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Response to reviewer comments 

We thank all three reviewers for their comments, which we think helped us greatly improve our 

manuscript.  

Reviewer 1: 

1. The main observation that transcription rates are more divergent than translation rates 

between paralogs makes perfect sense based on our current knowledge of these 

processes. However, because the actual difference is relatively small (Fig 1A) and 

because this is a central observation of this paper, I would encourage the authors to 

investigate potential confounding factors very carefully. One possible such confounding 

factor is the precision of measurements for transcription and translation rates. If the 

measures of transcription rates tend to be noisier than those of translation rates, it could 

artificially inflate the observed contribution of transcription rates to the divergence of 

expression between duplicates. While I do not know enough about these methods to tell 

if one is more precise than the other, I did notice in Hausser 2019 (the main dataset used 

in this paper) that translation rates tend to be higher than transcription rates (see Figure 

2a of Hausser 2019, where a typical gene producing 10 transcripts per hours would have 

a translation rates (proteins per mRNA per hour) between 100 and 1,000 – the yellow 

area in the graph). Assuming that measuring a rare phenomenon is noisier than 

measuring a frequent phenomenon, it seems plausible that transcription rates 

measurements are noisier than translation rates. If biological replicates are available in 

the original study measuring transcription and translation rates in yeast, the authors 

could use these replicates to estimate the level of noise in each of these two measurements 

and estimate its contribution to the pattern reported in this manuscript. 

We thank the reviewer for this suggestion. As this observation is central to our paper, it is indeed 

relevant to investigate more thoroughly how it may be confounded by experimental variation.  

While this was not sufficiently clear from our article, the underlying measurements for 

transcription are not related to a much rarer phenomenon than those for translation. This is because 

both rates are calculated from the (normalized) number of reads obtained for each gene from a 

paired experiment of mRNA-seq and ribosome profiling. One could even expect the latter 

measurements – from which the translation rates have been inferred – to be noisier, since ribosome 

profiling involves sequencing the ribosome-protected fragments of the mRNAs, a subsample of 

total mRNAs that thus requires further experimental steps. Enriching for this ribosomal fraction 

likely introduces further experimental variation and also means that only a subset of the initial 

mRNA is used for the translational measurements. 

It is also important to note that, due to how transcription and translation rates have been calculated 

by Hausser et al. (2019), any noise in the mRNA-seq measurements would affect the estimation 

of both rates. This is because the estimated mRNA abundance, which is directly calculated from 

the mRNA-seq measurements, is used in both calculations. 

In case this reasoning was overly simplistic, we decided to follow the reviewer’s recommendation 

and assess more rigorously how experimental noise may affect our estimations of relative 

divergence in transcription and in translation. As the original data from Weinberg et al. (2016) 
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does not include any biological replicates, we could not measure experimental variation directly. 

Instead, we used simulations under varying levels of noise to determine how measurement errors 

could have skewed our results. We randomly sampled 𝛽
𝑚

 and 𝛽
𝑝
 values and inferred the 

corresponding mRNA and ribosome-protected fragments abundances (the two quantities directly 

obtained from mRNA-seq and ribosomal profiling normalized read counts), to which we added 

various levels of gaussian noise (Methods). In each case, we compared the exact 𝛽
𝑚

 and 𝛽
𝑝
 𝑙𝑜𝑔2-

fold changes to the ones obtained from the noisy measurements, which revealed that noise most 

often led to an underestimation of the contribution of transcriptional changes to expression 

divergence (Figs S2-S3). In the rare instances where the contribution of transcription divergence 

can be overestimated, it is only by a small magnitude. As such, these additional simulations clearly 

show that our observation is very unlikely to be an artifact due to experimental noise. We now 

briefly discuss this in the first subsection of our Results (Yeast duplicates mostly diverged in 

transcription), paragraph 5. 

 

2. In Figure 1D, the authors correlate the divergence D (equation 2) with protein 

abundance log2 fold-change. While I’m not sure exactly how the protein abundance was 

measured, it should be equal (for gene 1) to βm1 × [mRNA decay constant] × βp1 × 

[protein decay constant]. In other words, both the x and y axes values are directly 

dependent on βm and βp, which could cause a spurious correlation. The author correctly 

identify this problem and perform a random drawing to show that the observed 

correlation is stronger than expected by chance. However, it seems to me that this control 

fails to capture the complex relationships between all the parameters involved. Most 

notably, because βm and βp values are positively correlated (r = 0.37) and because the 

Δβm between two paralogs is –on average- less than the Δβm between two randomly 

selected genes, the random drawing used by the authors is likely not an appropriate 

control. 

