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Supplementary Figures 

 
Figure S1. Strand-seq reflects the characteristics of MNase-seq profiles. (a-c) Fragment size distribution 
calculated from the distance between paired-end read alignment positions represent nucleosomal fragments in 
Strand-seq data from multiple independent experiments. (a) Strand-seq libraries from NA128782 show a bimodal 
read length (insert size) distribution implying existence of both mono-nucleosomal and di-nucleosomal sized 
fragments (see Supplementary Discussion III). NA12878 (also known as GM12878, or CEPH1463) represents 
a widely used human reference and benchmarking sample. (b) By comparison, Strand-seq libraries for RPE-1 (the 
originally commercially available cell line) and (c) the RPE-1 derived BM510 cell line3 were generated using 
stringent size selection1 at 250-350bp (a size representing mononucleosome fragments that still include the 
sequencing adapters). These data are unimodal reflecting the specific enrichment of mono-nucleosomal sized 
fragments. Strand-seq libraries newly generated in this study (Table S1) follow the strict size selection in 1, and 
select the 250-350bp (unimodal) sized fragments. For all down-stream analyses we performed an in-silico size 
selection of NA12878 for fragments between 80-220 base pairs in size (after trimming adapter sequences) to 
enrich for mono-nucleosomal sized fragments (indicated by the first peak in blue background), to be consistent 
with other Strand-seq libraries investigated in this study. (d) Genome-wide averaged nucleosome patterns at CTCF 
binding sites, based on pooled Strand-seq libraries generated for NA12878. CTCF binding sites for NA12878 
were obtained from ENCODE4. (e) Representative histogram of distances between nucleosomes calculated from 
pooled Strand-seq HG00096 (N=69 single cell libraries) using NucTools5. Plot for chromosome 19 shown as an 
example. Peak positions represent the distances between the nearest-neighbor6, followed by the 2nd, 3rd, etc. Inlet 
figure shows the scatter plot of peak position versus the peak number considering 1st~3rd neighboring 
nucleosomes, using the peaks in the histogram in (d). Nucleosome repeat length6 was estimated based on slope 
values derived using linear regression as shown in the inlet scatter plot (p-value was calculated based on Spearman 
correlation test). (f) Nucleosome repeat length6 estimates for pooled Strand-seq libraries shown for different cell 
types (n = 28, 1, 1, 1, 4 biologically independent samples for LCL, AML (AML_1), T-ALL (T-ALL_P1), CLL 
(CLL_24), and RPE-1, respectively). Publicly available bulk-cell MNase-seq data from LCLs7 are shown for 
comparison. MNase-seq data were downsampled to 70 million fragments per experiment to make them as 
comparable as possible to the pooled Strand-seq data. Nucleosome repeat length6 estimates were consistent 
between independent Strand-seq experiments (195.4 ± 0.4bp) and concordant with bulk MNase-seq (193.7 ± 
0.6bp), showing these patterns are reproducible. 
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Figure S2. Haplotype-phased NO tracks reveal haplotype-specific NO. We extracted the genomic positions 
of 66,254 active CREs previously defined in NA12878 using bulk ATAC-STARR-seq9, to parameterize the 
identification of haplotype-specific NO at CREs (i.e. scNOVA’s 'Infer haplotype-specific NO' module). Because 
the average annotated CRE length was only 350bp (‘original’), which is much smaller than average gene body 
length (67,104 bp), we expanded the search space around each CRE to examine whether this improved the ability 
of scNOVA to discern CREs displaying haplotype-specific NO in sparse single-cell data. We tested five sets of 
data, by extending CREs to 1kb, 2kb, 5kb, and 10kb intervals, each centered at the original CRE midpoint, and 
comparing these four sets to the originally defined9 set of CREs. For each set, we measured haplotype-specific 
NO in the pseudo-bulk NO tracks generated from NA12878 Strand-seq data, using a 10% FDR cutoff. (a) Violin 
plot representing the enrichment score (-log10 p-value from hypergeometric test) of CREs with haplotype-specific 
NO on the inactive chromosome X. To confirm the enrichment signal is driven by the regulatory elements, we 
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performed a randomization test by shifting the previously defined CRE locations9 (original length preserved) +-
50kb and repeating the haplotype-specific NO test for each CRE set (i.e. ‘original’, 1kb, 2kb, 5kb, and 10kb). 
Given the well-known X-inactivation process, we expect haplotype-specific NO at CREs to be enriched on the X 
chromosome. The chromosome X enrichment scores of 100 randomization trials are depicted as black dots in each 
violin plot (n = 100 independent trials; Together with violin plot, boxplots were defined by minima = 25th 
percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds 
of box = 25th and 75th percentile.), and the score calculated for the original (unshifted) CRE is depicted as a red 
dot. This randomization test shows that haplotype-specific NO at CREs is best resolved when using CREs of a 
1kb length (achieved by accordingly extending previously defined9 CRE locations). (b) Venn diagram showing 
significant overlap between target genes of CREs displaying haplotype-specific NO and genes showing allele-
specific expression (ASE) in NA12878. Putative target genes for each CREs were assigned based on the nearest 
gene approach10. ASE genes were defined by phasing bulk RNA-seq data generated for NA12878 using Strand-
seq based haplotype information, followed by examination of haplotype-specific read counts with EdgeR11, using 
a 10% FDR. The enrichment P-value depicted was estimated using a one-sided hypergeometric test (P<0.0018). 
This is close to the 2-fold enrichment of allele-specific transcription factor (TF) binding previously linked with X 
inactivation12. Genes targeted by CREs with haplotype-specific NO show a significant proclivity to be allele-
specifically expressed. (c) Downsampling analysis of cell number to detect haplotype specific NO for CREs on 
chromosome X. Among the 95 good quality cells of NA12878, we downsampled 90 cells to 10 cells, using a 10 
cell interval, and randomly picking 100 sets of cells at each step. For each downsampling trial, we performed a 
hypergeometric test to evaluate enrichment of haplotype-specific NO in one haplotype of chromosome X. Y-axis 
denotes the enrichment score (-log10 p-value) from the test (one-sided hypergeometric test; n = 100 independent 
trials; Boxplots were defined by minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 75th 
percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th percentile.). (d) Downsampling 
analysis for gene body NO on chromosome X. For each downsampling trial, we performed a two-sided Wilcoxon 
ranksum test to evaluate haplotype-specific NO. Y-axis denotes the enrichment score (-log10 p-value) from the 
test (n = 100 independent trials; Boxplots were defined by minima = 25th percentile - 1.5X interquartile range 
(IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th percentile.). 
These down-sampling analysis showed that 40-50 cells were required in the pseudo-bulk pool to reliably identify 
the inactive X based on CREs, whereas only 10-20 cells were needed when using gene bodies instead (10% FDR). 
(e) Haplotype-specific NO at CREs previously analyzed for allele-specific activity. Heatmap depicting haplotype-
specific NO measurements at CREs during downsampling analysis. We downsampled the cell number as 
described in (c), and for each trial inferred haplotype-specific NO using scNOVA for 15 CREs with previously 
reported haplotype specific activity9. Bar graph in the right panel shows the length of 15 CREs tested in this 
analysis. (f) Heatmap showing the haplotype-specific NO at gene bodies measured by downsampling analysis of 
cell number using BM510. We downsampled the cell number as described in (e), and for each trial we inferred 
haplotype-specific NO using scNOVA for chromosome X genes showing allele-specific expression (ASE) from 
the bulk RNA-seq of this cell line. Bar graph in the right panel shows the length of ASE genes tested in this 
analysis. (g) Scatter plot showing the negative correlation between log fold changes of haplotype-specific RNA 
expression (x-axis), and haplotype-specific NO (y-axis). Those two factors show significant negative correlation 
(spearman correlation coefficient =  -0.45, p-value = 3.7e-07). 
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Figure S3. NA12878 haplotype-phased NO tracks, computed for CREs and gene bodies at the level of full-
length chromosomes, are consistent with patterns of X-inactivation. (a) Single-cell level average NO signals 
for CREs displayed increased NO on the inactive X chromosome, indicating reduced CRE accessibility on this 
homologue (significant with 10% FDR; adjusted P=0.081, two-sided Wilcoxon signed-rank test). (b) Single-cell 
level average NO signals at gene bodies for expressed genes (FPKM>1 in bulk-cell RNA-seq data4) were 
computed per haplotype, which revealed increased NO on the inactive X chromosome (adjusted P=0.0012, two-
sided wilcoxon signed-rank test, followed by controlling13 the FDR). Pseudoautosomal regions (PAR) were tested 
separately from the remainder of chromosome X (“nonPAR”). (c) Pseudo-bulk haplotype-phased NO tracks based 
on Strand-seq, depicting a previously defined CRE9 in NA12878 with haplotype-specific absence of NO on H1 
(10% FDR). Total: aggregated phased and unphased Strand-seq reads. (d) Bar chart shows the allele-specific 
expression on H1 of NFIB – the inferred target gene of this CRE (derived from n = 4 biological replicates; Data 
are presented as mean values +/- SEM). (e-f) NO tracks of NA12878 based on bulk-cell MNase-seq and pooled 
(pseudo-bulk) Strand-seq data. Representative loci (e) undergoing X-inactivation (WWC3) and (f) escaping from 
X-inactivation (DDX3X) are shown. CRE definitions are based on9. Adjacent boxplot represent measurements of 
haplotype imbalances in NO at the respective gene bodies (nominal P<0.032 for WWC3, and P<0.52 for DDX3X; 
two-sided likelihood ratio test; Boxplots were defined by minima = 25th percentile - 1.5X interquartile range 
(IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th percentile.). 
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Bar graphs depict haplotype-resolved bulk RNA-seq4 read counts (FDR-adjusted P<2.5E-40 for WWC3, and P<1 
for DDX3X; two-sided likelihood ratio test; derived from n = 4 biological replicates; Data are presented as mean 
values +/- SEM). 
 

 
 
Figure S4. Inverse correlation between NO at the body of genes and bulk RNA-seq gene expression values. 
Inverse correlation shown for three RPE-1 derived cell lines1: the original RPE-1 cell line (a), BM510 (b), and 
C7 (c) NO was calculated for 101 bins spanning -2kb to +2kb of gene bodies as a read count per million mapped 
reads using ngsplot software14. For each of the bins, genome-wide correlation between NO and gene expression 
level from bulk RNA-seq data was measured using Spearman's rho. Inverse correlation between NO and gene 
expression was apparent along the entire gene body (see gray dots), with the most pronounced inverse correlation 
measured at the TSS. (d-f) An equivalent inverse correlation between NO and gene expression level was also seen 
in published scMNase-seq data from a mouse cell line15 (NIH3T3) - consistent with (pooled) Strand-seq and 
(pooled) scMNase-seq based read tracks being highly concordant along the genome (see main text and Figure 1). 
Binned NO profiles of the (d) TSS (±2kb), (e) gene bodies (±2kb), and (f) the transcriptional termination site 
(TTS; ±2kb) were extracted from pooled scMNase-seq data15 using 45 single cells in total. We downloaded raw 
fastq files (GSE96688) and aligned these data to the mouse mm10 reference genome. The mono-nucleosomal 
fraction was extracted (140-180bp) (Supplementary Notes), and NO for genomic bins around TSSs (±2kb), gene 
bodies (±2kb), and TTSs (±2kb) computed using ngsplot14. Genes were divided into four groups based on 
expression values (FPKM) measured by bulk RNA-seq of NIH3T3 cells16 (depicted in red, orange, green and 
blue).  
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Figure S5. Parameterization of convolutional neural network (CNN) in scNOVA. (a) CNN architecture used 
by scNOVA. The 'Input' table shows a schematic representation of five layers of feature sets built into scNOVA’s 
CNN, which include NO, single-cell variance of NO, GC%, CpG%, and replication timing (RT); the latter three 
features have been reported to be associated with nucleosome positioning patterns15,19–21, and have therefore been  
included in the CNNs to assist bin stratification. (b) Performance evaluation by cross validation, using different 
features and setups (“Models”), here used for choosing the optimal CNN model. Model 1 uses two features, 2K-
TSS (-1kb to +1kb around the TSS) and nucleosome depleted region (-400 to +100bp around the TSS)22. Model 
2-4 considers the region -5kb to +5kb of gene bodies divided by 150 bins. Model 2 uses two layers of Strand-seq 
features (occupancy + variation). Model 3 uses three layers of genome annotation features only (CpG, GC, and 
RT). Model 4 uses five layers of features including Strand-seq features (occupancy + variation) and genome 
annotation features (CpG, GC, and RT). All models were trained by CNN except for Model 1, which was trained 
using a support vector machine (SVM) based setup22. The average AUC values of Model 1, 2, 3, and 4 were 0.679, 
0.793, 0.791, and 0.871, respectively, and we thus chose Model 4 (occupancy, variation, CpG, GC, and RT) when 
parameterizing scNOVA. As an output, for each gene, this model provides the probability for a gene to be 
expressed (EG, expressed gene) or not expressed genes (NE, non-expressed gene), which when combined with 
scNOVA’s generalized linear models can be used to robustly infer alterations in gene activity (see Supplementary 
Methods). 
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Figure S6. Performance evaluation for scNOVA’s CNN and comparison with other machine learning 
models. (a) Comparison of AUC values based on leave-one-chromosome out cross validations from CNN, 
random forest (RF), and support vector machine (SVM). In this comparison, AUC was measured for the default 
(haplotype-unaware) CNN performing binary classification. All three models were trained with the same set of 
features, using pseudo bulk Strand-seq datasets from RPE-1 (79 cells), BM510 (plate 1: 70 cells; plate 2: 75 cells), 
and C7 (plate 1: 82 cells; plate 2: 72 cells). Published bulk-cell RNA-seq from these cell lines1 was used to define 
ground truth labels for ~10,000 expressed genes per cell line. A boxplot depicts the AUC values from 23 cross 
validation experiments (one experiment per chromosome). The measured performance of the CNN surpassed 
random forest (RF) and support vector machine (SVM) based machine learning setups (two-sided Wilcoxon rank 
sum test followed by Bonferroni correction, P = 2.4e-07 for CNN vs. SVM, P = 7.1e-07 for CNN vs. RF; n = 23 
independent trials). (b) AUC values for inferring gene expression ON/OFF status for all genes vs. cell type-
specific genes (n = 23 independent trials). (c) Scatter plot of FPKM values measured by bulk RNA-seq (y axis), 
and inferred expression values predicted by the ‘regression mode’ of scNOVA’s CNN (x axis). The scatter plot 
shows the result of leave-chromosome-1-out cross validation (Spearman correlation r=0.72; P<2.2e-16 based on 
Spearman correlation test). The mean Spearman correlation coefficient across all 23 chromosomes was 0.68 
(P<2.2e-16 based on Spearman correlation test). (d) AUC values for each chromosome, estimated in 
downsampled aggregated (‘pseudo-bulk’) Strand-seq data, as well as in single cells, using scNOVA’s CNN. The 
overall AUC was computed as the weighted average over 23 chromosome pairs, scaled by the number of genes 
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per chromosome. This downsampling analysis yielded AUC estimates of 0.78-0.87 in pooled, and AUC=0.76 in 
single cells for inferring expressed genes in RPE-1 cells. We note that coupling of the CNN with scNOVA’s 
generalized linear models (see Methods) is highly recommended when using the scNOVA framework. (e) When 
exploring the utility of machine learning to infer gene activity based on NO tracks, we devised both haplotype-
aware and -unaware CNNs. This panel depicts results generated by using haplotype-aware binary classification, 
with a haplotype-aware CNN, to infer the active X chromosome in the (female donor-derived) retinal pigment 
epithelial cell line C7. In C7, the CNN inferred the H2 haplotype as the active X chromosome. Bulk RNA-seq 
results1 verified this inference (derived from n = 2 biological replicates). Boxplots were defined by minima = 25th 
percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds 
of box = 25th and 75th percentile throughout this figure. 
 
