the68

corresponding control coefficient (Eq. 41 in the main text)69

Cl
e = −fe

τ l

∂τ l

∂fe
= −fe kl

cat

(
1 + Kl

m

cm

)−1
ρ Kl

m

kl
cat(cm)2 Mm

e = −fe
ρ Kl

m

cm(cm + Kl
m)

Mm
e . [17]70

Note that in this case the control coefficients don’t depend on the turnover numbers kcat, only on Michaelis constants of71

metabolites Km.72

A more realistic example would be some generalized kinetics such as the “convenience kinetics” proposed in Ref. (1), which73

may also depend on other parameters such as Hill coefficients, inhibitor constants, and stoichiometric coefficients, so these may74

also be necessary to determine the set of kinetic parameters K, and by consequence, the model uniquely. With known rate75

laws, a model is also uniquely determined by the corresponding triple (M,K, ρ).76

3. Mass balance and the stoichiometric matrix S77

For a stoichiometric matrix S including all reactions and reactants (internal and external ones), and the corresponding vector78

w of molecular masses (also known as molecular weights) of reactants, mass conservation within reactions implies79

w⊤S = 0⊤ . [18]80

Note that, therefore, the vector of molecular masses must be in the left-null space of S.81

If we restrict the stoichiometric matrix to internal reactants i, then the internal product of w⊤ with the columns of this new82

matrix with entries Si
j is nonzero only for transporters83

wi Si
s ̸= 0

wi Si
e = 0

wi Si
r = 0 .

[19]84

Given that M is a mass-scaled version of S, these relations are equivalent to Eq. 2 in the main text; only transporters are85

capable of increasing or decreasing mass within the model.86

We note that our considerations about mass conservation presuppose that all reactants also appear explicitly in the model87

(i.e. they have a corresponding row in S). If some reactants (e.g. water or protons) are omitted from the model for convenience,88

mass balance is not satisfied. In fact, many models in the literature do ignore some reactants, in particular water; this needs89

attention in realistic models where water is not only a medium but also a reactant in many biochemical reactions.90
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4. Examples of GBA models and R code for numerical optimization91

We present here 4 simple examples of GBA models. We assume for all models a simple irreversible Michaelis-Menten kinetics92

(14), so in each model turnover times τ are uniquely defined by a matrix K of Michaelis constants and a vector kcat of turnover93

numbers for each reaction. Each row of K corresponds to a reactant, and each column to a reaction, matching the order in the94

matrix M (the entries for external reactants are separated by a horizontal line). See the corresponding “.ods” files for a more95

detailed description of the models, including labels for reactions and reactants and different growth conditions (i.e. external96

concentrations) for testing the model. Numerical simulations are done by running the R code in the file “GBA.R”, with the97

variable “modelname” set to the desired model (e.g. modelname ← “A”). Here K and ρ are in units of g/L, and kcat in units98

of h−1 (resulting from product mass per protein mass per h). The code exports the results as a corresponding pdf file with99

relevant plots for visualization, and a csv file with the numerical values for the optimal cell state at different growth conditions.100

Figure (A) presents the schematics and the corresponding parameters (M, K, kcat, ρ) of each model. Metabolites are101

indicated with circles, and total protein with a rounded square. The numbers labeling reactants and reactions match the102

corresponding order of rows and columns in M, with the last row corresponding to total protein and last column the ribosome103

reaction by default. All parameters are arbitrary, with the exception of the ribosome reaction where we use kr
cat = 4.55 and104

Kr
m = 8.3 for its main substrate, based on the estimations for E. coli in Ref.(2), and ρ = 340 based on the measured E. coli105

dry mass density (3).106

Models A and B have the simplest model structures (a linear pathway) for two and three reactions, respectively. Model C107

has a second transport reaction excreting metabolite “2”. Model “D” has two redundant reactions (“3” and “4”), of which only108

one is active at optimal growth (see optimization results).109
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A