We do agree with the reviewer that our use of this correlation was misguided and that our 

assessment of its significance was not rigorous enough. Although we should have made it clearer 

in the original text, we saw this relationship between divergence ratio D and the 𝑙𝑜𝑔2-fold change 

of estimated protein abundance (computed from the 𝛽
𝑚

 and 𝛽
𝑝
 rates) as a further illustration that 

transcriptional changes have driven expression divergence within paralog pairs (in addition to the 

original Fig 1A) and, consequently, as a minor addition to the paper. Because the dependent and 

independent variables are both obtained from 𝛽
𝑚

 and 𝛽
𝑝
, such a positive correlation is expected 

simply from the fact that the 𝛽
𝑚

 fold-changes among paralog pairs have greater variance than the 

𝛽
𝑝
 ones, which was already shown in Fig 1A. As such, this relationship adds very little new 

information on the expression divergence patterns of yeast duplicates. This is clear from our 

simulation results (Figs 4-5 of the original manuscript), where the replication of the 

aforementioned correlation most often coincides with the obtention of realistic magnitudes of 

divergence in both 𝛽
𝑚

 and 𝛽
𝑝
 (as shown by low KS statistics and p-values > 0.05 for Mood’s 

median test, respectively in Figs 4A and 5A). Since this correlation is mostly redundant with our 

main result and taking it into consideration or not has very little influence over our conclusions, 
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we decided to remove it entirely from the paper. This helps make our manuscript more focused 

and avoids confusion introduced by this misguided addition. The only mention of divergence ratio 

D which subsists in the new version of our article is in Fig S5, where it is strictly used to measure 

how strongly the expression divergence within a paralog pair is biased toward transcriptional 

changes. 

 

3. In the discussion, the authors state that: “The current distribution of transcription and 

translation rates among yeast genes has previously been attributed to the optimization of 

the cost-precision trade-off [14]. Accordingly, suggesting that such constraints are not 

necessarily involved in the divergence of paralogs and that a difference of mutational 

target sizes could suffice may appear contradictory.” (page 13, line 492) One possible 

solution to this apparent contradiction is that the cost-precision model proposed by 

Hausser et al (2019) explains the large-scale trends observed in bacteria, yeast and 

humans (why there are (almost) no genes with high transcription rate and low translation 

rate) while the divergence in expression between paralogs focuses on a narrower scale 

of variation (the average difference in βm between paralogs is less than 10-fold while the 

patterns observed by Hausser emerge when looking at βm values spanning 5 orders of 

magnitude). When looking at relatively small changes in expression level, the mutational 

effects might have a more important contribution than selection. 

We thank the reviewer for this very relevant comment. Our intention with this paragraph was to 

quickly mention that our simulated paralogous genes very rarely exceed the boundary described 

by Hausser et al. (2019), even when the constraints used to explain it are completely removed from 

the modelling framework. Not providing any potential explanation however likely made our 

comment less clear and enhanced the contradiction with (Hausser et al., 2019), instead of 

diminishing it. Because it seems like the most logical explanation, we have added the reviewer’s 

hypothesis and the corresponding paragraph of our discussion now reads as: “Since the current 

distribution of transcription and translation rates among S. cerevisiae genes has previously been attributed 

to the optimization of the precision-economy trade-off (Hausser et al. 2019), suggesting that such 

constraints may not be needed to explain the divergence patterns of paralogs might appear contradictory. 

This is especially true considering the significant energetic costs of even small increases of transcription 

and translation (Wagner 2005; Lynch and Marinov 2015). Yet, even when precision-economy 

considerations are fully neglected under the minimal model, extended in silico evolution results in only 

minor deviations from the reported distribution of genes in the transcription-translation space (Fig S14). 

One plausible explanation could be that precision-economy constraints impact evolutionary trajectories on 

longer timescales and/or along greater ranges of variation, while mutational effects dominate on the 

shorter timescales and smaller expression changes associated to the divergence of duplicates”.  

 

 

 

 

https://paperpile.com/c/mxxQde/LeQi
https://paperpile.com/c/XVlrq0/fN2M+cylI
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4. One argument in favor of the mutational target sizes model is that the pattern observed 

here is highly consistent between SSD and WGD-derived paralogs. Because it has been 

repeatedly demonstrated that these two types of paralogs tend to evolve under divergent 

types of selective pressures (see for example 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536658/ and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246283/), it seems to me that a 

mutational model would make sense to explain a pattern shared by SSD and WGD. 

As pointed out by the reviewer, the similarity between the divergence patterns of WGD- and SSD-

derived paralogs is a surprising observation, particularly considering that it also holds in plants 

between tandem duplicates and WGD-derived ones (Wang and Chen, 2019). This may support the 

arguably simpler and more general mutational model, as suggested above. Accordingly, we have 

added the following to the fourth paragraph of our discussion, where we discuss that a mutational 

target size difference emerges as the preferred hypothesis: “The high similarity between the expression 

divergence patterns of WGD- and SSD-derived paralogs (Figs 1 and S1; (Wang and Chen 2019)), which 

have been shown to differ substantially in their initial properties and subsequent evolutionary trajectories 

(Hakes et al. 2007; Guan et al. 2007; Fares et al. 2013), may also support such a more general mutational 

mechanism”.  

 

Reviewer 2: 

1. The transcription and translation rates used by the authors were taken from a study 

(Hausser et al) that ignored the roles of mRNA and protein turnover. This is a major 

problem, and could be partly addressed, at least on the mRNA side, by using actual 

transcription and mRNA decay rates calculated by 4-thioU incorporation studies (e.g. 

RATE-seq from the Gresham lab, and many others). The translation rates are a bit 

trickier. In yeast, it has been established that translation and mRNA decay are coupled 

processes (e.g. Presnyak et al., Cell), such that slow translation and/or ribosome collision 

is positively correlated to mRNA decay. This complicates attempts to model the processes 

independently, as increases in ribosome loading (an increase in translation efficiency) 

could lead to reduced mRNA levels in genes with suboptimal codons. Indeed, Shen et al., 

(2022) showed synonymous mutations are often non-neutral. This creates additional 

complications as mutations to more 

common codons may increase expression of the protein while reducing the apparent 

translation rate from Ribo-seq studies (ribosomes complete translation more rapidly, so 

steady-state occupancy decreases). This increase in translation efficiency would "look" 

like an increase in transcription because better translation results in more stable mRNAs. 