 
 

 
Figure S7. Parameterization of scNOVA’s differential gene activity analysis module. (a) As explained in the 
Methods, scNOVA first infers expressed genes (EGs) and non-expressed genes (NEs) using its default CNN, and 
then removes genes inferred to represent NEs. It then uses negative binomial generalized linear models (as 
available in the DESeq2 package23) on all remaining genes, to investigate NO changes at gene bodies, and 
accordingly to infer changes in gene activity. AUC, area under the curve. DEGs, differentially expressed genes 
(DEGs). DEGs (the “ground truth”) are based on bulk-cell RNA-seq data subjected to DESeq2, comparing RPE-
1 and HG01573. Coloring indicates the threshold used to filter out NEs based on the CNN: e.g. the 
threshold>=0.90 means that genes showing a probability of at least 0.9 to be not expressed (expression 
status=’OFF’) were filtered out. We chose 0.9 as the default threshold parameter, the application of which 
improved performance. (b) We extended these benchmarks to pseudo-clones generated from two RPE cell lines, 
represented by 156 RPE-1 cells (the original hTERT-immortalized cell line) and 154 C7 (which underwent 
transformation)3. For these related RPE cell lines, we measured an AUC of 0.73 for the 10 most differentially 
expressed genes, and scNOVA inferred 615 genes to increase in activity in C7. In line with its transformed status, 
several cancer-related genes (e.g. CDK1, EEF1A2) were more active in C7, and “carcinoma” was the most 
enriched functional category (Table S2). We concluded that scNOVA enables accurate inference of global gene 
activity changes based on NO data.  
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Figure S8. Evaluation of RNA fold changes between two samples that can be detected by scNOVA. (a) For 
the comparison of RPE-1 vs. LCL (HG01573), log2 fold changes of NO at gene bodies were depicted for 10 bins 
of genes stratified by their RNA expression fold changes (n = 79, and 46 cells for RPE-1 and LCL, respectively). 
Asterisks indicate that the fold change of NO is significantly different from 0 (adjusted p-value<0.1; one sample 
t-test followed by multiple correction). Adjusted p-value = 6.76E-88, 1.04E-04, 2.63E-03, 1.66E-02, 1.95E-14, 
7.23E-10, 1.90E-06, and 1.84E-34 for bin1, 2, 3, 4, 7, 8, 9, and 10, respectively. (b) The same evaluation was 
repeated for T-ALL_P1 vs. NA12878 (n = 77, and 95 cells for T-ALL_P1 and NA12878, respectively). Adjusted 
p-value = 2.84E-26, 6.03E-06, 2.17E-06, 1.81E-03, and 1.06E-19 for bin1, 2, 3, 9, and 10, respectively. Boxplots 
were defined by minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, 
center = median, and bounds of box = 25th and 75th percentile. 
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Figure S9. Representative plots of LCLs which show evidence for at least two subclones exhibiting 22q11.2 
deletions. (a) Two 22q11.2 deletion bearing subclones found in NA12878, one subclone with 700kb heterozygous 
deletion (chr22:22.2Mb-22.9Mb), and the other subclone with 500kb heterozygous (chr22:22.2Mb-22.7Mb) and 
200kb homozygous deletions (chr22:22.7Mb-22.9Mb). NA12878 additionally harbors a subclone bearing a 
19q13.12 deletion (see main text). (b) Four 22q11.2 deletion bearing subclones detected in HG00171, which 
indicates that this LCL is a polyclonal cell line. Three subclones show hemizygous and/or homozygous deletion 
of a 0.6 Mb region (chr22:22.3Mb-22.9Mb), whereas one subclone shows homozygous loss of a 0.2 Mb region 
(chr22:22.7Mb-22.9Mb), at 22q11.2. 
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Figure S10. scNOVA analysis of SV subclones in NA12878 and their validation using scRNA-seq. (a) 
Mutually exclusive subclonal SVs in NA12878 single-cells. Del, Del1: hemizygous deletions; Del2: small 
homozygous loss region. Labels on the right side indicate single cell IDs. 19q-Del: subclone bearing 19q13.12 
deletion. 19q-Ref: subclone bearing a not rearranged chromosome 19. (b) The boxplot of NO at gene bodies for 
three significant hits from scNOVA comparing chr19 deletion subclone (19q-Del) and the 19q- Ref subclone. 
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(p.adjust=0.063, 0.0043, 1.39E-05 for the ERCC6, PIEZO2, TRAPPC9 respectively; two-sided Wald test followed 
by Benjamini Hochberg multiple correction; ***p.adjust<0.01, **p.adjust<0.05,*p.adjust<0.1; n = 16 and 60 cells 
for 19q-Del and 19q-Ref, respectively). (c) Analysis of NA12878 using CONICSmat24 to perform targeted SCNA 
recalling of the 19q13.12 deletion region using published25,26 Fluidigm and Smart-seq scRNA-seq data. Upper 
panel shows the histogram of mean expression Z-scores of the genes located within the 19q13.12 deletion region 
(chr19:36.5Mb-37Mb). CONICSmat fits these distributions to 1-component (absence of subclonal copy number 
changes) and 2-component (presence of subclonal copy number changes) mixture models, and compares log 
likelihood ratio of two models to evaluate significance of difference between two models (P<0.00012; two-sided 
Chi-square likelihood ratio test). The result of 2-component model fits are shown in the plot with red and green 
bimodal peaks. The bar graphs show the Bayesian information criterion (BIC) value of two models. The model 
with the lowest BIC (2-component) is preferred, suggesting the presence of an SCNA at 19q13.12. Lower panel 
shows the histogram of mean expression Z-scores of the genes for 22q11.2 deletion region (chr22:22.2Mb-
22.9Mb). For this region, the BIC prefers a 1-component model (absence of SCNAs). The third plot (Bootstrap 
likelihood ratio statistic) shows the bootstrapping analysis to test the null hypothesis of a 1-component fit versus 
the alternative hypothesis of a 2-component fit based on gaussian mixture distribution. (d) In the case of the 
19q13.12 region, for which CONICSmat inferred the 2-component model as the preferred model, the posterior 
probabilities of each individual cell were calculated to infer membership to the first component and the second 
component, and hence assign single cells as a "confident 19q-Del" (red) or "confident 19q-Ref cell" (blue). The 
bar graph shows the number of single-cells assigned to either confident 19q-Del or confident 19q-Ref for different 
posterior probability cutoffs. The box plots below show the comparison of ERCC6 expression level from confident 
19q-Del and confident 19q-Ref cells with different posterior probability cutoffs. These analyses are in strong 
support of the overexpression of ERCC6 in cells exhibiting a 19q13.12 deletion (P=0.0067, 0.0050, 0.0051, 
0.0092, and 0.052 for the posterior probability cutoffs of 0.80, 0.82, 0.84, 0.86, and 0.88 respectively; FDR-
adjusted two-sided Wilcoxon rank sum test; derived from n = 160 cells in total) (e) Violin plots showing the RNA 
expression level of all three scNOVA hits in confident 19q-Del and confident 19q-Del cells in scRNA-seq defined 
with CONICSmat posterior probability 0.8. Differential expression between two groups were tested by FDR-
adjusted two-sided Wilcoxon rank sum test (p.adjust=0.0067, 0.72, 0.59 for the ERCC6, PIEZO2, TRAPPC9 
respectively; ***p.adjust<0.01, **p.adjust<0.05,*p.adjust<0.1). (f) Odds ratio of TF targets enriched in cells 
bearing the 19q13.12 deletion, with c-Myc/Max target genes ranking highest (TF targets shown in this display 
exhibit adjusted P<1e-25 and combined score >100 based on EnrichR27), based on scRNA-seq in NA12878. (g) 
Gene ontology biological process (GOBP) terms over-represented among 1,896 up-regulated genes (FDR 1%, 
above 1.5 fold changes) in cells bearing the 19q-Del (61 cells) compared to 19q-Ref (42 cells), based on scRNA-
seq (applying a posterior probability cutoff of 0.80). GOBPs with FDR 10%, computed using Fisher's exact test 
with DAVID software28, with more than 10 up-regulated genes are shown. The bar graph shows -log10 (p.adjust) 
values, and the red line represents the number of up-regulated genes for each term. (h-i) Depiction of 
representative up-regulated c-Myc/Max target genes implicated in cell proliferation, based on the NA12878 
scRNA-seq data (two-sided wilcoxon ranksum test followed by Benjamini Hochberg multiple correction; n = 71 
and 42 cells for 19q-Del and 19q-Ref, respectively). Boxplots were defined by minima = 25th percentile - 1.5X 
interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 
75th percentile throughout this figure. 
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Figure S11. Validation of deletions in NA12878 in Strand-seq libraries generated in open nanoliter arrays. 
To confirm the presence of subclonal focal deletions in chr19q and chr22q in NA12878, we downloaded publicly 
available single-cell DNA sequencing data profiled by open nanoliter array based (OP) Strand-seq59. In total we 
analyzed 313 high quality single-cell libraries, and applied ArbiGent60 for SV presence/absence calling of the 19q 
and 22q SVs discovered by the scNOVA framework (see main text). This analysis validated the 19q deletion in 
two single-cells (CF = 0.64%) as shown in the left panel (SRR16541336, SRR16541391). We additionally 
confirmed 22q deletions in 217 single-cells (CF = 69.33%), shown in the right panel for representative single-
cells (SRR15009626, SRR15009627). As in the scNOVA analysis described in the main text, somatic deletion 
events 19q and 22q were mutually exclusive in these OP Strand-seq data. 
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Figure S12. Violin plots of genes showing significant altered activity in the 17p-BFB clone compared to the 
17p-Ref clone in NA20509. In total 18 genes were identified using 10% FDR cutoff. Z score of NO values at 
gene bodies, for each single cell, are depicted in violin plots (two-sided Wald test followed by Benjamini 
Hochberg multiple correction). This analysis was derived from n = 7 and 40 cells for 17p-Ref, and 17p-BFB, 
respectively. Boxplots were defined by minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 75th 
percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th percentile. 
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Figure S13. BFB-mediated subclonal complex rearrangement in NA20509. (a) Discovered unbalanced 
translocation with CF=85% (P=1.3e-07; FDR-adjusted Fisher's exact test; inversely correlated template strand co-
segregation patterns1 used for translocation discovery shown for six representative cells). (b) Subclonal karyotype 
of NA20509, with complex derivative chromosome highlighted. (c-d) Read depth plot and SV calls based on 
NA20509 (bulk-cell) WGS data, generated at the New York Genome Center using a different cell stock of 
NA20509 than used for Strand-seq library preparation of NA20509 (pursued at EMBL Heidelberg). WGS data 
were downloaded from the data portal of the International Genome Sample Resource (IGSR)29, and analyzed as 
described in the Supplementary Notes. Phased heterozygous sites for haplotype 1 (cyan color) and haplotype 2 
(salmon color) together with read-depth based copy numbers profiles verified (c) the presence of complex 
subclonal SVs including a large gain on chromosome 5, (d) subclonal terminal loss of chromosome 17 p-arm, and 
subclonal gain at 17p. SV analysis using Delly230 additionally verified the presence of a subclonal unbalanced 
translocation between chromosomes 5 and 17 (labeled ‘BND’), showed a tail-to-tail inversion-type rearrangement 
at chromosome 5, and identified a tandem duplication-type rearrangement signature spanning parts of the terminal 
gain on chromosome 5. Further inspection of the Illumina WGS data suggested presence of the rearrangement-
bearing subclone in 30-34% of cells (based on inspecting the core amplified region on chr5 and the core deleted 
region on chr17, respectively; see panels (c) and (d)). This is lower than the 85% CF detected in our own cell 
stock at the EMBL, perhaps since the CF of the respective subclone varies between distinct NA20509 cell stocks.  
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Figure S14. Transcriptome analysis in a panel of 33 LCLs with available31 deep bulk-cell RNA-seq data. 
The figure depicts normalized read counts of MAPK pathway genes located in the duplicated region on 
chromosomes 17 (a-b) and 5 (c-h). The expression level of NA20509 is highlighted with green. MAP2K3 is an 
upstream regulator of c-Myc/Max in the MAPK signaling pathway. (i) Haplotype resolved RNA-seq read counts 
at heterozygous SNP sites within the MAPK9 showed expression from both homologs, but also with increased 
expression in the BFB haplotype (17p-BFB) compared to the not rearranged haplotype (17p-Ref) (FDR-adjusted 
P=2.4e-3 and P=0.91 for MAPK9 and PDGFRB, respectively; two-sided likelihood ratio test, ***p.adjust<0.01, 
**p.adjust<0.05,*p.adjust<0.1; derived from n = 4, and 12 heterozygous SNP sites for MAPK9 and PDGFRB 
respectively; Boxplots were defined by minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 75th 
percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th percentile.) suggesting that this gene 
might also contribute to the molecular phenotype (activation of c-Myc/Max targets) in the genomically rearranged 
subclone. (j) Significant TFs identified from TF-target over-representation analysis of differentially expressed 
genes in NA20509 late (p8) compared to early (p4) based on RNA-seq analysis. Top 10 significant TFs were 
shown in the bar graph (FDR 10%). This analysis identified Max, and its dimerization partner of c-Myc, 
independently as significant hits (FDR 10%). By comparison, we did not observe changes in expression of MYC 
at p8 versus p4. This is consistent with scNOVA, which predicted no MYC expression change in 17p BFB cells, 
and could be explained by c-Myc post transcriptional regulation following deregulation of MAP2K332. 
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Figure S15. Gating strategy for isolation of CD34+ cells from AML patient AML_1. 
Mononuclear cells from bone marrow aspirates were thawed and stained (Methods). Extracellular debris was 
gated out based on its low FSC-A vs SSC-A profile relative to cells. Doublets discrimination and exclusion was 
carried out by removing outliers in SSC-W vs SSC-A profiles; where doublets appear as outliers. Viable cells 
were identified by a low staining with Fixable LIVE/DEAD stain, an intracellular stain which does not strongly 
penetrate viable, intact cells. Finally, CD34+ cells were sorted from these single, viable cells. The red gate shows 
the selected population which is visualized in the consequent plot, indicated by an arrow. The final red gate 
indicates the population that was sorted, and used for Strand-seq library preparation. 
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Figure S16. Identification of balanced translocation in AML_1. (a) Strand-seq based chromosome plot of 
representative single-cell from AML_1, which shows breakpoints at 92.1Mb of chromosome 8 and 34.9 Mb of 
chromosome 21. (b) TranslocatoR analysis (implemented in mosaiCatcher)1 results are depicted in a pyramid plot. 
Each pixel in the pyramid represents the significance of co-segregation between two chromosomal segments, 
allowing to detect potential translocation partners. This analysis indicates that AML_1 contains a t(8;21) clonal 
translocation, consistent with clinical diagnosis. (P-value for translocation discovery using strand co-segregation: 
P=0.00003, FDR-adjusted Fisher's exact test). (c) The schematic diagram shows a normal and a derivative 
chromosomes resulting from t(8;21) translocation. 
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Figure S17. Haplotype-specific NO analysis in AML_1. (a) Strand-seq based breakpoint analysis using 
BreakpointR44 located the translocation breakpoint in AML_1 within intron 1 of RUNX1T1 on chromosome 8, 
and intron 5 of RUNX1 on chromosome 21, recapitualing previously reported locations of t(8;21)(q22;q22.1) 
breakpoints45. CREs were defined as the union of ATAC-seq peaks from AMLs and the hematopoietic system 
from prior studies (Table S5, Methods). (b) Haplotype-specific NO at CREs within -278 to 22kb, adjacent to the 
translocation breakpoint which contains part of RUNX1T1 (P<0.08; likelihood ratio test, adjusted using 
permutations; derived from n = 17 cells with WC/CW configuration in chromosome 8). Ref, not arranged 
homologue of chromosome 8. SV, translocated (derivative chromosome). (c) Haplotype-specific NO at CREs in 
the upstream segment residing between 0.82Mb and 1.12Mb of RUNX1 (P<0.003; likelihood ratio test, adjusted 
using permutations; derived from n = 16 cells with WC/CW configuration in chromosome 21). (d) 11 genes 
demonstrate significant haplotype-specific NO in their gene bodies, genome-wide (FDR<10%; Wilcoxon rank-
sum test; n indicates the number of cells with WC/CW configuration used for the statistical testing,). (e-f) eQTL 
analysis identified a SNP that may explain patterns of haplotype-specific NO seen for SLC3A2. (e) Among 109 
eQTL SNPs known to be associated with SLC3A2 gene expression level according to GTEx database46, one SNP 
(rs2850596) could be unambiguously phased using Strand-seq data of the AML_1 sample. (f) Violin plot 
downloaded from GTEx shows that 'T' allele of rs2850596 is associated with higher expression of SLC3A2 
compared to the 'C' genotype. This may explain patterns of haplotype specific NO seen for the SLC3A2 gene. 
Asterisk denotes FDR adjusted p-value (p.adjust = 0.0033 from two-sided wilcoxon ranksum test followed by 
Benjamini Hochberg multiple correction; ***p.adjust<0.01, **p.adjust<0.05,*p.adjust<0.1; derived from n = 24 
cells with WC/CW configuration in chromosome 11). Boxplots were defined by minima = 25th percentile - 1.5X 
interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 
75th percentile throughout this figure. 
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Figure S18. Single-cell SV discovery in CLL_24. A diversity of distinct yet overlapping deletions were observed 
at chromosome 10q24.32, representing subclones and single cells. 10q-Ref, not rearranged karyotype. SIa-d 
(singletons), here represented as a ‘group’ of four single cells with distinct/individual deletions, all bear deletions 
affecting the ‘minimal region’ (see main text). As we identified extensive subclonal heterogeneity in this sample, 
we used the lenient SV calling parameterization available using the MosaiCatcher pipeline1 to allow for sensitive 
detection of SVs at CFs from 1 to 5%, including in individual cells. 
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Figure S19. Investigation of relationships between SCa, SCb and SCc clones in CLL_24. Genome browser 
tracks showing the haplotype (denoted as H1, H2) and location of deletions for each single cell based on 
BreakpointR44 analysis of Strand-seq data. In total seven cells belonging to the SCa, SCb, SCc clones were shown. 
For each of the single-cell libraries, three tracks are depicted in the plot: 1) confidence interval of breakpoints; 2) 
deleted position (black bar), and 3) composite read track. On the right-side of the browser track, consensus 
breakpoints of each subclone were shown. Based on these data, we formally tested the hypothesis that SCb and 
SCc might be daughter clones of SCa. This analysis showed that the SCa deletion arose on haplotype 2, whereas 
the deletions on SCb and SCc arose on haplotype 1 – which formally rules out such a relationship. Consistent with 
this haplotype based analysis, we found that the confidence intervals of the SCa deletion breakpoint do not overlap 
with the breakpoints of SCb and SCc (with the intervals being 322kb and 568kb apart, respectively).  
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Figure S20. Violin plots of genes showing significant altered activity in the 10q-Del clone compared to the 
10q-Ref clone in CLL_24. Three genes were identified using 10% FDR cutoff. The Z score of NO at gene bodies 
for each single cell in the 10q-Del clones and 10q-Ref clone is depicted in violin plots (two-sided Wald test 
followed by Benjamini Hochberg multiple correction). This analysis was pursued using n = 75 and 11 cells for 
10q-Ref, and 10q-Del, respectively. Boxplots were defined by minima = 25th percentile - 1.5X interquartile range 
(IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th percentile. 
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Figure S21. Inference of altered gene activities in CLL_24 subclones. We first applied the default scNOVA 
mode to compare all cells with a deletion at 10q24.32 ('10q-Del', N=11) to cells without this SV ('10q-Ref', N=75), 
hence disregarding the fine scale subclonal structure of CLL_24. This identified only three differentially active 
genes - GPA33, ARSK and DNM2 - all of which reside on other chromosomes. (a) Heatmap of three genes altered 
in activity in cells bearing 10q24.32 deletions, using the default mode (DESeq2) of scNOVA (10% FDR). (b) NO 
of three significant hits from the default mode of scNOVA (10% FDR). '10q-Ref' denotes a not rearranged 
karyotype. SCa, SCb and SCc denote subclones harboring deletions (Del) in the ‘minimal deleted region’ at 
10q24.32 (see main text; N = 2, 3, and 2 cells for SCa, SCb, and SCc, respectively). SIa-d combines four single 
cells that exhibit individual deletions in the same minimal deleted region (deletions seen in N=1 cell each). (c) 
Differential expression of genes of interest in an ICGC CLL cohort33, in samples bearing a 10q24.32 deletion 
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compared to donors without such deletion ('10q-Ref'). Transcriptome-wide differential expression analysis 
showed up-regulation of DNM2 (FDR 10%), supporting the inferences initially made using scNOVA (see main 
text). While DNM2 over-expression in deletion donors recapitulates the altered gene activity in the SV subclone 
(p.adjust = 0.0696), expression changes of GPA33 and ARSK were not significant in the comparison of donors 
with and without 10q deletion (p.adjust = 0.220, 1.000 for GPA33 and ARSK, respectively). (d-f) Considering the 
10q24.32 deletion subclones were seen at low-frequency (CF ≤3.5%), we next applied the 