1 2
v1 v2

µc1 µc2

M =
[

1 −1
0 1

]
, K =

[ 1 0
0 8.3
0 0

]
, kcat =

[
10

4.55

]
, ρ = 340

B

1 2 3
v1 v2 v3

µc1 µc2 µc3

M =

[ 1 −1 0
0 1 −1
0 0 1

]
, K =

 10 0 0
0 10 0
0 0 8.3
0 0 0

 , kcat =

[ 10
8

4.55

]
, ρ = 340

C

1 3

2

4
v1 v3

v2

v4

µc1 µc3

µc2

µc3

M =

 1 0 −1 0
0 −1 0.2 0
0 0 0.8 −1
0 0 0 1

 , K =


10 0 0 0
0 0 0 0
0 0 10 0
0 10 0 0
0 0 0 8.3
0 0 0 0

 , kcat =

 10
100
8

4.55

 , ρ = 340

D

2

1

3 4

v1

v2
v3

v4

v5µc1

µc2

µc3 µc4

M =

 1 0 −0.7 −0.8 0
0 1 −0.3 −0.2 −0.2
0 0 1 1 −0.8
0 0 0 0 1

 , K =


1 0 0 0 0
0 1 0 0 0
0 0 10 5 0
0 0 10 5 10
0 0 0 0 8.3
0 0 0 0 0

 , kcat =


15
10
10
9

4.55

 ,

ρ = 340

Fig. A. Schematics and parameters defining each model. For more details see the corresponding ods files in S1 File.
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5. The dependence of λ on transporters110

Equation 52 in the main text involves the sums γj =
∑

i
M i

j of each column j in M, which differ from zero only for transporters111

(Eq. 2 in the main text). This means Eq. 52 in the main text can be separated into distinct equations for j = r, e, s112

(∂rµ) fr = 0 , [20]113

(∂eµ) fe = 0 , [21]114

(∂sµ) fs + λγs fs = 0 . [22]115

From equations (20,21), we see that, at optimality, the summation in Eq. 53 in the main text can be simplified to a116

summation over s only117

λ = −(∂sµ) fs . [23]118

Substituting now the partial derivative given by Eq. 27 in the main text, we obtain119

λ = − µ

ba

(
Ma

s fs − µ τs fs − µ fl El
s fs
)

. [24]120

The first summand in the parenthesis equals to zero, since transporters do not produce protein (Ma
s = 0), and the second121

summand can be expressed in terms of protein fractions ϕs = ps/ca = µ τs fs/ba, resulting in122

λ = µ

(∑
s

ϕs + µ

ba fl El
s fs

)
. [25]123

6. Optimal enzyme concentrations and control coefficients124

Equation 40 in the main text shares a striking analogy with an optimality condition for metabolic systems, established in125

(4): in an optimal metabolic state, maximizing a pathway flux at a limited total enzyme amount, the enzyme levels must126

be proportional to the flux control coefficients. This previous result reflects the assumption that the cell trades a cost (the127

sum of enzyme levels) against a benefit (the pathway flux), and that in an optimal state, the marginal cost and benefit, for128

any small change of enzyme levels, must be the same. Equation 40 in the main text, for optimal growth states, has a similar129

interpretation, but without an explicit benefit function for fluxes. Here, instead, if an enzyme level in reaction A has an indirect130

effect on a flux in reaction B and makes reaction B proceed more efficiently, then catalyzing enzyme for reaction B can be131

saved (and resources be redistributed to increase growth). Hence, we now have a trade-off between a cost (of investing enzyme132

in A) and an “opportunity benefit” (enzyme saved in reaction B). In the equation, an enzyme of interest (in reaction A) is133

described by pe, its effect on all fluxes in the network (reactions B) is described by the control coefficients Cl
e, and the catalysts134

of these reactions are represented by pl. By summing all marginal “opportunity benefits” plC
l
e, we obtain the equivalent to the135

marginal flux benefit in (4).136

From the similar Eq. 34 in the main text, we can infer that at optimality, no two active enzymes can realistically catalyze137

the exact same reaction (i.e., have identical columns in M). If this were the case, then both turnover times τe would have to be138

exactly the same, since the marginal opportunity would be identical for both enzymes (see Eq. 24 in the main text). This139

condition is highly unlikely to hold in realistic models, since real enzymes will always have different physical properties and140

therefore different kinetics. Thus, if several isoenzymes catalyze a particular reaction in a model, only one of these reactions141

will be active at optimality. The previous argument can be generalized to any two linear combinations of reactions in the142

model, and as a consequence, the submatrix resulting from restricting M to active reactions must have full column rank at143

optimal growth (see Refs. (2, 5, 6)). Note that in reality enzymes with very similar marginal values may still be expressed144

together due to the little selection pressure towards one of them. See model “D” on SI text “Examples of GBA models and R145

code for numerical optimization” for an example of a model with redundant reactions.146
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