My general concern is that the transcription and translation rates used are likely not 

accurate and the coupling of translation to decay complicates the issue beyond the 

approach taken by the authors. 

We thank the reviewer for raising this issue. Completely neglecting gene-to-gene variation in 

decay rates was indeed an oversight on our part, largely because this consideration is mostly absent 

from studies on the evolution of gene expression and because we thought that considering both 

transcription and translation was already quite complex and that there was insufficient data on how 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536658/
https://paperpile.com/c/mxxQde/wWSh
https://paperpile.com/c/mxxQde/C450+0oBq+GZsZ
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decay rates evolve to consider this aspect. We now realize that we need to treat this point in the 

manuscript.  

To address this, we focused on validating that our initial observation – that yeast paralogs mostly 

diverged at the transcriptional level – is not a product of overly simplistic assumptions made in the 

calculation of transcription and translation rates. Modeling the evolution of mRNA and protein 

decay rates appears to be out of the scope of this work, especially considering that opposite changes 

at the levels of synthesis and decay (e.g. increase in transcription vs decrease in mRNA decay) are 

entirely equivalent within our minimal model of post-duplication evolution. As such, the evolution 

of decay rates was already included implicitly in most of our simulations. 

To validate the transcription rates 𝛽
𝑚

 used, we followed the reviewer’s suggestion and recalculated 

them using experimental measurements of transcript turnover. The original calculations from 

Hausser et al. (2019) were made under the assumption that mRNA decay is constant across genes. 

Since the experimental data used (mRNA abundance) reflects the combined effect of synthesis and 

decay, this assumption may have had a major impact on the obtained transcription rates, as pointed 

out by the reviewer. We used 4 datasets obtained using different experimental approaches, 

including the aforementioned RATE-seq (Eser et al., 2014; Geisberg et al., 2014; Munchel et al., 

2011; Neymotin et al., 2014). In all cases, our initial observations were confirmed, as the relative 

divergence in transcription remained significantly higher than the relative translational divergence, 

while the two correlations remained qualitatively identical (Figs 1 and S1). We also went a step 

further and generated simulated data to ensure that, even in conjunction with experimental noise, 

the assumption of constant mRNA decay rates could not have falsely made relative transcriptional 

changes appear greater than translational divergence (Fig S3). 

To validate the translation rates  𝛽
𝑝
, we did not focus on variations in protein decay rates and 

instead directed our attention towards confirming that the abundance of ribosomal footprints is 

representative of the translational flux. While we wrote in the previous version of our manuscript 

that Hausser et al. (2019) obtained the 𝛽
𝑝
 rates under the assumption that protein decay is constant 

across yeast genes, this was not the most accurate description of their approach. Rather, their true 

supposition is better described as an assumption of constant translational elongation rates across 

all transcripts. Hausser et al. (2019) indeed used the median protein decay rate 𝛼𝑝 to estimate the 

total translational flux in a yeast cell, from which they assigned translation rates 𝛽
𝑝
 to each gene 

according to the abundance of their ribosomal footprints (reproduced as Eq. 3 in our paper). This 

is obviously a simplification, and the reviewer is right to point out that such Ribo-seq 

measurements might not reflect the full complexity of translational variations. We are nonetheless 

confident that the corresponding translation rates are representative. It has been shown that 

ribosomal footprints abundance from Weinberg et al. (2016), which have been used by Hausser et 

al. (2019), are very well correlated with total protein synthesis in yeast (r = 0.81 and ρ = 0.83), as 

measured by pulsed stable isotope labeling of amino acids in culture (Riba et al., 2019). Moreover, 

changes to the elongation rate are not the major driver of translational variations between yeast 

genes, covering a ~20-fold range compared to ~100-fold for initiation rate variations (Riba et al., 

2019; Shah et al., 2013), and are often correlated with variations in initiation (Riba et al., 2019). 

As such, cases where slower/faster elongation markedly increases/decreases steady-state 

ribosomal occupancy and skews Ribo-seq measurements of translation must be rather rare. We 
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still performed additional analyses to validate the accuracy of the translation rate log2-fold changes 

we obtained using the 𝛽
𝑝
 values from Hausser et al. (2019). For all paralog pairs for which data 

was available, we computed protein abundance log2-fold changes from the combination of mRNA 

abundances, translation rates (Hausser et al., 2019) and experimental measurements of protein 

turnover (Christiano et al., 2014; Martin-Perez and Villén, 2017) using Eq. 5. We then compared 

them to experimentally measured protein abundance differences (Ho et al., 2018; Martin-Perez 

and Villén, 2017; Wang et al., 2015). If the 𝛽
𝑝
 were accurate, their combination with mRNA 

abundances and protein decay measurements – whose validity is less ambiguous – would replicate 

observed differences in protein abundance. This revealed a very good correlation (Fig S1E), which 

suggests that 𝛽
𝑝
 values (and more importantly the corresponding fold changes) are representative 

of true translational output, and thus adequate for the current work. 