alternative mode of scNOVA (PLS-DA-based; Methods). Heatmaps of genes altered in activity in 
different subclones (SCa, SCb, and SCc) bearing 10q24.32 deletions, using alternative the mode (PLS-DA) of 
scNOVA (10% FDR) are shown in panel (d) to (f) respectively. (g) Functional enrichment analysis of genes 
predicted from scNOVA's altered gene activity module (alternative mode using PLS-DA, Fig 4c) for 11 cells 
bearing 10q deletions (10q-Del) versus 75 cells without deletions (10q-Ref). (h) Functional enrichment analysis 
of genes predicted from scNOVA's altered gene activity module for individual subclones with chromosome 10q 
deletions. As the CFs of distinct subclones were below 10%, we use the alternative mode for inferring altered 
gene activity. This analysis predicted 109, 206, 266 genes with altered activity. Gene set over-representation 
analysis was performed using DAVID software28. (i-l) Pathway activities derived by jointly modeling NO at the 
gene bodies of gene sets for (i) BCL signaling, (j) MET signaling, (k) PIP3 signaling, and (l) CREB pathway in 
different subclones. Pathway activity ((-1)*Z-score of NO) was scaled by the median seen across unaffected (10q-
Ref) cells from the CLL_24 sample.  n = 2, 3, 2, and 1 cells for SCa, SCb, SCc, and SIa-d were shown, respectively. 
(m) Significant TFs identified from TF-target over-representation analysis of scNOVA hits (activated in SCb; 
10q-terDel), supported by CITE-seq analysis of 10q-terDel clone (FDR 10%; Fig. 4h). Boxplots were defined by 
minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, 
and bounds of box = 25th and 75th percentile throughout this figure. 
 
 
 
 
 
 
 



27 

 
 
Figure S22. Functional enrichment analysis of genes clustering genomically at 10q23.2-26.3. In total, 235 
genes were affected by at least one of the 10q-Del events in CLL_24. These 235 genes were tested for functional 
enrichment with the DAVID software28, using Fisher's exact test, followed by FDR correction. The bar graph 
shows the -log10(p.adjust) value, and the line graph shows the number of genes clustering in this genomic region 
that are involved in each biological process. Five gene ontology biological processes reach significance at 10% 
FDR. This includes Wnt signaling, which represents the second most significantly enriched functional category – 
suggesting that Wnt signaling-related genes are clustered in this chromosomal region. 
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Figure S23. Recurrence of somatic deletions (Del) at the 10q24.32 ‘minimal deleted region’, in CLL donors 
from PCAWG34. Analysis of these WGS datasets by read depth analysis, using Delly230, uncovered Dels 
intersecting with the minimally deleted segment, initially observed in CLL_24, in 4 out of 94 (>4%) cases (all 
cases shown above). Prior studies reported somatic 10q24.32 deletions in 1-4% of CLLs35–37, and reported 
enrichment in relapsed/refractory and high-risk cases38, suggesting these SVs may act as a driver.  
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Figure S24. Validation of increased expression of leukemia related signaling pathways in association with 
10q24.32 deletions in ICGC samples. (a) Left panel: Bulk RNA-seq analysis in 42 CLLs. Mean expression Z-
scores for canonical Wnt signaling target genes are shown for each donor (green: CLL_24). Right panel: CLL 
samples from the ICGC36 bearing deletions at the 10q24.32 minimal segment (10q-Del) show increased expression 
of Wnt pathway target genes compared to CLL samples with a not rearranged 10q karyotype (10q-Ref) (P=0.0090; 
two-sided likelihood ratio test; n = 174 and n = 4 independent CLL samples for 10q-Ref and 10q-Del, respectively; 
Boxplots were defined by minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 
1.5X IQR, center = median, and bounds of box = 25th and 75th percentile throughout this figure.). Same analysis 
was applied for all the leukemia related signaling pathways identified in Fig. 4d including c-Met signaling 
pathway (b), BCR signaling pathway (c), PIP3 signaling in B lymphocytes (d), and CREB pathway (e). Note that 
c-Met signaling target genes (Table S7) were collected from prior literature, where potential c-Met target genes 
were defined using global gene expression profiling of wildtype and c-Met-deficient primary mouse hepatocytes40. 
According to the targeted analyses performed for these CLL samples as part of a clinical study, CLL_29 (2nd rank 
for Wnt signaling in (a)) is harboring a somatic 13q deletion, known to result in activation41 of Wnt signaling via 
upregulation of LEF-1, which likely explains why the difference in Z-scores between CLL_24 and CLL_29 is 
relatively small. Similarly, CLL_11, CLL_12, CLL_2 (top ranking for c-Met signaling, which is promoted by the 
Wnt pathway42) contain either 13q (CLL_12, CLL_2) or 11q (CLL_11) deletion events. 11q somatic deletions 
result in activation43 of Wnt signaling via ATM loss, followed by increase of WNT5A. These data are therefore 
broadly consistent with prior knowledge on the activation of Wnt signaling in CLL. Because the 10q24.32 region 
was not included in the targeted genotyping performed in the clinical trial, we do not know whether genetic 
alterations in this region additionally contributed to the abnormal activation of the Wnt and c-Met signaling 
pathways in these samples.   
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Figure S25. Transcriptional and protein markers, as well as reference-based cell-type annotations, 
discriminate B-cells from other contaminating immune cells. (a) Unsupervised clustering analysis of 4,459 
high-quality single-cell RNA-seq libraries (CITE-seq), generated for CLL_24. (b) Reference-based cell type 
annotation of single-cell transcriptomes from CLL_24. Total bone marrow cells from the human cell atlas bone 
marrow dataset were used as a reference for cell type annotation54. (c-d) Average expression of CD19 protein (c) 
and RNA (d) across single cells. CD19 is a known marker of human B-cells. (e) Dotplot showing the average 
expression of 6 genes previously shown to distinguish leukemic B-cells from healthy lymphocytes55. 
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Figure S26. Inference of SCNAs using CITE-seq data from the CLL_24 sample. (a) UMAP of CITE-seq data 
based on DoroThEA TF activities56 showing eight unsupervised clusters in CLL_24. (b) Single-cells confidently 
inferred to harbor the 10q-terDel event (shown in red) and cells confidently called '10q-Ref' (shown in blue) by 
targeted SCNA recalling were projected to the UMAP plot, revealing pronounced clustering of 10q-terDel cells 
in cluster 0 (see also panel (d)). (c) Single-cells inferred to exhibit the scNOVA-derived gene set of SCb (10q-
terDel subclone) based on UCell (gene set UCell score > (median score + standard deviation)), are assigned to 
'10q-terDel', and shown in red; the remaining cells did not meet the threshold were assigned to '10q-Ref'. (d) 
Upper plot: Dot plot showing over-representation of CONICSmat (targeted SCNA recalling) based 10q-terDel 
calls in cluster 0 (adjusted P = 1.06E-07; one-sided hypergeometric test followed by Bonferroni multiple 
correction). Dot color shows the significance score (-log10 adjusted P) from Fisher's exact tests, and dot sizes 
denote the inferred percentage of 10q-terDel bearing cells in each cluster –  the latter was computed as the number 
of 10q-terDel cells divided by all cells in each clusters including cells in which no confident targeted SCNA 
recalling was made (‘NA’)). (*** p.adjust<0.01, ** p.adjust <0.05, and * p.adjust<0.1). Over-representation 
analysis for UCell derived 10q-terDel calls (based on the scNOVA gene set detected in SCb) are shown in the 
lower panel (adjusted P = 1.74E-26 and 0.013 for cluster 0 and 3, respectively; one-sided hypergeometric test 
followed by Bonferroni multiple correction). (e) Signaling pathways inferred by scNOVA that are significantly 
over-represented among the marker genes of CITE-seq cluster 0, based on an pathway analysis pursued using 
ConsensusPathDB57 (All other significant pathways provided in Table S15). 
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Figure S27. Single-cell gene set enrichment analysis for CLL_24. (a)-(f) Violin plots of enrichment scores for 
WNT signaling (KEGG), c-MET pathway (Biocarta), BCR signaling (KEGG) and PIP3 signaling (PID) pathways, 
comparing 10q-terDel cells to 10q-Ref cells (CONICSmat calls; two-sided Wilcoxon test), and (g)-(l) Violin plots 
of enrichment scores for the same pathways, comparing cluster 0 (c0) to all other DoRotheA clusters (FDR-
corrected two-sided Wilcoxon rank-sum test). Note that 0-7 in the x-axis denotes DoRotheA cluster 0 to cluster 
7. n = 831, 797, 546, 505, 444, 418, 291, and 87 for cluster 0 to cluster 7. Boxplots were defined by minima = 
25th percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and 
bounds of box = 25th and 75th percentile. 
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Figure S28. Functional connections between deleted genes in CLL_24 and dysregulated genes inferred by 
scNOVA. (a) Mapping of deleted genes and scNOVA predicted dysregulated genes to the canonical Wnt signaling 
pathway diagram. Node color denotes the type of alteration (deleted genes in gray, genes with increased activity 
in all 11 cells with deletion, SCa (oneDel), SCb (terDel) and SCc (twoDel) predicted by scNOVA in green, blue, 
and in purple, respectively). The principal framework of the diagram is based on the KEGG database, and if the 
nodes come from other sources, we have given the references under the gene name. Edges between nodes indicate 
either physical interaction based on the STRING database (solid lines), or pathway information based on KEGG 
(dashed lines). (b) Differential expression of genes of interest in an ICGC CLL cohort33, in samples bearing the 
‘minimal region’ Del (10q-Del; n = 4 independent CLL samples) compared to donors without Del (10q-Ref; n = 
174 independent CLL samples). We analyzed the expression level of known or previously suspected negative 
regulators of Wnt signaling in the minimal deleted region in 10q. BTRC is a known negative regulator of Wnt 
signaling (Supplementary Notes), which is located very close to (only 58kb apart from) the minimal deleted 
region (deleted in 9/11 single-cells harboring the minimal region Del event). BTRC shows significant down-
regulation in donors bearing the Del (FDR-adjusted P=0.000646), and hence its deletion may have caused or 
contributed to aberrant Wnt signaling. We also observed significant downregulation of FBXW4 (FDR-adjusted 
P=0.00478), and LDB1 (FDR-adjusted P=0.0381) deleted in all eleven 10q24.32 SV bearing cells. In the case of 
SUFU (deleted in 11/11 cells with 10q24.32 SV) a slight trend of downregulation (log2 fold-change = -0.34) did 
not reach genome-wide significance (FDR-adjusted P-value=0.346). For NFKB2 (deleted in 11/11 cells with 
10q24.32 SV), the expression level in the 10q-Ref and 10q-Del samples likewise did not show significant 
differences (FDR-adjusted P-value=0.507). Adjusted P-values were obtained by two-tailed Wald’s test from 
DESeq223 followed by FDR adjustment using Benjamini Hochberg correction. Additionally we analyzed the 
expression level of negative regulators of Wnt signaling in uniquely deleted 10q regions in the SCb (CTBP2) and 
SCc (PTEN) subclones; in both cases, the respective genes did not display genome-wide significant differential 
expression (FDR-adjusted P-value=0.642, 0.914, respectively). Boxplots were defined by minima = 25th 
percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds 
of box = 25th and 75th percentile. 
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Figure S29. Violin plots of genes showing significant altered activity in the 6q-CT clone compared to the 
6q-Ref clone in T-ALL_P1. Twelve genes were identified using a 10% FDR cutoff. The Z score of NO at gene 
bodies for each single cells in the 6q-CT clone and 6q-Ref clone was depicted using violin plots (two-sided Wald 
test followed by Benjamini Hochberg multiple correction). This analysis was derived from n = 54 and 23 cells for 
6q-Ref, and 6q-CT, respectively. Boxplots were defined by minima = 25th percentile - 1.5X interquartile range 
(IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th percentile. 
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Figure S30. Validation of allelic increase of RNA expression of MYB on the chromothripsis haplotype. 
Increased MYB expression on haplotype 2 (H2) of chromosome 6, the chromosomal homolog exhibiting 
chromothripsis, based on haplotype-resolved RNA-seq pursued with two biological replicates (Re1 and Re2). 
Bulk RNA-seq data of T-ALL_P1 was analyzed to calculate allele-specific reads overlapping with heterozygous 
SNP sites. Allele-specific RNA-seq reads were counted using ASEReadCounter48. Allelic read counts were 
assigned to haplotype 1 (H1) or H2 using whole chromosome haplotype-phasing information from 
StrandPhaseR49. Allelic read counts along the gene were aggregated to retrieve haplotype-resolved gene-level 
read counts. MYB expression on H2 was 1.4-fold increased over H1 (P = 0.0317; likelihood ratio test, provided 
by EdgeR11).   
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Figure S31. Expression level of genes predicted by scNOVA to be altered in activity in the SV subclone in 
T-ALL_P1. Bulk-cell RNA-seq based gene expression measurements are shown for all genes in Fig. 5b, which  
scNOVA inferred to change in activity as a consequence of chromothripsis, in a panel of 13 T-ALL derived 
samples. The index sample, T-ALL_P1 (P1), is highlighted in green.  
 