 

An alternative to the use of Ribo-seq measurements could have been to infer translation rates from 

experimental measurements of protein abundance and protein turnover rate, assuming that their 

product is equal to the total synthesis flux. Under this approach, 𝛽
𝑝
 rates would however not be 

related to any direct measurement of translation. More importantly, transcription and translation 

rates would result from distinct experiments using widely different approaches, and thus be less 

easily comparable. Comparisons of the magnitudes of transcriptional and translational fold 

changes across paralog pairs would indeed be more likely to be dominated by noise. Within the 

scope of our work, the biggest advantage associated with the 𝛽
𝑚

 and 𝛽
𝑝
 values from Hausser et 

al. (2019) is that they have been inferred from the same experiment – paired mRNA-seq and 

ribosome profiling – and are thereby directly comparable. As such, while the abundance of 

ribosome footprints is not a perfect measurement of translation, we think that the 𝛽
𝑝
 reported by 

Hausser et al. (2019) are the most adequate translational measurement to investigate the joint 

evolution of transcription and translation within paralog pairs. 

 

Finally, the reviewer is right to point out that modeling the evolution of transcription and 

translation independently may be overly simplistic. We however note that our additional 

simulations using correlated mutational effects (Fig 5 in both our original and new manuscript) do 

account, although obviously not entirely, for potential evolutionary couplings between the two 

processes. We have now made this clearer in the text, while also explaining that any coupling 

between translation and mRNA decay can also be accounted for by such mutational correlations, 

at least when considering our minimal model. Within this model, only the respective impacts of 

transcriptional and translational changes on steady-state mRNA and protein abundances matter, 

such that an increase in mRNA decay is entirely equivalent to a decrease of transcription. 

Correlations between the transcriptional and translational effects of mutations can thus model the 

likely coupling between mRNA decay and translation, especially since the empirical divergence 

patterns to which we compared the results of our simulations have been obtained under the 

assumption of constant mRNA decay – such that transcriptional changes compound variations in 

decay. A caveat is however that this is not entirely true in the precision-economy version of our 

model, as changes to mRNA decay and transcription do not have the same effects on expression 

noise and cost. The second paragraph of the last subsection of our Results (Revisiting the 

hypotheses when considering transcription-translation couplings and biased mutational effects 

distributions) now begins with: “Many mutations in the transcribed region of a gene may for instance 

simultaneously have transcriptional and translational effects, as the identity of the translated codons might 
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affect both mRNA stability and translation (Presnyak et al. 2015; Chen et al. 2017; Chan et al. 2018)”. We 

have also added the following to the third paragraph of the same subsection: “This second addition 

to the model, which allows mutations to act on both m and p at once, can potentially account for regulatory 

responses as well as for the coupling between mRNA decay and translation efficiency. Within our minimal 

model, under which identical changes to transcription and mRNA stability are entirely equivalent (as only 

their effect on protein abundance matters), correlated effects on 𝛽𝑚 and 𝛽𝑝 can indeed represent such a 

coupling”. We note that we have not made any assumptions about the synonymous or 

nonsynonymous nature of mutations: we simply model their effects on expression level.          

  

2. The modeling section assumes the duplicated genes were only under selection to maintain 

current protein levels. Since the WGD event, when presumably the entire genome was 

duplicated, Saccharomyces yeast have gone through a "pruning" process, such that the 

remaining ohnologs ~ 100 M years later most likely include many genes whose doubling 

was either completely neutral or offered some advantage. This is relevant to the parabolic 

fitness curves used for modeling, which assume maintaining steady-state protein is 

always most-fit. This assumption is at odds with Keren et al., 2016 Cell), who found a 

variety of fitness curves for 81 yeast genes, that also depend on growth conditions. 

We had not provided sufficient justification for our minimal model of post-duplication evolution 

in our original manuscript, and we thank the reviewer for this opportunity to correct this. We now 

provide such explanations in the fourth paragraph of the subsection A minimal model of post-

duplication expression evolution of our Results. In addition to the evidence which supports it, our 

choice of this framework was based on its general applicability to any paralog pair and its 

simplicity, which made it a good starting point. There is no doubt that more complex models could 

be considered in the future.  

By using absolute dosage subfunctionalization (or quantitative subfunctionalization) as the 

foundation of our minimal model, we have not assumed that duplicated genes have only been under 

selection to maintain optimal (cumulative) protein abundance levels. Rather, we have assumed that 

this mechanism has played an important role in the evolution of paralog pairs and chose to focus 

on this aspect of their divergence. The interest of our simulations lies in part in the fact that we 

show that this simple process can generate realistic evolutionary patterns in transcription and in 

translation. There is evidence that quantitative subfunctionalization has shaped the evolution of 

most WGD-derived paralogs, as the model was first proposed based on genome-wide trends in 

yeast and Paramecium (Gout and Lynch, 2015). Even in cases where other mechanisms – such as 

neofunctionalization – are currently opposing the loss of ancient duplicates, it is likely that 

quantitative subfunctionalization has been involved earlier in evolution. The evolutionary 

trajectories of neofunctionalized duplicate sodium channels in teleost fish have for instance been 

shown to be consistent with the latter model (Thompson et al., 2016). In yeast, there is even strong 

evidence that selection to maintain cumulative expression may still be one of the main factors 

opposing the loss of at least some paralogs. This is exemplified by the many duplicate pairs which 

display synthetic lethality, as well as by instances where the deletion of one paralog results in 

compensatory upregulation of its duplicate (DeLuna et al., 2010). Keren et al. (2016) in addition 

provided a striking example of such still-impactful quantitative subfunctionalization, by showing 

https://paperpile.com/c/mxxQde/AF96+tA7k+uUgX
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that fitness depends on the cumulative expression of paralogs TUB1 and TUB3 rather than on any 

of their individual expression levels. 

The reviewer is right to point out the importance of the gene loss which occurred following the 

yeast WGD event. Because loss-of-function mutations are presumably very frequent, genes whose 

duplication was deleterious or neutral most likely reverted to the single-copy state (Lynch and 

Force, 2000). To account for this process, we made sure to select only paralog pairs for which the 

loss of a duplicate immediately after the duplication event is deleterious (initialization of the 

simulations, in Methods). Previous work assumed that, in the case of a WGD, the immediate post-

duplication expression levels are perfectly optimal (Gout and Lynch, 2015). For our model to be 

more general, we relaxed this assumption and instead postulated that the expression doubling 

would overshoot the protein abundance optimum, while still being fitter than the return to a single-

copy state. As such, we have not assumed that maintaining current (initial) expression level is 

always optimal, but rather that an optimum exists, which is supported by experiments. This is now 

highlighted in the section A minimal model of post-duplication expression evolution, paragraph 6 

(lines 268-278).  

The “pruning” of duplicates was likely not limited to pairs which could revert immediately after 

the duplication event. With increasing expression divergence within gene pairs, the loss of the least 

expressed copy would gradually become neutral in more of them, leading to further loss of paralogs 

(Gout and Lynch, 2015; Thompson et al., 2016). A limitation of our work is therefore that we did 

not include any gene loss during the simulations – as mentioned in the discussion –, and we thank 

the reviewer for insisting on this point. We tried implementing loss-of-function mutations within 

our framework, so that gene loss would occur when tolerated by selection (neutral or beneficial), 

but this made it impossible for the end condition of the simulation to be attained. Instead, we chose 

to validate our results by performing all tolerated loss-of-function mutations at the end of 

simulations, before the calculation of summary statistics. As shown in Fig S15, this revealed 

results qualitatively identical to those we report in the main Results, although the fit to empirical 

divergence patterns was slightly reduced. While the absence of gene loss remains a limitation of 

our approach, this additional analysis strengthens our conclusions. This is now included in the last 

paragraph of our Discussion (lines 735-741). Finally, we also note that the patterns of divergence 

we observed are based on pairs which have been maintained as duplicates until now. Our 

simulations, which do not allow for gene loss, therefore represent the evolution of gene pairs such 

as those present in the dataset we based our observations on – provided that our randomly 

generated paralog pairs are representative of such genes. While an imperfect approximation, the 

minimal fitness function curvature threshold that we enforced ensures that the simulated pairs 

share at least some properties with the paralogs which have been maintained in yeast.      

Using a strictly concave fitness function, as in Dekel & Alon (2005) and Gout et al. (2010), 

appeared to be the most realistic and general way to connect protein abundance to fitness in our 

study. We are aware however that, according to Keren et al. (2016), expression-fitness 

relationships can have a wide variety of shapes across a selected set of yeast genes. Taking into 

account all this diversity would nonetheless be outside the scope of this work, where a general 

model of the expression divergence of paralogous genes was desired. We note that in the case of 
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this specific study, the actual expression of the genes for which fitness was estimated was not 

measured. It was inferred from the fusions of various promoters with a fluorescent protein. It is 

also important to note that more recent and comprehensive experimental work reported less varied 

fitness function shapes, in yeast (Arita et al., 2021) as well as in bacteria (Hawkins et al., 2020).  

Additionally, the evolutionary relevance of such fitness function measurements is unclear. The 

fitness differences which are visible to selection in large microbial populations are several orders 

of magnitudes smaller than what can be measured experimentally. As such, fitness has likely been 

assayed over a wider range of expression levels than accessible evolutionarily, and the shape of 

the corresponding function in the relevant interval may be different when viewed at a high enough 

resolution. Because of this uncertainty, we preferred to consider only strictly concave fitness 

functions (with one unique maximum) – an idealized but widely applicable scenario. If fitness is 

related to the abundance of a protein, there must intuitively be an expression level which is most 

fit. Fitness can also be expected to decrease gradually away from this optimum. At low expression, 

the protein may not be abundant enough to carry out its cellular function, while metabolic cost 

would increase with expression and high abundance might have other deleterious consequences 

(such as aggregation). Accordingly with this intuition, papers exploring how selection acts on 

expression levels frequently assume simple concave fitness functions (Dekel and Alon, 2005; Gout 

et al., 2010; Thompson et al., 2016), as we did. Whether the regions of reduced fitness are 

accessible experimentally may vary between genes according to the curvature of their fitness 

function, further reconciling this assumption with observations. In the current work, we have 

considered a wide range of curvatures, including low values resulting in an almost flat fitness 

function. While these expression-fitness relationships can certainly vary across growth conditions, 

considering the impact of environmental fluctuations was out of the scope of this work.        

 

3. The modeling section also assumes that selection acts only on expression level and not 

on noise (as far as I can tell). This is almost certainly incorrect and ignores trade-offs on 

fitness costs commonly seen in yeast (e.g. Gavin Sherlock's work). Indeed gene 

duplication most likely decreases expression noise, which could be beneficial depending 

on the function of each gene (e.g. housekeeping genes vs stress response genes). I am not 

sure how the authors could address this, but given that the genes studied are the only 

ones to survive WGD, they are an unusual set compared to denovo gene duplications. 