 
 
 
 

 
  



37 

 
Figure S32. Gating strategy for single, viable T-ALL cell isolation from T-ALL sample T-ALL_P1 for 
scRNA-seq. Viable cells are identified by low staining with DAPI, a viable cell impermeable nuclear stain. Human 
T-ALL cells are selectively sorted from contaminating murine and feeder layer cells by their lack of murine CD45 
and GFP expression. Red gate shows selected population which is visualized in consequent plot, indicated by 
arrow. The final red gate indicates the population which was sorted.  
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Figure S33. Evaluation of the robustness for the unsupervised clustering in T-ALL_P1 scRNA-seq. (a) To 
test the suitability of our chosen clustering parameter we used MultiK package58. MultiK identifies the optimal 
number(s) of clusters for a given single scRNA-seq experiment by testing resolution parameters between 0.05 and 
2.0 in steps of 0.05. The data is randomly subsampled to 80% each run, and the resulting output is a summary of 
how often a given number of clusters was determined, regardless of the chosen resolution parameter. Our chosen 
resolution parameter gives rise to the optimal number of clusters (k = 10). (b) Bar graph showing the cell count 
assigned to each of the clusters. Amongst 10 clusters, 8 clusters which contain more than 100 single cells were 
subjected to the downstream analysis. (c) Downsampling analysis to test the enrichment for the 6q-CT subclone 
in transcriptome based unsupervised clusters. Downsampling was carried out by randomly subsetting the data to 
80%, 60%, and 25% of single cells from the total data set, and repeating the enrichment analysis of CONICSmat 
and UCell-annotated 6q-CT cells per cluster. In each case and in both annotations, cluster 3 remained significant 
after multiple correction (FDR 10%); notably, cluster 3 in all cases reached the highest significance. Furthermore, 
cluster 3 was the only cluster remaining significant when downsampling/subsetting to 25% was performed. 
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Figure S34. Exploration of posterior probability cutoffs for CONICSmat for the inference of SVs in T-
ALL_P1 using scRNA-seq.  (a) InferCNV50 analysis of 5,504 high quality T-ALL_P1 cells, and 1,451 control 
cells. Control cells were downloaded from PBMC data provided by 10X Genomics. This analysis did not discover 
subclones in 5,504 T-ALL cells. (b) Single-cells harboring deletions in chromosome 6 were inferred using 
CONICSmat 'targeted SCNA recalling mode' by applying posterior probability cutoff 0.9. CONICSmat 
confidently performed targeted SCNA recalling for 15% of the scRNA-seq dataset for which 729 cells were 
predicted to harbor the chromothripsis rearrangement ('6q-CT'), and 109 cells were called '6q-Ref' across the entire 
chromosome 6 (for the remainder of 4,666 cells no confident assignment could be made). Confident 6q-CT cells 
are enriched in the cluster 3 and cluster 7 cells. Based on this result, we calculated an estimated range of CFs, 1) 
If we include uncallable cells to the calculation, chromothripsis is detected in 729 cells among 5,504 cells 
(estimated CF=13%). 2) If we exclude uncallable cells, the estimated CF of 6q-CT is 87%. The Strand-seq based 
CF estimate (30%) is well within this range. (c) 6q-CT calls were made by applying a range of posterior probability 
cutoffs, and projected to the UMAP. As the maximum posterior probability was 0.9133, we tested the cutoff range 
from 0.80 to 0.91, by increasing 0.1 each time. (d-e) Enrichment of confident 6q-CT calls (d) and confident 6q-
Ref calls (e) for each of the unsupervised clusters were tested using fisher's exact test followed by Benjamini-
Hochberg multiple correction. It shows that cluster 3 and cluster 7 are robustly enriched by confident 6q-CT calls, 
and the cluster 4 and cluster 6 are robustly enriched by confident 6q-Ref calls. 
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Figure S35. Lineage trajectory analysis of scRNA-seq of T-ALL_P1. (a) Marker genes for the ten  
unsupervised clusters identified from scRNA-seq of T-ALL_P1 (10X Genomics). (b) UCell scores for each of 
eight T-cell cell-types were projected to the UMAP of scRNA-seq of T-ALL_P1. T-cell cell-type marker genes 
were downloaded from the previous publication51. (c-e) Pseudotime trajectory analysis across clusters and 
subclone assignments for the T-ALL_P1 scRNA-seq data. (f) Bar graph showing P-values for the top 10 
significant TFs from the TF-target over-representation analysis of differentially expressed genes for cluster 3. Red 
color denotes MYB, blue color denotes TFs which interact with/are transactivated by MYB. (For the corresponding 
P-values in cluster 7, where MYB was also significant, see Table S10). This analysis shows that differentially 
expressed genes for both cluster 3 and 7 are significantly enriched for MYB target genes (adjusted P=4.25e-26, 
and P=1.88e-26, respectively). 
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Figure S36. Single-cell gene set enrichment analysis for T-ALL_P1 scRNA-seq data. Violin plots of 
enrichment scores for Notch1 intracellular domain (N1-ICD) Pathway (M611; Reactome) (left), c-MYB Pathway 
(M195; PID) (middle) and Cell Cycle (M7963; KEGG) (right), with pairwise comparisons (two-sided t-test) 
indicating significant differences between (a) UCell-based 6q-CT and 6q-Ref cells (n = 970, and 4,447 cells, 
respectively), (b) cluster 3 (c3) vs all other SCT-derived clusters and (c) cluster 7 (c7) vs all other SCT-derived 
clusters (n = 1,114, 1,026, 786, 607, 573, 529, 478, 304, 57, and 30 for cluster 0 to cluster 9 cells, respectively); 
0-9 in the x-axis denotes SCT-derived cluster 0 to cluster 9. In this analysis, both clusters 3 and 7 show 
significantly higher enrichment scores for the c-Myb transcription factor network compared to all other clusters. 
Boxplots were defined by minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 
1.5X IQR, center = median, and bounds of box = 25th and 75th percentile. 
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Figure S37. Unsupervised clustering and reference-based label transfer for T-ALL_P1 scRNA-seq 
experiments following drug treatment. While MYB itself is an attractive target in T-ALL_P1 (and 
leukemias in general61), c-Myb-targeting therapies have shown limited efficacy/specificity62,63. Instead, from 
the c-Myb targets inferred by scNOVA, we selected NOTCH1 as a suitable candidate because i) it is inferred 
by scNOVA to be highly upregulated in 6q-CT (Fig. 5b) and  ii) it has been shown to be readily  targetable 
by a variety of compounds and strategies64. One such inhibitor of NOTCH signaling is CB-103, a pan-
NOTCH small-molecule inhibitor which targets the Notch1 intracellular domain (N1-ICD) and is currently 
in phase 2 clinical trials65,66. We treated T-ALL_P1 cell cultures with the CB-103 pan-NOTCH small-
molecule inhibitor (targeting the Notch1 intracellular domain (N1-ICD)65,66) or a vehicle control for 8h and 
24h (Methods), and used scRNA-seq to analyze the differential drug response. (a) UMAP showing 
unsupervised clusters (k = 12) identified in scRNA-seq from integrating all four conditions (24h CB-103, 
24h Vehicle, 8h CB-103, 8h Vehicle) from the T-ALL_P1 drug treatment experiment. Note that cluster IDs 
depicted were newly generated in this analysis, and thus do not correspond to the cluster IDs generated from 
the data shown in Fig. 6a (see main text). (b) UMAP from (a) overlaid with sample identity of the 4 
integrated drug treatment samples. (c) Reference-based label transfer of unsupervised cluster labels identified 
in untreated data, from Fig. 6a. (d) UMAP from (a) overlaid with reference-based label transfer of cell labels 
(identified using UCell) from untreated data. Red dots correspond to cells assigned to bear the chromothripsis 
event; these cells are significantly over-represented in the original cluster 3 (here denoted un_3) and 7 (here 
denoted un_7) in panel (c) (FDR adjusted P=8.83e-10 and P=4.2e-6 for un_3 and un_7, respectively; Fisher's 
exact test). 
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Figure S38. Detailed viability analysis for T-ALL_P1 drug treatment scRNA-seq. Lineplot depicting changes 
in CF of 6q-CT subclone between 8h and 24h in CB-103 and vehicle treated cells, at various viability (i.e. percent 
MT) cutoffs.  
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Figure S39. Single-cell gene set enrichment analysis for MSigDB pathways across conditions for scRNA-
seq of T-ALL_P1 drug treatment data. Scaled enrichment score per treatment condition for (a) c-MYB Pathway 
(M195; PID) and (b) N1-ICD Pathway (M611; Reactome). Significant difference in scaled enrichment score 
between paired conditions is indicated on the plot (FDR-corrected two-sided Wilcoxon rank-sum test). (c-d) 
Scaled enrichment score from (a-b) split by 6q-status (left: 6q-Ref, right: 6q-CT). Significant difference in scaled 
enrichment score between paired conditions per 6q-status is indicated on the plot (FDR-corrected two-sided 
Wilcoxon rank-sum test; Boxplots were defined by minima = 25th percentile - 1.5X interquartile range (IQR), 
maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th percentile.). This 
analysis demonstrated specific depletion of the REACTOME N1-ICD gene set in CB-103-treated 6q-CT cells 
after 24h, consistent with specific subclone-targeting (P=0.0096; FDR-adjusted Wilcoxon-rank sum test). We did 
not detect any significant effects on N1-ICD after 8h – in line with a prior report showing that N1-ICD protein 
levels are significantly reduced after 24h of treatment with CB-103, whereas they are unaffected following shorter-
term treatment66.  
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Figure S40. Verification of subclonal chromothripsis in the secondary xenograft of T-ALL_P1. In this 
study, we generated a new PDX of the T-ALL_P1 patient sample for the purpose of a drug treatment 
experiment (Methods). Strand-seq of the new PDX of T-ALL_P1 confirmed the presence of a subclonal 
chromothripsis event in chromosome 6, which is the same event previously seen in the 1st PDX model1. This 
secondary PDX was used for the drug treatment experiment shown in Fig. 6e-g. 
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Figure S41. Comparison of the Strand-seq to conventional WGS to assess the proportion of the genome 
that can be accessible for allele specific analysis. (a) Proportion of Illumina WGS reads that can be haplotype-
phased, and thus are accessible for ‘classical’ allele-specific analyses, in the 1KG haplotype reference panel 52. 
We randomly picked five 1KG samples, sequenced by Illumina short read based WGS, from each continental 
‘super-population’ (AFR: African ancestry, EAS: East Asian ancestry, EUR: European ancestry, SAS: South 
Asian ancestry; n = 5 independent samples for each continental population; Boxplots were defined by minima = 
25th percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and 
bounds of box = 25th and 75th percentile.) and assigned reads to haplotypes using phased heterozygous sequence 
variants. The horizontal dashed line marks 15% of the haplotype-resolved reads, which is the approximate upper 
bound for the fraction of reads that can be assigned to a haplotype to pursue classical allele-specific analyses. This 
is in agreement with previous studies that have typically ascertained only up to 15% of the genome using short 
read data53. This fraction is lower for samples from EUR, SAS and EAS populations, as expected, due to the 
smaller number of heterozygous SNPs compared to AFR populations. (b) Proportion of 1KG mappable regions 
that are haplotype-resolved by Strand-seq, using 25 LCLs (including 24 from a human diversity SV panel31, as 
well as NA128782). Single-cell libraries from chromosomes showing either a WC (Watson/Crick) or a CW 
configuration were haplotype-resolved using StrandPhaseR49 and pooled into phased pseudo-bulk data sets (n = 
25 biologically independent LCL samples; Boxplots were defined by minima = 25th percentile - 1.5X interquartile 
range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th 
percentile.). Evaluations were restricted to the autosomes. (c) Proportion of 1KG mappable regions that are 
haplotype-resolved using Strand-seq, plotted by the fragment count achieved for each LCL sample. (d) Proportion 
of 1KG mappable regions haplotype-resolved by Strand-seq, plotted by the number of cells sequenced for each 
LCL sample. Regression line and 95% confidence intervals shown as a gray band in the plot (c-d). P-value was 
calculated based on the Spearman correlation test for (c-d). The data in (b), (c), and (d) suggest that Strand-seq 
has the ability to access up to the entire mappable genome, e.g., to allow haplotype-specific NO analyses from 
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telomere to telomere. The actual fraction of genomic nucleotide bases accessed depends on the number of cells 
sequenced by Strand-seq, as well as on the sequencing depth (fragment count). It also depends on the specifics of 
nucleosome positioning, as outlined in Fig. 1 in the main text, where the MNase digestion step used during Strand-
seq library preparation directs sequencing to DNA regions protected by nucleosomes.  
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Table S1. Characterization of nucleosomal fragments in Strand-seq libraries 
(Table accompanying the submission as a spreadsheet) 
 
Table S2. List of genes identified to be changing in activity when comparing major and minor 
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genes contained.) 
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identified using EnrichR analysis 
(Table accompanying the submission as spreadsheet) 
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Table S11. Haplotype-specific CREs detected from T-ALL_P1, RPE-1, and BM510 
(Table accompanying the submission as spreadsheet) 
 
Table S12. Comparison of scNOVA with other single-cell multi-omics methods 
(Table accompanying the submission as spreadsheet) 
 
Table S13. Benchmarking analysis of scNOVA's differential gene activity analysis for 
different cell fractions (CF). 
(Table accompanying the submission as spreadsheet) 
 
Table S14. List of oligonucleotide-conjugated antibodies used for CITE-seq. 
(Table accompanying the submission as spreadsheet) 
 
Table S15. List of over-represented pathways of cluster 0 marker genes identified in the 
CITE-seq of CLL_24. 
(Table accompanying the submission as spreadsheet) 
 
Table S16. List of over-represented pathways of differentially active TFs of terDel cells 
identified in the CITE-seq of CLL_24. 
(Table accompanying the submission as spreadsheet) 
 
Table S17. The primer sequences for quantitative real time PCR (qPCR). 
(Table accompanying the submission as spreadsheet) 
 
 
 
 
 
Supplementary Notes for Methodological Details 
 
1. Estimating genome-wide coverage 
NA12878 Strand-seq data aligned to the hg38 reference assembly was downloaded2 and sequence reads 
with low quality (MAPQ<10), supplementary reads, and duplicated reads removed. Coverage in each 
single cell was estimated as previously described1.  
 