We have explicitly included expression noise within our precision-economy (formerly cost-

precision) model, which investigates how the trade-off between minimizing noise and 

transcriptional cost may impact the divergence of duplicates. We have made sure to make this 

clearer and we now write “First, expression noise (and thus the importance of precision) is explicitly 

taken into account by considering the mean fitness of a population of cells expressing two paralogs at a 

mean cumulative protein abundance 𝑃𝑡𝑜𝑡 with standard deviation 𝜎𝑡𝑜𝑡, which itself depends on the relative 

contribution of transcription to overall expression (Hausser et al. 2019) (Fig 2B III; Methods)”  in the 

fifth paragraph of the subsection A minimal model of post-duplication expression evolution of the 

Results. It is true that we did not include selection on the level of noise itself. Rather, it is the 

impact of noise on mean protein abundance, and thus on population fitness, which is visible to 

selection. We note that, this way, it is always beneficial to reduce noise within our framework. 

https://paperpile.com/c/mxxQde/LeQi
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This benefit may however be very small if the curvature of the fitness function is low, and is offset 

at some point by the increase in transcription cost that is necessary to decrease noise (the basis of 

the precision-economy trade-off). Direct selection on noise level would likely only be appropriate 

when a higher noise would be favored, for instance for stress response genes or in the face of 

environmental fluctuations. Modeling such presumably rarer cases was however out of the scope 

of this work.    

Whether gene duplication inherently reduces noise is not entirely clear. It has been suggested that, 

for a given protein abundance, two gene copies may be associated with less fluctuations than a 

single one and that this may favor the fixation of paralogs (Rodrigo and Fares, 2018). This is 

nevertheless not the case within our framework, because the equation we used (see Extended 

Methods) accounts for the scaling with protein abundance of variance due to intrinsic noise, which 

causes less expressed genes to be relatively noisier (Bar-Even et al., 2006). Because of this 

relationship, expressing a protein at the same total level from one singleton or from two duplicates 

results in the same variance within our model. As this scaling has been explained by the Poissonian 

nature of gene expression (Bar-Even et al., 2006; Hausser et al., 2019; Swain et al., 2002) – rather 

than through an evolved correlation –, it appears adequate to consider it when assessing how 

mutations and gene duplication events affect noise. We note however that the doubling of 

expression associated with gene doubling does reduce noise (as measured by the coefficient of 

variation on cumulative protein abundance) in our precision-economy model, especially 

considering that this occurs entirely transcriptionally. If duplicated genes were inherently less 

noisy and this presented an advantage, our results and conclusions would likely not be affected. 

Such a beneficial effect of gene duplication would indeed matter when studying the fixation of 

paralogs, while we were instead interested in the expression divergence of gene pairs which have 

already reached fixation. 

Finally, the reviewer is right to point out that the duplicates remaining from the yeast WGD event 

are an unusual set of genes. This is the reason why we enforced a threshold of minimal fitness 

function curvature when generating paralog pairs in our simulations. This way, we selected a set 

of genes which could reasonably be expected to be maintained as duplicates for an extended period 

of time. A limitation of this approach is however that we generated paralog pairs from the complete 

yeast genome, while it’s possible that no current yeast gene is representative of pre-WGD ancestral 

genes. This is especially true considering that all current singletons in yeast were also initially 

duplicated at the time of the WGD.  We are nonetheless confident that randomly sampling ancestral 

singletons among current yeast genes – and filtering them – was the best way to generate a large 

number of duplicate pairs for our simulations. Any inference of the transcription and translation 

rates of the true ancestors of present-day paralogs would have been based on the divergence 

patterns which we wanted to study, and would thus have been circular. We now include this in the 

last paragraph of our Discussion: “An alternative could have been to restrict our simulations to duplicate 

pairs which were destined to be retained for an extensive period. Using current transcription and 

translation rates of paralogs to infer the expression levels of ancestral singletons and then investigate the 

divergence of duplicates would however have proved circular”. Moreover, since we focus on the 

relative divergence between paralogs, the absolute magnitude of the transcription and translation 

rates of the simulated genes probably have little influence over the results.  
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4. The modeling section is difficult to follow due to its complexity. I am not sure how to fix 

this but, as a reader, it is very difficult to understand some of the sentences and figures. 

This is not due to improper grammer, but rather the complexity of the system and, 

perhaps, too much jargon.  A reduction in jargon and reworking the figures could make 

the manuscript more accessible to a general readership, e.g. at PLoS Genetics, who 

otherwise have difficulty comprehending the methods and results.  This is a big problem 

with the figures, which are almost entirely graphs and could benefit from more helpful 

illustrations to aid in interpretation. This would also be in the author's interest, as it 

would increase citations in the future if readers can better comprehend their work. 

We thank the reviewer for pointing out that the lack of schematics in the modeling section (outside 

of Fig 2) could make it more difficult for readers to understand our results. We have now added 

schematics to Fig 4 and Fig 5 (panel A in both cases), which summarize how the results presented 

in the other panels of the figures have been generated. We have also made sure to improve our 

explanations throughout the modeling section, both regarding the design of the model and the 

interpretation of the figures, so as to make our manuscript more accessible (detailed later in the 

document). 

 

5. The manuscript might be better suited for a more specialized journal (e.g. JEB or Journal 

of Theoretical Biology), whose readers would be more prepared for the heavy use of 

complex modeling. 

We believe that our manuscript is better suited for a journal with a general readership such as 

PLOS Genetics, because its interest lies more in the ideas that we put forward (for instance, that 

transcription might have a larger mutational target size than translation, the importance of studying 

both the transcriptional and translational components of expression divergence, the necessity to 

fully characterize the distributions of mutational effects as well as their biases and how the recently 

described precision-economy trade-off may uniquely affect duplicated genes) than in the modeling 

approach we used. We also think that our work identified very important biological parameters to 

be measured experimentally in the future, such that our results will be of interest to geneticists and 

experimentalists.  

 

Reviewer 3: 

1. Equation 1:  Move this equation to line 68, so that it is presented after the θ parameters 

are explained. The term folddupli does not seem to be used anywhere else in the 

manuscript, so why use that name here? In the rest of the manuscript it is just called Log2 

fold-change. 

The reviewer is right that introducing a 𝑓𝑜𝑙𝑑𝑑𝑢𝑝𝑙𝑖 term which was used nowhere else in the 

manuscript was a mistake. This has been replaced by “𝑙𝑜𝑔2-fold change” in the equation. 
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2. Figure 2A, left: I have an intuitive understanding of what a “cost-precision trade-off” 

means, but I found the cartoons in Figure 2A more confusing than helpful and the legend 

didn’t explain them. Are the words Precision and Cost on the two small graphs titles, or 

are they the quantities on the X-axis? Or is the X-axis Transcription on all 3 graphs?   

The x axis on each of the two small graphs should have been labelled “Transcription” as well, but 

these two labels had been removed in a last-minute correction to the figure. We thank the reviewer 

for pointing out this mistake. We have also modified our terminology throughout the paper 

(including in this figure) to use the expression “precision-economy trade-off”. This should be 

much clearer, as precision and economy vary inversely with transcription rate, which emphasizes 

how this results in an evolutionary trade-off. We have also made sure to clarify our explanation of 

the precision-economy trade-off, in the second paragraph of the section A minimal model of post-

duplication expression evolution of the Results.  

 

3. I was able to understand Figures 1-3, but I had a lot of difficulty with Figure 4A and the 

associated text on lines 284-315. The authors explain that the distances between the 

empirical and simulated distributions of 4 quantities (line 296) is summarized by a single 

number, the KS statistic. But I don’t know how to read Figure 4A because I don’t know 

whether a high or low value of the KS statistic indicates a good fit, i.e. low distances. 

Consequently, I don’t understand this statement (line 300), referring to the N = 1 x 10^6 

panel in Fig 4A: “When a high efficacy of selection is assumed – intuitively more likely 

for Saccharomyces yeasts –, only the minimal model can reasonably replicate the 

empirical patterns of divergence.”. I can see that the minimal model has more variation 

in the KS statistic than the cost-precision model, but how am I supposed to know if a 

particular KS value does (or does not) reasonably replicate the empirical patterns of 

divergence? The other panels of Fig 4 are easier to read because the 95% confidence 

intervals are shown. 

It is true that we had not sufficiently explained the results presented in Figs 4-5. We thank the 

reviewer for this opportunity to improve our manuscript. In addition to adding schematics to each 

figure, we have also added a paragraph explaining how the results have been generated in each 

case (lines 406-422 and lines 544-554).  

We have made sure to explicitly mention which values of KS statistics are associated with a better 

fit. We now write “The distance between the simulated and empirical distributions of relative divergence 

(𝑙𝑜𝑔2-fold change) in transcription and translation rates as well as protein abundance was first quantified 

using the Kolmogorov-Smirnov (KS) statistic. For each replicate simulation, the three resulting 

measurements were combined into a mean KS statistic, between 0 and 1, for which a lower value indicates 

a better overall fit”. 

We have also clarified the statement which the reviewer rightfully found difficult to understand. 

What we meant is that the minimal model is the only one for which some of the tested mutational 

target size ratios are associated with low KS statistics. We agree that the use of “can reasonably 

replicate” was confusing, as there is no precise threshold of KS statistics for which the replication 

of the empirical distributions can be deemed adequate/reasonable. The much lower values which 
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can be reached for the minimal model however show that it performs better than the alternative. 

The improved explanation is: “ When a high efficacy of selection is assumed, the minimal model is by 

far the most accurate, as shown by the attainment of much lower mean KS statistics (as low as ~0.07, 

compared to values >0.2 for the other model). The best fit is obtained when a higher probability of 

mutations affecting 𝛽𝑚 is assumed, and especially when 
𝑃𝛽𝑚

𝑃𝛽𝑝
  is between 3 and 6, which supports the 

hypothesis of a larger mutational target size for transcription”.  

 

4. Similarly, I don’t see how to extract the conclusion “Interestingly, the best agreement 

with the real patterns of evolution is obtained for a relatively modest difference of 

mutation probabilities” (line 313) from Figure 4A. Readers need to be given some 

guidance about how to interpret this Figure. What are we looking for? 

We have removed this sentence, as it was confusing. We however clarified the last sentence of this 

section of the Results (A difference of mutational target sizes may better explain the observed 

divergence patterns), which repeated the same idea. It is now written as: “Although the relative 

mutational target sizes of transcription and translation regulation are not known, the fact that the best 

agreement with our observations (lowest mean KS statistic) is obtained for a modest difference of relative 

mutation probability means that the bias need not be important to impact evolution”. 