2. Analysis and comparison of NO profiles derived from Strand-seq and MNase-seq  
Raw reads from a previously published NA12878 MNase-seq experiment (single end, scqual and 
scfasta) were obtained from ENCODE (ENCSR000CXP). These MNase-seq data were generated using 
a SOLiD sequencer, and the data are therefore in color-space DNA sequence read format. We aligned 
these reads to the hg38 reference genome with bowtie (v.1.1.2)67, using color-space read mapping 
enabled. After alignment, sequencing reads with poor quality (MAPQ<10), supplementary reads, and 
duplicated reads were removed.  
bowtie --threads 4 -C -Q Input.csqual -f -S genome_hg38_CS Input.csfasta > output.sam 
      To obtain nucleosome positions and read depth signals (shown in Fig. 1, for example), the 'dpos' 
function provided by the DANPOS package68 was applied to the aligned Strand-seq data, as well as the 
NA12878 MNase-seq data – to generate nucleosome midpoint positions genome-wide and wig files for 
browser track visualization with 10bp genomic bins. For the Strand-seq data, the paired-end=1 
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parameter was used. The Strand-seq track was haplotype-resolved into H1 and H2 tracks by pooling 
NO profiles generated from reads haplotype resolved using StrandPhaseR49. 
      To compare nucleosomal positions obtained from pooled Strand-seq NO profiles and MNase-seq, 
genomic positions of human reference enhancer elements based on DNase-seq (DNase I hypersensitive 
sites [DHS] sequencing) and ChromHMM state analysis were downloaded 8, lifted over to hg38, and 
extended by 2kb centered at the midpoint. Correlation between NO in the enhancer elements based on 
pooled Strand-seq and MNase-seq was determined using Spearman's rho (0.68). We note that similar 
correlation coefficients were recently reported in a comparison of MNase-seq vs. scMNase-seq15 – 
which corroborates the high quality of Strand-seq-derived NO profiles. Enhancer elements based on 
DHSs were defined using the Roadmap Epigenomics Consortium resource – comprising a union of 127 
epigenomes in total – using data from the following URL: 

 https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2_release/. 
 
3. Visualization of NO at gene bodies for genes stratified by their expression level 
To visualize NO at gene bodies, each gene locus was extended by 5kb upstream of TSS and 5kb 
downstream of TTS. Read coverage at single base resolution was calculated on these extended loci. As 
each gene has different length, the coverage was normalized by fitting the coverage vector to a spline 
and then sampling 101 points at equal intervals. Genes were grouped into five sets based on their RNA 
expression level (FPKM=0, FPKM 0~0.1, FPKM 0.1~1, FPKM 1~3, FPKM>3) and their average 
normalized coverage was plotted as line graphs (Fig. 1g). 
 
4. Analysis of previously reported scMNase-seq data  
Previously published single-cell MNase-seq (scMNase-seq) data from mouse cells (NIH3T3 cell line 
and murine naive T cells)15 were downloaded (GSE96688) in fastq format. These raw data were aligned 
to the mouse reference genome (mm10) using bwa69. Sequencing reads with low quality (MAPQ<10), 
supplementary reads, and duplicated reads were removed. The mono-nucleosomal fraction was 
extracted (140-180bp) using samtools70 and shell script with the following parameters.  
samtools view -h alignment.bam | \ 
  awk 'substr($0,1,1)=="@" || ($9>= 140 && $9<=180) || ($9<=-140 && $9>=-180)' | \ 
  samtools view -b > alignment_mono.bam 
After pre-processing, NO signals in the gene-bodies were analyzed using scNOVA (in a haplotype-
unaware manner) to pursue cell type classification (Extended Data Fig. 3) and to correlate NO with 
gene expression (Fig. S4). The method potentially has extended applicability to other single-cell data 
sets such as scMNase-seq data. In the future, one could consider also integrating ATAC-seq into the 
Strand-seq assay, potentially enabling enhanced analysis of chromatin accessibility; however, this 
would come at the price of a lower resolution of SV calls, given the less uniform coverage of 
transposase-mediated compared to MNase-mediated cuts71. 

 
5. Cell type classification 
To train the supervised cell type classifier based on gene body NO, we used 179 single-cell Strand-seq 
libraries generated from two diploid LCLs (50 cells from HG02018, 50 cells from NA19036), as well 
as from a replicate of the near-diploid RPE-1 cell line (79 cells; ‘replicate 1’ 26). 19,629 ENSEMBL 
genes with at least one read detected at the respective gene bodies were considered as initial input 
feature sets. An X matrix [179 cells-by-features] and a Y matrix [179 cells-by-two cell type] were 
prepared for PLS-DA, in order to find latent variables which can explain the variability in Y using linear 
combinations of features in the X matrix. Using three latent variables which explain 98.48% of the 
variance of the Y variable, variable importance of projection (VIP) for each feature was calculated. 
Highly informative features (VIP>90% of null distribution) were selected to build the final classifier. 
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Classification performance of the final classifier was evaluated by leave-one-out cross validation using 
the 179 cells, which yielded 100% accuracy of classification (are under the curve (AUC)=1) with six 
latent variables. Finally, we applied this model to an independent validation using a different LCL (46 
cells from HG01573) and the same RPE-1 epithelial cell line, albeit using a different replicate (77 cells; 
‘replicate 2’), verifying 100% classification accuracy with independently generated data (AUC=1). To 
generate the UMAP shown in Extended Data Fig. 3, 302 cells including those from the training set 
(179 cells) and the independent validation set (123 cells) were projected onto the final classification 
model. The resulting prediction score of six latent variables for each cell was used to perform UMAP116 
for dimensionality reduction. 
 
6. Haplotype-resolved SV discovery in single cells 
The scNOVA computational framework utilizes the previously described scTRIP method for 
haplotype-aware SV discovery of the full spectrum of somatic SVs ≥200kb in size in Strand-seq data, 
by executing the MosaiCatcher computational pipeline26. In brief, this pipeline integrates three 
‘channels’ – template strand, read depth and haplotype-phase – to discover deletions, duplications, 
balanced inversions, inverted duplications, balanced translocations, unbalanced translocations and 
complex SV including BFBs and chromothripsis events, and it maps these SVs to defined chromosomal 
homologs or derivative chromosomes (which may include extrachromosomal DNA). All single cells 
are subjected to SV discovery, regardless of chromosomal template strand configuration26 (such as 
Watson/Crick (WC), Crick/Crick (CC), or Watson/Watson (WW)), and joint modeling of the data is 
pursued which increases the detection sensitivity for SVs present in more than one single cell26. By 
default, scNOVA employs the ‘strict’ scTRIP SV caller, which has been optimized for detecting SVs 
with CF≥5% 26. SV discovery can be bypassed in the scNOVA framework, to focus downstream 
functional investigation to user-defined somatic SVs.  
 
7. CNN model to infer expressed genes based on NO 
Both phased and unphased single-cell reads were used to generate NO profiles. Feature sets were 
incorporated into one-dimensional CNNs. To define the feature sets for each gene, we considered 
genomic regions spanning the body of genes, which we – for the purpose of the CNN – expanded from 
5kb upstream of the TSS until 5kb downstream of the TTS, to include 5kb of flanking non-transcribed 
sequences on each flank which appeared informative as well (Fig. 1f). Each gene was divided into 150 
bins, whereby we considered genomic annotations of the start and end coordinates of genes provided 
via ENSEMBL’s GTF file, as follows: 50 bins for the region -5kb to the TSS, 50 bins for the gene body, 
and 50 bins for the region from the TTS to +5kb. Five layers of feature sets were derived for those 150 
bins: NO, single cell variance of NO, GC content, CpG content, and replication timing, which we 
included in the CNNs to assist bin stratification. To compute NO for Step 1, the read depth within each 
of the 150 bins was first normalized by bin length using smooth spline fitting in R, and then normalized 
by library size to obtain read per million (RPM) measurements, which subsequently were scaled by the 
locus copy number status. We also implemented the alternative option to pursue copy number 
normalization before normalization by library size, which we recommend to use when applying 
scNOVA with copy number unstable cancer types. To compute the single cell variance of NO, 
coefficients of variation (CV = standard deviation / mean) for the single-cell read depth were calculated 
for each bin. Systematic effects of mean on the CV were regressed out using smooth spline fitting. GC 
and CpG content were computed based on the nucleotide content of each bin, using the Homer annotate 
peak tool120. For replication timing, we used a pre-processed signal track (hg19) from the UCSC 
Genome Browser database121 (UW Repli-seq track), which we mapped to the hg38 genome using the 
UCSC LiftOver tool. scNOVA can also consider CNNs for inferring expression in a single cell, which 
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use four rather than five layers of feature sets (excluding single-cell variance of NO, which cannot be 
computed for a single cell). 
       To define ground-truth labels of not expressed genes (NEs) and expressed genes (EGs), we used 
bulk RNA-seq data from three RPE cell lines (RPE-1, BM510, and C7)26. Reads were aligned onto hg38 
with STAR aligner (v2.5.3)122, using gene annotations from ENSEMBL GTF (GRCh38.81). FPKM 
values were obtained with Alfred123; genes with FPKM>1 were labeled as EGs, and all remaining as 
NEs. We used the following numbers of EGs and NEs for training: RPE-1: 10413 EGs, 9131 NEs; 
BM510: 10339 EGs, 9205 NEs; C7: 10486 EGs, 9058 NEs. We used the hyperopt package124 to search 
for optimal hyperparameters for the CNNs (Fig. S5).  
      In leave-one-chromosome-out cross-validation119 experiments (where we trained a model leaving 
out a certain chromosome, and then applied the model to the chromosome previously left out), the CNNs 
outperformed random forest and SVM based models with the same set of features (Fig. S6). To assess 
model performance for different number of aggregated cells (clones of different sizes), we pooled 
Strand-seq data to generate randomized pseudo-bulk datasets for 80, 40, 20, 5, and 1 cell (s), 
respectively, and evaluated CNN performance using leave-one-chromosome out cross-validation. 
Trained models for each chromosome, and for different clone set sizes, are made available along with 
the code of scNOVA to facilitate application to new data sets.  
 
8. Identifying optimal parameters for inferring changes in gene activity using NO 
We parameterized, and examined the performance for, inferring differentially expressed genes (DEGs) 
using various RPE cell lines and LCLs (see main text). The initial parameterization of scNOVA was 
done using RPE-1 and HG01573 (LCL): To define the ground truth set of DEGs, we compared bulk-
cell RNA-seq data from RPE-1 cell line versus HG01573 using DESeq2. For scNOVA analysis, we 
treated the 156 single-cell libraries from RPE-1 cell line as a single “pseudo-clone”, and the 46 single-
cell libraries from HG01573 as a second “pseudo-clone”. The CNN was trained as described above, to 
define expressed genes (EGs) and non-expressed genes (NEs) for each pseudo-clone separately. We 
tested different thresholds for NEs to evaluate the ideal setup. The threshold≥0.95, for example, 
pertains to filtering out genes whose probability to be NE (based on the CNN) is equal to or larger than 
95%. After filtering out genes classified as NEs, generalized linear model analysis (as available in the 
DEseq2 package) was performed to compare both pseudo-clones, which yielded log2-fold changes and 
P-values. Based on this, we defined the 'differential score' as a sign of log2-fold changes multiplied by 
-log10(FDR-adjusted P). As a measure of prediction accuracy of the 'differential score' to infer DEGs, 
we calculated AUC values using different numbers of “ground truth events” (represented by the top 10 
up to top 100 differentially expressed genes identified through bulk RNA-seq; see e.g. Fig. 1, and Fig. 
S7). These examinations revealed the best performance when using the threshold≥0.90 to filter NEs, a 
setting that surpassed the use of generalized linear models alone for the inference of DEGs by NO 
analysis. scNOVA thus uses this threshold (≥0.90) by default. With this parameter setting, when 
controlling the FDR at 10%, scNOVA accurately captured 10/10 (100%) of the most overexpressed 
genes in RPE-1 (contributing a cell fraction (CF) of 77% in this simulation), compared to 7/10 for 
HG01573 (which contributed a CF of 23%). 
 
9. NO-based inference of effects of multiple SVs using scNOVA 
Given the strong influence of somatic SVs on the driver landscape of cancers, occasionally cells or 
clones will exhibit more than one SVs. In the presence of multiple SVs per sample or subclone, we 
recommend the following: (i) When using scNOVA to study local effects, we recommend analysis 
using the default strategy to scan +/-1 Mb adjacent to the respective SV breakpoints. (ii) For analyzing 
global effects with scNOVA, we recommend examination of all genes affected by the respective SVs 
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to identify candidate genes likely to be responsible for the observed gene or pathway alterations, and 
consideration of the respective SV class (e.g. inversion, deletion) that overlaps with (or is in very close 
proximity to) candidate genes.  
 
10. Molecular phenotype analysis in gene sets in cell lines and leukemia samples 
To identify a potential upstream regulator in the NA20509 and T-ALL_P1 subclones, we use the 
molecular phenotype analysis module of scNOVA with the first mode ('gene set over-representation 
analysis'; Methods). For NA20509, gene sets from the "ENCODE and ChEA consensus TFs from 
ChIP-X" category, provided by EnrichR27, were used. For T-ALL_P1, we used TF target gene sets 
curated from the literature (Methods, Table S7) after realising that key TFs located in the 
chromothriptic region are not currently annotated in EnrichR.  

To infer changes of pathway activity in the single-cells harboring 10q24.32 deletions in 
CLL_24, we used the molecular phenotype analysis module with the second mode ('joint modeling of 
differential NO across predefined gene sets'; Methods). Pathway level NO was compared between cells 
with and without 10q24.32 deletion based on linear mixed model fitting and likelihood ratio tests, using 
deletion status as a fixed effect and different plates (90hp1, 90hp2, 120hp1, and 120hp2) as a random 
effect (Fig. 4d). 
 
11. Additional details with respect to the haplotype-specific NO analysis. 
To infer haplotype-specific gene deregulation based on NO, we first filtered out genes inferred to be 
unexpressed (NE status probability≥0.9) using scNOVA’s CNN. For the remaining genes we computed 
gene body NO resolved by haplotype. For each gene, single-cell gene body NO from two haplotypes 
was compared using a wilcoxon ranksum test, controlled using an FDR of 10%. To allow inference of 
haplotype-specific NO at CREs, which we recommend to pursue locally (in proximity to SV 
breakpoints), scNOVA requires the location of annotated CREs as another input in bed format 
(REs_hg38.bed). CREs can be defined using DNase I hypersensitive sites (DHSs), or alternatively 
based on accessible chromatin segments obtained using ATAC-seq71. As a default functionality, 
scNOVA considers DHSs provided from 127 epigenomes8 from the Roadmap Epigenomics Consortium 
and ENCODE (covering a variety of human tissue types). scNOVA also provides the option to use 
CREs from user-defined DNA accessibility profiling experiments (provided in ‘bed’ format). After 
aggregating haplotype-phased single-cell NO tracks into pseudo-bulk tracks, NO is measured based on 
assessing the read depth at defined CREs, using haplotype-resolved reads. Haplotype-specific NO is 
measured using the Exact Test followed by controlling the False Discovery Rate13 (FDR), using EdgeR 
software11. CREs are assigned to their likely target genes using a nearest gene approach using the 
prioritisation rules described in10. 
 
12. Analysis of local effect of SVs in an AML patient  
We applied haplotype-specific NO analysis as described above and in the Methods section to identify 
local effects of the clonal balanced translocation identified in AML_1. This analysis identified 11 genes 
with significant haplotype-specific NO, among which only RUNX1T1 was identified as local SV effect, 
with the gene being well within the local search window (Fig. 3, Fig. S17). Following the identification 
of  RUNX1T1 through scNOVA, we inferred patterns of haplotype-specific NO at CREAs surrounding 
the RUNX1-RUNX1T1 locus. We defined CREs active in AML by collecting accessible chromatin 
regions previously profiled by subjecting AML and normal hematopoietic cells to ATAC-seq (obtained 
from the GEO database – consensus CREs were defined as the union of peaks detected from at least 
one ATAC-seq dataset; see Table S5;). Haplotype-resolved single-cell NO measurements within CREs 
were scaled to reads per million (RPM). NO was normalised by locus copy number, in a haplotype-
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aware manner. Average RPM values of single-cells at each CRE were transformed into log2 scale using 
a pseudocount of 1.  
     We additionally considered a sliding window (300kb in size, moving 10kb each) along the derivative 
chromosome, to infer chromosome-wide haplotype-specific NO predictive for chromatin accessibility. 
For each sliding window, NO values at CREs from two homologues were compared using likelihood 
ratio tests to obtain nominal P-values [P real]. To control the type I error (multiple testing), we 
performed a permutation test by shuffling haplotype labels in the single-cell RPM matrix 1000 times. 
For each permutation we performed likelihood ratio tests to compare NO between the two haplotypes. 
We then computed the number of incidences we obtained the same or lower P-value than [P real] from 
1000 randomizations, and divided this value by the permutation trials (N=1000) to estimate the 
permutation-adjusted P-value. 
 
13. Analysis of local effect of SVs in T-ALL_P1 
We revisited a 2.6 Mb 14q32 inversion identified in a T-ALL_P1, which we previously linked to outlier 
allele-specific expression of TCL1A1. In T-ALL_P1, scNOVA failed to detect TCL1A, one of the 
smallest genes in the genome (length: 4229 bp). We performed simulations, which revealed a minimum 
gene length requirement of 7219 bp to confidently detect haplotype-specific NO at gene bodies, a length 
requirement met by 80% of genes in the human genome (Extended Data Fig. 6c). However, this 
analysis revealed significant haplotype-specific NO at 18 genes, out of which BCL11B – a haplo-
insufficent tumor suppressor in T-ALL 72– was inferred as a local SV effect (with the gene residing 
<10kp away from the somatic inversion breakpoint). Notably, the inversion disrupts a “gene desert” 
region in 3′ of BCL11B previously described to comprise distal BCL11B enhancers47,73, which suggests 
a concrete molecular mechanism – i.e. depletion of enhancer signals through repositioning74. Consistent 
with this notion, scNOVA inferred that BCL11B NO is significantly increased near the inversion 
breakpoint, indicating that BCL11B expression is decreased adjacent to an SV (Extended Data Fig. 
6a) that depletes the region of known BCL11B enhancer elements. To validate scNOVA we performed 
bulk RNA-seq analysis, which confirmed allele-specific expression of BCL11B (FDR-adjusted P=2.0e-
170) and demonstrate decreased expression on the respective SV haplotype, thus verifying the 
predictions made using scNOVA (inlet plot of Extended Data Fig. 6a). These data show that scNOVA 
allows deconvoluting local effects of copy-neutral SVs genome-wide, except for the smallest genes in 
the genome. In the case of T-ALL_P1, it notably appears that a 2.6 Mb copy-neutral inversion resulted 
in two 'hits' at once - mediating dysregulation of TCL1A1 and silencing of BCL11B, a haploinsufficient 
tumor suppressor thought to collaborate with all major T-ALL oncogenic lesions75. 

Subsequent to these analyses, we performed a scan for haplotype-specific NO in annotated 
CREs near the SV breakpoint. To obtain the CRE positions in T-ALL_P1, ATAC-seq data of two 
biological replicates of T-ALL_P1 (EGAS00001003248)76 were analyzed by aligning reads to the hg38 
genome build using bwa69 – allowing to define CREs in this T-ALL patient-derived sample. ATAC-seq 
replicates were merged using SAMtools70, and open chromatin regions defined using the peak calling 
method provided through MACS77 with the following parameters: 
macs2 callpeak -t ATAC.bam -n output -g hs -q 0.05 --nomodel --shift -100 --extsize 200 -B --broad 

Applying the exact test comparing haplotype-resolved NO at CREs identified an intergenic 
CRE (chr14:99319760-99320760, distal enhancer) with significantly increased NO nearby to  inversion 
(FDR-adjusted P=0.05, Extended Data Fig. 6e), thus nominating this CRE as putatively contributing 
to the observed ASE of BCL11B in T-ALL_P1. 
 
14. Analysis of local effect of SVs in BM510 
We additionally applied the haplotype-specific NO analysis to identify local effect of a somatic 
balanced translocation detected in BM510 (present clonally based on 145 sequenced Strand-seq single 
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cell libraries). This analysis identified significant haplotype-specific NO at 69 genes. Among those, 
NTRK3 (chr15:87,859,751-88,256,768), an oncogene78 residing only 13.5 kbp away from the 
chromosome 15 breakpoint of its reciprocal t(15;17) translocation was nominated as the only SV local 
effect (Extended Data Fig. 5a-b). This haplotype-specific NO pattern is specific to BM510, with 
NTRK3 showing no haplotype-specific NO signal in RPE-1, a closely related RPE cell line from the 
same donor lacking this translocation. Bulk RNA-seq data from BM510 are consistent with this local 
effect (ASE of NTRK3 detected in BM510; FDR-adjusted P=2.76e-39). In line with a somatic effect, 
no ASE of NTRK3 was seen for RPE-1 (FDR-adjusted P=1; see inlet plot of Extended Data Fig. 5a-
b). No other gene near the SV breakpoint showed ASE based on RNA-seq – indicating that scNOVA 
accurately identifies haplotype-specific NO effects. We next performed an analysis of annotated CREs 
near NTRK3 for haplotype-specific NO. We obtained CRE positions from the publicly available ATAC-
seq dataset generated for the RPE-1 cell line79. We identified two CREs (chr15:87527100-87528100, 
distal enhancer; chr15:88246388-88247388, intronic) with a significant decrease in NO proximal to the 
translocation breakpoint (FDR-adjusted P=0.029; P=0.076, respectively; 10% FDR threshold; 
Extended Data Fig. 5c-d), which nominates these elements as candidate CREs putatively mediating or 
contributing to ASE of NTRK3.  
 
15. Bulk-cell RNA-seq data processing and allele-specific expression analysis in LCLs 
To define ground-truth differentially expressed genes between LCL and RPE-1 cell lines for 
parameterization of scNOVA, bulk-cell RNA-seq data was aligned to the human reference genome 
(GRCh38) with the STAR aligner (v2.5.3)80, using the GTF file from ENSEMBL (GRCh38.81) with 
default parameters. Read counts for each gene were computed using HTSeq (v0.7.2)81 by specifying the 
'-s no -t exon' option. Gene counts were normalized using the median-of-ratios method from DESeq223, 
and differentially expressed genes between conditions identified using the Wald test. To pursue allele-
specific expression analysis, bulk-cell RNA-seq data were realigned to GRCh38 using GSNAP82, using 
the variant-aware alignment mode to reduce allelic mapping biases. We resolved bulk-RNA-seq data 
by chromosome-length haplotype, using strand state and single nucleotide polymorphisms (SNPs) 
identified by Strand-seq (described in more detail below). ASEReadCounter48 was used to compute 
allelic read counts (see also sections below). 
 
NA12878. We pursued allele-specific expression analysis in NA12878 using bulk-cell RNA-seq data 
from ENCODE4. Allelic counts were assigned to either H1 (haplotype 1) or H2 (haplotype 2) based on 
the haplotype phasing obtained by StrandPhaseR49. SNP level allelic reads count were converted into 
gene level counts by summing up reads for each gene. Gene level counts of H1 and H2 were compared 
using the likelihood ratio test provided by EdgeR11, followed by FDR adjustment. Genes with 
significant allele-specific expression (ASE) were identified using a FDR 10% threshold. Among ASE 
genes, monoallelic expressed genes were defined using definitions from a prior study, with genes 
showing a read-count proportion of the major allele >90% defined as monoallelic83. 
 
16. Bulk RNA-seq analysis in thirteen T-ALL patient-derived samples 
Cells were collected from 13 pediatric T-ALL patients at the time of relapse to establish patient-derived-
xenograft models as previously described1,84. Total RNA was extracted using TRIzol (Invitrogen Life 
Technologies). The RNA was then treated with TURBO DNase (Thermo Fisher Scientific) and purified 
using RNA Clean&Concentrator-5 (Zymo Research). We required a minimal RNA integrity number of 
7, as measured using a Bioanalyzer (Agilent) with the Agilent RNA 6000 Nano kit. Cytoplasmic 
ribosomal RNA was depleted by Ribo-Zero rRNA Removal kit (Illumina), and RNA-seq libraries 
prepared from 1 µg of RNA using TruSeq RNA Library Prep (Illumina). These samples were sequenced 
on a Illumina HiSeq 2000 lane as 80 bp paired-end reads. 
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In order to confirm the subclonal perturbation of c-Myb in T-ALL_P1 predicted by scNOVA's 
infer altered gene activity module, RNA read counts were normalized using the median-of-ratios 
method from the DESeq2 package. Normalized read counts for each gene were standardized to obtain 
a Z score. After filtering out lowly variable genes (coefficient of variation (CV) of normalized read 
count <  25%), the average Z score of c-Myb target genes was calculated for each sample and plotted 
in Fig. 5d (we thereby considered the same c-Myb target genes as for the over-representation test in 
Fig. 5c, Table S7).  

To verify allelic expression of MYB in the chromothripsis affected region in T-ALL_P1, we 
realigned reads to the human reference genome (GRCh38) using GSNAP as described above. Then we 
obtained haplotype-phased heterozygous SNP sites, based on the Strand-seq read data, using 
StrandPhaseR2. Using these phased SNP sites (input.vcf), haplotype-resolved allele-specific RNA read 
counts were obtained using ASEReadCounter48, with the following parameters: 
GenomeAnalysisTK.jar –R <reference.fasta> -T ASEReadCounter -o <output.csv> -I 
<input.bam> -sites <input.vcf> -U ALLOW_N_CIGAR_READS --minMappingQuality 10 --
minBaseQuality 2 -drf DuplicateRead  
    SNP level allelic reads count were summarized into gene level counts by summing up reads for each 
gene. Gene level counts of H1 and H2 were compared using the likelihood ratio test provided by 
EdgeR11, followed by FDR adjustment (Fig. S30). 
 
17. Bulk RNA-seq analysis in 42 CLLs 
In order to further corroborate the subclonal gene activity changes inferred in CLL_24, we performed 
bulk RNA-seq in a cohort of 42 CLL samples, which included CLL_24. Leukemia cells were isolated 
from blood using Ficoll density gradient centrifugation. Cells were viably frozen and kept on liquid 
nitrogen until use. Cells were thawed, allowed to recover in RPMI medium (Thermo Fisher Scientific) 
containing 10 % human serum (Sigma Aldrich) for 3h and filtered through a 40 µm cell strainer. Tumor 
cells were collected by Magnetic-activated cell sorting (MACS) using CD19 beads (Miltenyi Biotec). 
RNA was isolated using QIAzol Lysis Reagent (Qiagen), QIAshredder (Qiagen) and the RNeasy Mini 
Kit (Qiagen). Stranded mRNA sequencing, using a TruSeq Stranded Total RNA Library Preparation 
Kit was performed on a Illumina NextSeq 500. These RNA-seq data had originally been aligned to 
GRCh37.75/hg19 using STAR (v2.6.0c)80 and counted with htseq-count81. For the purpose of this study, 
we made use of the resulting gene-level count table of protein-coding genes of interest (i.e., such 
mapping to the relevant pathways uncovered with scNOVA). 59 CLLs were initially available to us, 
from which we removed N=8 samples exhibiting chromosome 17q13 deletions targeting TP53, since 
CLLs with TP53 aberrations form a clinically distinct subset of CLLs85, and since cross talk between 
the p53 and Wnt signaling has been reported, with p53 loss promoting Wnt signaling86,87. We 
additionally removed N=9 samples exhibiting trisomy 12, as this group of samples is known to express 
a unique set of pathways when compared to other CLL samples88. RNA read counts of the remaining 
42 CLLs were normalized, Z-scores were derived, and lowly variable genes were filtered out as 
described above. To measure Wnt signaling activity from these transcriptomic data, we obtained 49 
known target genes of TFs involved in Wnt canonical signaling (CTNNB1, LEF1, TCF7, and TCF7L2) 
from the TRRUST database89, here called 'Wnt signaling target genes (Table S7)'. The mean Z score 
of 49 genes was computed and visualized. CLL_24 showed the most pronounced bulk RNA-seq 
overexpression of Wnt signalling pathway members (ranking first amongst all of the 42 considered CLL 
samples of this cohort; Fig. S24).  
         We also analysed bulk RNA-seq data of CLL patients from the ICGC resource33, by considering 
395 CLL samples with available SCNA data. To be consistent with the analysis of CLL primary samples 
from the Heidelberg-based cohort, we removed samples exhibiting trisomy 12 or 17q13 deletions 
affecting TP53, which yielded 306 donors in total. We observed somatic 10q24.32 losses (deletion) in 
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six out of 306 donors (Fig. 4b). Among those 306 donors, bulk RNA-seq data was available from 178 
donors including 4 donors with 10q24.32 losses overlapping the minimal deleted regions defined in 
CLL_24. RNA read count of the 178 CLL samples were normalized, Z scores were derived, and lowly 
variable genes filtered out as described above. Mean Z score of Wnt signaling target genes of the donors 
with and without 10q24.32 deletions were compared using the generalized linear model (GLM) 
likelihood ratio test, controlling for gender and age (Fig. 4e). 
 
18. Haplotype-resolved bulk RNA-seq analysis in LCLs from HGSVC consortium 
To verify the subclonal activation of c-Myc/Max in NA20509, we analyzed bulk RNA-seq data in the 
whole panel of LCLs recently used by the Human Genome Structural Variation Consortium (HGSVC) 
to construct an SV germline reference resource31. RNA read count of the 33 LCLs were normalized, Z 
scores were derived, and lowly variable genes were filtered out as described in section 10. The mean Z 
score of c-Myc/Max target genes was calculated and visualized using a bargraph (Fig. 2d). c-Myc/Max 
heterodimer target genes were downloaded from the Molecular signatures database (Msigdb, Table 
S7)90. 
    To examine the allelic expression of genes residing in regions of complex chromosomal 
rearrangement in NA20509, we firstly detected SNP sites from the pooled NA20509 Strand-seq 
libraries using freebayes91. Using these SNP sites (input.vcf), allele specific read counts were obtained 
using ASEReadCounter48 with the following parameters: 
GenomeAnalysisTK.jar –R <reference.fasta> -T ASEReadCounter -o <output.csv> -I 
<input.bam> -sites <input.vcf> -U ALLOW_N_CIGAR_READS --minMappingQuality 10 --
minBaseQuality 2 -drf DuplicateRead  
To haplotype-resolve allelic counts to either the unaffected homolog (haplotype 1) or the homolog 
bearing the BFB (haplotype 2, i.e. the derivative chromosome), we used the strand states of Strand-seq 
reads (Watson (W) or Crick (C)) along chromosome 17. In single cells in which the two homologs of 
chromosome 17 have a WW majority configuration1 (WW strand state seen for most of chromosome 
17), the BFB-mediated inverted duplication1 will always exhibit DNA reads on the C strand belonging 
to haplotype 2 (the same applies to single cells with a CC majority configuration on chromosome 17, 
for which W reads belonging to haplotype 2 can be extracted from the inverted duplication). Among 
the 40 single-cells containing the BFB event, we could collect 14 cells with either a WW or CC majority 
configuration, allowing extraction of reads from the derivative chromosome haplotype; similarly, we 
collected 8 cells with either a WW or CC majority configuration for chromosome 5, which enabled 
extraction of reads from the terminally duplicated haplotype. These operations unambiguously phase-
resolved 138 genes located on the derivative chromosome, with at least 2 phased heterozygous SNPs 
seen for MAPK9, and PDGFRB. RNA phased-resolved allelic read counts for these SNPs were 
compared using the likelihood ratio test followed by FDR-adjustment (S14i).   
 