 

5. Also in Figure 4A (and several other figures), the X-axis is labelled “Relative mutational 

target sizes (βm/βp)”.  Shouldn’t this be Pβm/Pβp , because the β values are rates (line 

58) and the Pβ values are relative mutational target sizes (line 187 and 271) ? 

The reviewer is right that these axis labels introduce unnecessary confusion. They have been 

replaced by “(𝑃𝛽𝑚/𝑃𝛽𝑝)” in all figures. 

 

Other corrections and improvements 

● During the revision process, we noticed a mistake in our code, in which Eq. 15 computing 

fixation probabilities was written using 𝑙𝑜𝑔10 instead of the natural logarithm. For this 

reason, we had to repeat the entirety of our simulations. To speed up the process, we used 

a computing cluster and decided to slightly increase the number of simulated paralog pairs 

in each run to 2500. Our conclusions globally remained the same, but this correction had 

an effect on the results presented in Fig 5. Contrary to what we reported in the previous 

version of our manuscript, no combination of  parameters can now simultaneously replicate 

all the features of the empirical divergence of yeast paralogs. The addition of biases 

(skewness and correlations) to the distributions of mutational effects however still has a 

strong effect on the replication of the divergence correlations. As such, these results still 

show that the expression divergence patterns could plausibly be fully replicated by at least 

one of our models. 
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● We have also noticed a mistake in Fig 1D (Fig 1C in our original submission), which we 

have now corrected. The signed fold changes had been scaled in 𝑙𝑜𝑔10 instead of 𝑙𝑜𝑔2, 

which caused the range of values to be much smaller than for the absolute fold changes 

shown on other panels (Fig 1 A-C in the current version). This mistake had no impact on 

our results or conclusions, as the signed 𝑙𝑜𝑔2-fold changes were only used to compute the 

Spearman correlation, which is based on ranks and is thus unaffected by the units or log-

scaling of the values used. 

 

● We realized that the way we had initially framed our research question made it seem as if 

the relevance of our modeling work depends entirely on the validity of our initial 

observation. Our explorations of mechanisms which could favor transcriptional evolution 

is however interesting regardless. We thus reworked our introduction to mention the many 

previously published observations which suggest that the evolution of gene expression 

levels occurs mostly through transcriptional changes. In this context, yeast paralog pairs 

become a model system which can be easily studied to better understand how such a 

difference in evolutionary rates could emerge. 

 

● In order to better contextualize the evolutionary correlations that we highlight between the 

transcriptional and translational changes within paralog pairs (Fig 1 C-D), we added a 

supplementary figure (S4 Fig) showing the spurious correlations which would be expected 

from the fact that mRNA abundance 𝑚 is used in the calculation of 𝛽
𝑚

 and 𝛽
𝑝
. These 

expected relationships are distinct from what we show in Fig 1 C-D – especially in the case 

of the signed 𝑙𝑜𝑔2-fold changes –, which suggests that these correlations are meaningful 

and significant.  

 

● Although reviewers did not comment specifically on this section, we have also clarified 

our explanation of how the precision-economy trade-off by itself favors transcriptional 

divergence within paralog pairs (subsection The precision-economy trade-off is sufficient 

to promote transcriptional divergence). The following was added at the end of the 

penultimate paragraph  of the subsection (lines 335-340): “This occurs due to interactions 

between transcription- and translation-acting mutations introduced by the precision-economy 

trade-off. Further transcriptional changes can for instance be expected to be favored by selection 

after the fixation of a mutation altering 𝛽𝑚, as they have the potential to compensate effects on 

both precision and economy, while a change of translation can individually only act on precision”. 

 

● We have overhauled our discussion, both to clarify it and to adjust it to the new framing of 

the research question. 

o We have added a paragraph (sixth one, lines 639-656) discussing whether the two 

mechanisms that we have studied may apply widely to all genes – and thus might 

explain general trends of faster transcriptional evolution – or are instead likely to 

be specific to duplicated genes. 

o The paragraph speculating on the wider evolutionary consequences of the mostly 

transcriptional divergence of paralogs (eighth one, lines 673-691) has been 
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reworked, both to make its speculative nature clearer and to clarify it. It did not 

make sense to oppose the resolution of noise-control conflicts to regulatory 

neofunctionalization, as we did previously. 

o The paragraph discussing the fact that we ignored functional changes within 

proteins as well as how the precision-economy trade-off may affect the 

neofunctionalization paths available during the process of quantitative 

subfunctionalization has been split into two. The first part (now lines 692-703) 

discusses whether it was reasonable to focus only on expression divergence within 

paralog pairs. The second (now lines 704-714) describes how early expression 

changes, if they were dictated by the precision-economy trade-off, could shape the 

later evolutionary trajectories of duplicated genes. 

 

● The abstract and the conclusion have both also been modified, to ensure that they are 

consistent with the new framing of the work, as well as with the slightly modified results. 

 

● In order to shorten the Methods a bit, we have moved some details related to the fitness 

functions, the selection of the post-duplication change in optimal (cumulative) protein 

abundance, the estimation of expression noise and the selection of valid ancestral 

singletons to Extended Methods in the supplementary material. Throughout, we have also 

shortened the Methods and vastly reduced the repetition of information which was already 

mentioned in the Results and/or in the figure legends. 
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