19. Clinical diagnostic information for CLL_24 
CLL_24 was obtained from the peripheral blood mononuclear cells of a previously untreated female 
CLL patient with age 61 at sampling. According to routine diagnostic methods, the patient sample 
showed no IGHV hypermutation, had no TP53 mutation, and had no alterations at 6q21, 8q24, 11q22.3, 
12q13, 13q14 and 17p13. 
 
20. Clinical diagnostic information for AML_1 
This sample was obtained as a diagnostic bone marrow from the first aspiration of an AML with a  
t(8;21) translocation (known to result in RUNX1:RUNX1T1/ETO:AML1 gene fusion), arising after 
cytostatic therapy for testicular cancer in a young man. 95% of cells were identified as blasts with 
monocyte differentiation by microscopy. In the initial diagnostic flow cytometry characterization, 65% 
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of cells showed monocyte differentiation markers and were positive for CD33, CD13, CD38, HLA-DR, 
CD11c, and CD15. A subpopulation of these blasts were CD34+/CD117+ and also partly positive for 
CD19 (common in t(8:21) AML). This sample also carried a FLT3-TKD mutation (p.Asp835Tyr, 
CF=44%). 
 
21. 10q deletion discovery in CLL samples from PCAWG 
To assess the frequency of deletions affecting 10q24.32 in CLL we analyzed 94 CLL samples included 
in the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) resource 34. We first generated 
GC and mappability corrected fragment counts for the paired-end WGS of each sample using Delly30. 
These normalized fragment counts were then binned in 10kbp windows and screened for chr10q 
deletions, using Delly230. As shown in Fig. S23, at least 4 out of the 94 CLL samples (4.3%) harbor 
somatic deletions intersecting with the 10q24.32 minimal region. 
 
22. Strand-seq in a panel of lymphoblastoid cell lines (LCLs)  
24 EBV-transformed LCLs (Coriell Institute) were cultured in BrdU (100uM concentration; Sigma) for 
18 or 24 hours, and single isolated nuclei (0.1% NP-40 lysis buffer92 sorted into 96-well plates using 
the BD FACSMelody cell sorter (NA12329, NA18534, NA18939, NA19650, NA19983, NA20509, 
NA20847, HG00096, HG00171, HG00864, HG01114, HG01505, HG01596, HG02011, HG02492, 
HG02587, HG02818, HG03009, HG03065, HG03125, HG03371, HG03486, HG03683, HG03732). In 
each sorted plate 94 single cells, one 100-cell positive control and one 0-cell negative control were 
deposited. Strand-seq libraries were prepared, sequenced and selected using the same protocol as for 
the primary leukemia samples. These LCLs were previously released31 and used to construct a 
haplotype-resolved germline SV resource in a human population diversity panel by the Human Genome 
Structural Variation Consortium31 A mean of 54 high-quality single cells (41 to 71 cells) were 
sequenced to a median depth of 338,271 mapped nonduplicate fragments per cell. We used a threshold 
of CF≥10% for discovering unwanted somatic SVs in these LCLs, using the scTRIP method1. 
Translocation discovery was pursued using the 'majority mode’1. 
 
23. WGS-based subclonal SV analysis in NA20509  
The availability of NA20509 WGS data from the New York Genome Center93 allowed us to attempt 
verification of the presence of somatic SVs. We first aligned the data to GRCh37 using bwa69, called 
SNPs and InDels using freebayes91 and haplotype-phased variants using eagle294 using the 1KG phase 
3 reference panel52. Phased haplotype blocks were used to identify heterozygous sites deviating from 
the expected 1:1 ratio, in conjunction with GC and mappability corrected read-depth plots (Fig. S13) 
generated using Delly230. Phased heterozygous sites and read-depth estimated copy numbers deviated 
from the expected pattern for copy number 2, and thus independently confirmed the presence of 
subclonal SVs in NA20509, including the terminal gain on chromosome 5, and the terminal loss of the 
chromosome 17 p-arm with an adjacent gain event (Fig. S13). SV analysis using Delly230 also verified 
the presence of a subclonal translocation from chromosome 17 (position 21,479,415) to chromosome 5 
(position 132,093,890). Delly2 further revealed a tail-to-tail inversion-type rearrangement at 
chromosome 5 with breakpoint positions 132,029,510 and 132,053,373, and a tandem duplication-type 
rearrangement spanning the terminal gain on chromosome 5 with breakpoint positions 133,831,567 and 
178,087,753 (GRCh37 coordinates).  
 
24. Manual curation of somatic SVs in LCLs to achieve a high-quality callset 
We used scTRIP (methods from the MosaiCatcher pipeline)1 to discover somatic SVs in LCLs. The 
extent and diversity of deletions at 22q11.2 intersecting the immunoglobulin lambda locus (IGL) 
motivated additional curation of these somatic SV events. 17/25 LCLs harbored deletions at 22q11.2. 
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Making use of the somatic SV calls and single-cell segmentation results from the MosaiCatcher 
pipeline1, we defined putatively deleted segments, which we subjected to manual inspection in single 
cells followed by reanalysis using the ArbiGent SV genotyping tool31. ArbiGent performs analysis of 
Strand-seq data cell-by-cell, to allow precise haplotype-resolved genotype assignment into homozygous 
and heterozygous deletion events, at defined genomic intervals. These genotype assignments were 
accepted if the log10 likelihood ratio between SV and reference state was greater than 0.5, and as such 
– in a few cases – superseded variant calls created with the MosaiCatcher pipeline. 
 
Additional curation and analysis of NA12878 somatic SVs. NA12878 is perhaps the single most 
sequenced human cell line presently existing4,52,95. We thus regarded the discovery of previously 
unknown somatic SVs in this cell line as a surprise, which motivated careful curation and manual 
inspection. Altogether, we analysed 75 Strand-seq libraries from NA12878, including cells prepared as 
a single batch2, to allow for robust single-cell somatic SV discovery. 59 single-cell genomes harbored 
a somatic 22q11.2 deletion (chr22:22200000-22900000) on haplotype 2 (H2) intersecting the IGL locus. 
Application of scNOVA revealed differential gene activity patterns between these IGL locus deletion 
bearing cells (denoted clone 2), and cells unaffected by 22q11.2 SVs (clone 1) – revealing 8 significant 
genes (10% FDR). Out of these 8 genes, 5 genes were located in a short chromosome 19 interval and 
inferred to be less occupied by nucleosomes due to the decrease of read depth in clone 1. Prompted by 
this observation, we performed manual inspection of this region, which revealed that clone 1 harbors a 
~500kb hemizygous deletion on chromosome 19, which confidently maps to haplotype 2 (H2), but 
which was missed in the initial single-cell population segmentation pursued using the MosaiCatcher 
pipeline1. Separate segmentation of individual cells using the MosaiCatcher pipeline fine-mapped this 
candidate deletion to a 500kb interval (chr19:36500000-37000000), thus corroborating its presence by 
single-cell SV discovery. We further subjected this candidate interval to cell-by-cell genotype analysis 
using ArbiGent31, which in line with the MosaiCatcher pipeline genotyped a high-confidence somatic 
deletion at chr19:36500000-37000000. ArbiGent genotype calls were accepted in cells where the log10-
likelihood-ratio between reference and deleted states was larger than 0.5, allowing confident genotyping 
in 65/75 (87%) of cells. ArbiGent revealed strict mutually exclusivity between this interstitial deletion 
on chromosome 19, and 22q11.2 somatic deletions (Table S8) – mirroring the pattern we had observed 
for NA20509. As described in the section below, this chromosome 19 deletion is also verified by scRNA-
seq data from different NA12878 cell stocks. Finally, we further used Arbigent to analyse 20 additional 
NA12878 Strand-seq libraries, prepared as a separate biological replicate2, which once again showed 
the presence of subclones carrying mutually exclusive interstitial deletions on chromosome 19 and at 
22q11.2. These results hence show the presence of different somatic subclones in the key NA12878 
human reference model cell line.  
 
25. scRNA-seq data analysis for inferring somatic copy number alterations (SCNAs)   
Discovery mode 
Three broadly used single-cell transcriptome based SCNA analysis tools InferCNV50, 
HoneyBADGER96, and CONICSmat24 were used for SCNA discovery. As inferCNV and 
HoneyBADGER require matched normal cell annotations, we first defined normal cell population if it's 
available within the same sample. If not, we downloaded cell-type matched normal cell profiles from 
the GEO database as reported in Table S4. 

To run InferCNV, we provided single-cell count matrices with analysis_mode = 'subclusters', 
cutoff=0.1 for 10X, cutoff=1 for SMART-seq and Fluidigm as recommended in the manual. For 
HoneyBADGER, CPM normalized single-cell count matrices were converted into log(CPM+1), and 
put into HoneyBADGER for the CNV discovery with default parameters. CONICSmat is originally 
developed for 'targeted SCNA recalling' mode for estimating copy number of candidate SCNA regions 
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obtained from DNA-seq data, however it also provides chromosome-arm level SCNA discovery in case 
no matched DNA-seq data is available. For this, above mentioned log2(CPM/10+1) – the standard input 
values for CONICSmat were put into CONICSmat for the chromosome-arm level discovery. 
 
Targeted SCNA recalling mode 
Single-cell count matrices were normalized to obtain count per million (CPM) values. These values 
were converted into log2(CPM/10+1) – the standard input value for CONICSmat, a tool for inferring 
the copy number state of chosen candidate genomic regions using scRNA-seq data24.  
For each of the candidate SV regions, we applied CONICSmat, with parameters set to allow considering 
regions with at least 10 expressed genes. Firstly to verify the presence of SCNAs in regions of interest, 
CONICSmat generates distributions of average expression levels across single-cells, and then fits to the 
1-component and 2-component mixture models24. It further compares the likelihood ratios of being 1-
component (unimodal, absence of subconal SCNAs) and 2-component (bimodal, presence of subclonal 
SCNAs) to determine the most likely state in those regions based on the Bayesian information criterion 
(BIC). Candidate SCNAs likely to be bimodal using a 1% FDR criterion were considered further for 
downstream analysis. For those candidate SCNAs, the posterior probability of each single-cell to be 
belonging to the SV component, and the ‘Reference’ (Ref) component was computed. Single-cells with 
a posterior probability above the cutoff for one of these two components were used in downstream 
analyses.  
 
26. Pseudotime/cell-type analysis of scRNA-seq data 
Pseudotime analysis was carried out using the R package Slingshot97, implementing UMAP and cell 
clusters identified using Seurat (see Methods for further details.). Cell type analysis was performed 
using UCell (as per main methods), using the T cell differentiation stage-specific gene sets outlined in 
51.   
 
27. Generation of composite track for AML_1 translocation 
To allow fine-resolution analysis of the AML_1 translocation breakpoint, composite tracks of Strand-
seq data were generated separately for the chromosome 8 and chromosome 21 breakpoint regions, and 
the resulting tracks produced using BreakpointR44. For the chromosome 8 track, 11 cells in the WC 
orientation for the majority of the chromosome and the translocated segment in the WW or CC 
orientation were used to generate the composite tracks. Cells with the translocated segment in the WW 
orientation were merged into a single bam file, and the merged file converted to bed format using 
bedtools bamtobed. Directionality of the reads was then manually inverted (i.e. all ‘-’ reads changed to 
‘+’, and vice versa), and the bed file converted back to a bam file. Finally, this bam file was merged 
with the cells harboring the translocation in the CC orientation; giving a pseudo-bulk bam file of cells 
with the same directionality. Bedgraphs of directional reads, breakpoints and confidence intervals were 
then generated using the BreakpointR package, and the tracks were visualized in the UCSC genome 
browser. The chromosome 21 composite track was generated in a similar manner, with the following 
differences: 11 cells in which the majority of the chromosome was in the WW or CC orientation were 
used. Cells with the majority of the chromosome in the WW orientation were inverted for read-
directionality as above, and the same workflow used to produce directional bedgraphs and breakpoints 
for visualization in the UCSC genome browser. 
 
28. Overlap analysis of SV calls and haplotype-specific NO in NA12878 
When mapping haplotype-specific NO at CREs in NA12878, in order to reduce false positive hits 
resulting from small (<200kb) duplications and deletions, we used the high-resolution SV call set 
recently generated by long-read sequencing through the Human Genome Structural Variation 
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Consortium31 (HGSVC), based on 64 unrelated haplotype-resolved genome assemblies. These data 
contain 12,703 heterozygous SVs in NA12878, including 5,315 deletions and 7,388 insertions. When 
we compared the NA12878 call set with haplotype-specific NO calls generated by scNOVA, the vast 
majority (718 among 727 haplotype-specific NO calls [98.8%]) did not overlap any SVs. 9 haplotype-
specific NO calls were excluded, as they overlap SVs and thus may potentially confounded by copy 
number variants. Following the exclusion of these haplotype-specific NO calls, we calculated the 
enrichment of chromosome X CREs (P=0.015, hypergeometric test), and also the enrichment of genes 
showing allele-specific expression (ASE) in Fig. S2b (P=0.0018, hypergeometric test).  
 
29. Comprehensive summary of the CITE-seq analysis 
After removing low quality single cells based on the percentage of mitochondrial reads (<15%), the 
total read count (<15000), and number of unique genes detected (>200), we obtained 4,459 high quality 
single-cells. We further subsetted the data to ensure we profiled exclusively B-cells (with CLL arising 
from the B-cell lineage). After unsupervised clustering of the data using the Seurat standard workflow 
(resolution = 0.5, to minimize the granularity of the clustering) (Fig S25a), we used the human cell atlas 
(HCA) bone marrow dataset54 to carry out a reference-based cell type annotation of the data (Fig S25b). 
These annotations indicated that clusters 0-3 likely correspond to B-cells. Further supporting these cell-
type identities, we observed that these clusters expressed high levels of CD19 RNA and protein (Fig 
S25c, S25d), a canonical B-cell marker in both healthy and leukemic cells98. We next examined the 
expression of 6 genes highly associated with leukemic B-cells55, which showed high average expression 
in clusters 0-3. Therefore, we subsetted to just cells from clusters 0-3, and reran data scaling, variable 
feature detection and unsupervised clustering using Seurat’s scTransform function (resolution = 0.8, 
percentage of mitochondrial reads was regressed out), which resulted in 3,919 high quality B-cells used 
for further downstream analysis.  

Using these cells, we initially attempted to identify SCNAs using InferCNV50, 
HoneyBADGER96, CONICSmat24. From this analysis we were unable to discover any somatic SV 
subclones within the CITE-seq data (Table S4, Extended Data Fig. 7a), in spite of the fact that the SV 
region comprises 152 expressed genes for the 10q-terDel (SCb) and 24 expressed genes in the minimally 
deleted region (shared by SCa, SCb, SCc and SIa-d). However, when we applied the targeted SCNA 
recalling mode of CONICSmat leveraging the 10q-terDel breakpoint identified through Strand-seq, we 
could assign 82 single-cells confidently to the SCb (10q-terDel) subclone and 2,381 single-cells to 
confident normal cells showing absence of the 10q-terDel event (Extended Data Fig. 7b) – resulting 
in a similar estimated CF of the 10q-terDel subclone to that identified in the Strand-seq data (2.14% 
and 3.49%, respectively). None of the other SVs discovered with Strand-seq could be confidently called 
using the targeted SCNA recalling mode of CONICSmat, presumably due to the smaller size and lower 
number of expressed genes affected by the respective deletions. Overall, these data suggest limitations 
of scRNA-seq based SCNA calling outside of highly copy number unstable cancer types34. 
 We coupled this karyotypic heterogeneity with molecular phenotype heterogeneity by 
performing unsupervised clustering of the scRNA-seq data based on DoRothEA regulons56 and 
VIPER99 TF activity scores, which identified 8 clusters of cells exhibiting differential TF activity (Fig. 
S26a). Single-cells which were inferred to contain the 10q-terDel by CONICSmat showed significant 
enrichment in cluster 0 (Fisher's exact test, adjusted P = 1.06e-07), while confident 10q-Ref cells 
showed significant enrichment in clusters 4, 5, and 6 (Fisher's exact test, adjusted P = 0.044, 0.006, and 
0.006 respectively) (Fig. S26b, S26d). Next we annotated each single cell with an UCell score100, which 
measures the gene set-level activity of the 10q-terDel-associated gene signature inferred by scNOVA. 
In agreement with the CONICSmat-based targeted SCNA recalling, we found cluster 0 to be 
significantly enriched for cells with a high UCell score (Fisher's exact test, adjusted P = 1.74e-26; cutoff 
for high score = > median UCell score + standard deviation) followed by a somewhat less pronounced 
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trend seen for cluster 3 (adjusted P = 6.56e-3) (Fig. S26c, S26d). These orthogonal analyses therefore 
suggested that the 10q-terDel clone is highly enriched in scRNA-seq cluster 0 (Fig. S26d). Notably, 
cluster 0 showed 641 up-regulated genes and 69 down-regulated genes compared to clusters 4-6, and 
those 641 up-regulated genes were over-represented by Wnt signaling pathway genes (Fisher's exact 
test, adjusted P = 0.028, Fig. S26e), which supports the association between the terDel seen in SCb and 
Wnt aberration.  

Having confidently identified the SCb (10q-terDel) subclone in the CITE-seq data, we 
compared the DoRothEA/VIPER-inferred TF activity of '10q-terDel' (N=82 cells) to the '10q-Ref' 
(N=2381 cells) cells to identify TFs with altered activity in the 10q-terDel clone (Fig. 4h). The 43 
differential TFs from DoRothEA analysis (p.adjust<0.1; likelihood ratio test) contain 2 diffNO 
signature genes from scNOVA analysis of the SCb (10q-terDel) clone (TCF3, ATF7, both are predicted 
to be more active in the SCb (10q-terDel) clone from scNOVA) and 11 TFs which match with TF-target 
enrichment analysis of SCb-(10q-terDel-) activated gene signature (Fig. S21). Note that NFKB2 - 
previously suggested as a potential target gene of recurrent somatic 10q24.32 deletions39 was tested in 
this DoRothEA/VIPER analysis, but it did not show significant difference between 10q-terDel and 10q-
Ref cells (FDR 10%). 

Overall, the 43 differential TFs identified through the DoRothEA analysis showed enrichment 
for Wnt signaling, BCR signaling, and the PD-1 checkpoint pathway in cancer (adjusted P = 0.011, 
0.0014, and 0.042 respectively; ConsensusPathDB57). NFATC1 is one of the differentially active TF in 
terDel clone supported by both scNOVA and CITE-seq, and involved in Wnt signaling101 and BCR 
signaling102, and positively regulates PD-1 expression103. Interestingly, the terDel bearing cells showed 
significant over-expression of PD-1 at the protein level measured by CITE-seq (Fig. 4i), even relative 
to cells from within the same cluster (cluster 0). Elevated PD-1/PD-L1 is known to confer increased 
immune resistance to CLL cells104. These data collectively suggest that the terDel subclone activates 
leukemia-related signaling pathways including Wnt signaling, results in NFATC1 activation and PD-1 
overexpression. 
 
30. Minimum gene length required to detect haplotype-specific NO at gene body  
scNOVA identifies haplotype-specific NO based on the FDR-corrected Wilcoxon ranksum test of 
haplotype-resolved single-cell NO at gene body. Gene lengths in the GRCh38 genome range from 74bp 
to 2,304,996bp, which motivated us to evaluate the minimum gene length required to allow for reliable 
detection of haplotype-specific NO in gene bodies. To estimate this, we simulated haplotype-specific 
NO for each gene by assigning all reads to one haplotype, and assigning ‘0 coverage’ to the other 
haplotype. Then we used the Wilcoxon ranksum test implemented in the scNOVA pipeline, to compute 
FDR-corrected p-values estimating haplotype-specific NO for each simulated genes. We stratified the 
genes into 20 bins according to their length. For each bin, we calculated the proportion of genes we 
recover as a significant hit (FDR 10%) in the above simulation. In the case of the lowest size bin (0~5 
percentile, which corresponds to 74 bp to 1678 bp), we recovered none of the genes due to lack of read 
counts. In the case of the 20th bin with the highest gene length (95~100 percentile, which corresponds 
to 256,255 bp to 1,304,996 bp), we recovered 94.75 % of genes as a significant hit. 

When we performed this analysis across all bins (Extended Data Fig. 6c) from the 1st lowest 
size bin (0~5 percentile) to the 20th bin (95~100 percentile), the 5th bin (20-25 percentile, corresponds 
to 7219 bp to 9528 bp) began to recover over 50% of simulated genes as significant hit (above the red 
line). Based on this we concluded that > 7219 bp (20 percentile of gene length) is required, to recover 
more than half of simulated genes as a significant hit and 80% of genes fulfill this criterion. 
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Supplementary Discussion 
 
I. Scope of scNOVA compared to single-cell multiomics methods focusing on SCNAs 
To evaluate the scope of scNOVA in relation to prior single-cell multiomics method focusing on large-
scale (>10Mb) SCNAs, we analysed the abundance of different classes of somatic driver mutation, 
differentiated by variant class and size, using the PCAWG resource of 2,658 whole-cancer genomes34. 
We downloaded the PCAWG set of patient-centric drivers 
(https://dcc.icgc.org/releases/PCAWG/driver_mutations)34,105 to compute the relative abundance of 
driver mutation classes: Across PCAWG, out of a total of 13,219 annotated drivers, 5,913 represent 
somatic point mutations (including single nucleotide variants, SNVs; multi-nucleotide variants, MNVs; 
and <50bp short insertions and deletions (indels)), 6,490 represent copy number imbalanced SVs and 
another 816 are copy number balanced SVs. Hence somatic SVs (defined as copy number 
imbalanced+copy-balanced SVs) contribute 55% of all annotated somatic drivers, and significantly 
outnumber compared to point mutations in a typical cancer genome34. Second, to enable comparison of 
SV drivers by size and class we generated a consolidated list of somatic SV drivers from PCAWG with 
resolved breakpoint coordinates, and computed confident size estimates from these (achieved for 
N=3,342 SVs). Out of these, 83% (2,765 SVs) were ≥200kb in length and thus at the size range1 
accessible to scNOVA. By comparison, 37% (1,244 SVs) represented SCNAs ≥10Mb in length. 
 
II. Known and suspected Wnt signaling regulators near 10q24.32 
A closer analysis of genes located within the relevant 10q arm showed that several Wnt signaling genes 
reside in this genomic region (Fig. 4b, S28). Indeed, six genes implicated or suspected to suppress 
canonical Wnt signaling, SUFU (deleted in 11/11 cells with 10q24.32 SVs), FBXW4 (11/11), NFKB2 
(11/11), LDB1 (11/11), BTRC (9/11) and LZTS2 (5/11), were repeatedly deleted in CLL_24, and 
represent candidates for further study: BTRC, an F-box containing protein, has been shown to be 
involved in ubiquitin mediated proteolysis of β-catenin to maintain low levels of β-catenin in the 
cytoplasm, and as such influence Wnt signaling106. BTRC has been reported as mutated in multiple 
human cancer cell lines and clinical tumor samples107, is located close to the 10q24.32 minimal region 
(<60kb apart), and is significantly downregulated in CLLs from the ICGC that harbor a 10q24.32 
somatic deletion (FDR-adjusted P=0.000646; Fig. S28). FBXW4, located within the minimally deleted 
10q24.32 region, has been implicated in tumor suppression 108 and as another F-box containing protein 
has been suspected, albeit not yet shown, to play a roles in ubiquitin mediated proteolysis of β-catenin109. 
Like BTRC, we observed FBXW4 to be significantly downregulated in CLLs from the ICGC that harbor 
a 10q24.32 somatic deletion (FDR-adjusted P=0.00478; Fig. S28). SUFU, a tumor suppressor gene 
located in the minimally deleted region, can suppress Wnt signaling by forming a complex with β-
catenin, and by enhancing β-catenin translocation to the cytoplasm110. SUFU loss of function has been 
shown to result in the failure to suppress Wnt signaling in medulloblastoma (with loss of function of 
SUFU mediating overactivity of both the Sonic Hedgehog signaling pathway and the Wnt signaling 
pathway in medulloblastoma)111. LZTS2, deleted in 5/11 cells exhibiting 10q24.32 somatic deletions, is 
likewise a tumor suppressor and a known negative regulator of Wnt signaling112. NFKB2, located within 
the minimally deleted 10q24.32 region, was previously proposed – albeit not yet shown – to be involved 
in the pathogenic effect of 10q24 deletion in CLL35,113,114. NFKB2 is a gene that encodes a subunit of 
the transcription factor complex nuclear factor-kappa-B (NF-kB) which is essential for lymphocyte 
development and immune function115. NF-kB signaling negatively regulates the Wnt/β-catenin pathway 
either indirectly through the functions of NF-kB target genes (e.g., LZTS2) or directly by interfering 
with the formation of transcriptional complex β-catenin/TCF/p300116. In addition, LDB1 negatively 
regulates Wnt β-catenin in various model systems117.  

Furthermore, we found CTBP2 and PTEN which are known to negatively regulate Wnt 
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signaling in the uniquely deleted regions of SCb (terDel) and SCc (twoDel) clones which might explain 
the heterogeneity of signaling alteration we observed from scNOVA. CTBP2 acts as an antagonist of 
beta-catenin/TCF activation118 and loss of PTEN is associated with increased active beta-catenin119. 
Notably, the presence of uniquely deleted negative regulators of Wnt signaling (CTBP2 for SCb and 
PTEN for SCc deletion) provides a potential explanation for the somewhat different functional effects 
of those deletions predicted by scNOVA. 
 
III. Nucleosome repeat length measurements: considerations for future users  
The main text reports very similar nucleosome repeat length6 estimates when comparing Strand-seq 
(195.4 ±0.4bp) and MNase-seq (193.7 ±0.6bp). Thus, nucleosome repeat length estimates from Strand-
seq are, encouragingly, highly reproducible and consistent with bulk MNase-seq; this formed the 
foundation of our work. Some considerations on the measurement of nucleosome repeat length are given 
here, to guide future users:  
      During Strand-seq library preparation single-cell genomic DNA is fragmented using MNase. As 
described extensively in 92, the protocol calls for precisely 0.5U of MNase per single cell reaction, 
adding the enzyme immediately after diluting into fresh Master Mix. The incubation time should then 
proceed for precisely 8 minutes before stopping the reaction by addition of EDTA. All steps of MNase 
digestion reaction were previously optimized to generate mononucleosomal fragments of 150~200 bp 
in length. The timing and enzymatic activity are critical for the digestion procedure, and therefore any 
deviations in these components can result in changes in the DNA fragmentation pattern seen in the 
sequenced libraries. Furthermore, after library preparation there is a final size-selection step, upon 
pooling the single cell libraries. During this step the 250-350bp band (including adapter sequences) is 
specifically excised to enrich the mononucleosome fragments. Changes to the size selection step or 
possible fragment contamination during size selection can change the fragment lengths present in the 
final sequence data, for instance if dinucleosomal fragments are also included in the excised band (e.g. 
as seen in the NA12878 raw data, before processing; see Fig. S1). Looking forward, we advise users to 
carefully control the size selection step and the digestion procedure, to ensure that the same 
reproducibility of nucleosomal patterns as observed for our automated Strand-seq library generation 
pipeline1 can be achieved. 
 
IV. Further details of functional outcomes of somatic rearrangement landscapes in 
lymphoblastoid cell lines 
17 LCLs exhibited deletions 200–700kb in size, comprising the IGL locus on chromosome 22q11, 
present at CFs from 1.4% up to 89%. 13 LCLs (52%) showed homozygous loss events, and 8 LCLs 
(32%) exhibited two or more subclones harboring distinct 22q11.2 deletions (Table S3, Fig. S9). 
22q11.2 undergoes V(D)J rearrangements during B-cell development, a physiological process resulting 
in up to ~1Mb-sized deletions120, suggesting that these SVs likely emerged as a result of normal B-cell 
biology. However, since the expression changes conferred by 22q11.2 deletions in cultured LCLs are 
unknown, this alteration provided a test case for linking SV to a molecular phenotype. Using scNOVA, 
we inferred the lncRNA FLJ22447 (NCBI Gene ID: 400221), present on 14q23, to be upregulated in 
cells with the 22q11.2 deletion (22q-Del) compared to cells with a normal 22q status (22q-Ref) (Table 
S2). Although so far only poorly characterized, this lncRNA was shown to be upregulated in carcinoma-
associated fibroblasts where it reinforced interleukin-33 signalling, promoted a proliferation phenotype, 
and correlated with poor disease prognosis in oral cancer121. How this lncRNA is dysregulated via 
22q11.2 deletion remains to be seen, but it is possible that overexpression of this gene may support the 
expansion of cultured LCLs harbouring 22q11.2 SVs.  
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V. Comparison of haplotype-specific CRE activity in the chromosome X of female 
genome inferred by scNOVA, and reported by previous studies 
In this study, haplotype-resolved scNOVA analysis in NA12878 showed that haplotype-specific CREs 
are 1.4 fold enriched for chromosome X compared to autosomes (Figure S4). This observation (1.4 
fold enrichment) is in line with the haplotype-specific chromatin activities previously measured using 
ChIP-seq12 and thus is likely to reflect X chromosome biology. In this previous study, 15% of TF 
binding sites showed allele specific signals on chromosome X, compared to 2-10% on the autosomes12. 
Based on this data, only a subset of chromosome X TF binding sites are haplotype-specific (15%), and 
haplotype-specific events are 1.5~7 fold enriched based on the TFs12.  
 
VI. Germline copy number status of MAP2K3 locus in NA20509 
According to the recently published T2T-CHM13 assembly annotation122, the BFB amplified region in 
NA20509 is near a collapsed duplication (containing KCNJ18 gene) – but it does not directly overlap 
this collapsed segment. However, further analysis of the distal region of BFB amplification based on 
dot plots of the T2T-CHM13 assembly aligned against GRCh38 revealed a duplication of MAP2K3 
gene in the distal region of the amplified segment.  
Motivated by this data, we checked the germline copy number status of MAP2K3 in NA20509 and 
HG1505 (control cell line which doesn't harbor subclonal SVs) using DNA qPCR experiments. These 
experimental data suggested the germline copy number of the MAP2K3 locus is estimated to be 3 in 
both cell lines (Fig. 2f)122. DNA qPCR of NA20509 early (p4) and late (p8) showed a 1.33 fold increase 
of copy number from 3 to 4 copies in the late passage (p8). We further checked the RNA expression of 
MAP2K3 in NA20509 early and late passage using RNA-seq. It showed a 1.39 fold increase of MAP2K3 
expression, in agreement with somatic copy number gain (Fig. 2g).   
 
VII. Analysis of the CT gene signature inT-ALL_P1 
When we applied scNOVA to the 6q-CT event seen in T-ALL_P1 (CF=30%), we identified 12 genes 
with differential NO between 6q-CT and 6q-Ref cells (for simplicity, denoted ‘CT gene signature’; 10% 
FDR; Fig. 5a-b; Table S2). The dysregulated genes mostly (10/12 (83%)) resided in genomic regions 
other than 6q, suggesting that predominantly global (trans) regulatory effects arose from the 6q-CT 
event. Half (6/12) of the CT gene signature were well-known targets of c-Myb (Fig. 5b-c; Table S6), 
of which 5 were predicted to be upregulated in 6q-CT cells. This included RHOH - a Rho GTPase 
frequently overexpressed in T-ALL123, NOTCH1 - a TF and prototypical T-ALL oncogene124, and 
SLC9A7 (NHE7) - a membrane protein associated with an immature (and more aggressive) class of T-
ALL125. The only c-Myb target gene inferred to be downregulated was PRKCB - a PKC kinase with 
reported tumor suppressive functions126.  
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