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Supplementary Discussion

Double-sphere fitting function

To analyze vacuole growth dynamics (Fig. 2), droplet images were fit by a function describing the
projection into two dimensions of a (solid) sphere (representing the fluorescent DNA within the
droplet) with a second sphere subtracted from it (representing the relative lack of fluoresence of
the vacuole). The resulting ‘double-sphere’ formula to describe the intensity, I, as a function of
position, (x, y), is as follows:

I(x, y) = a+ 2b

[√
R2

d − (x− xd)2 − (y − yd)2 −
√
R2

v − (x− xv)2 − (y − yv)2
]
,

(x, y) ∈D and (x, y) ∈ V

= a+ 2b

[√
R2

d − (x− xd)2 − (y − yd)2
]
, (x, y) ∈D and (x, y) /∈ V

= a, (x, y) /∈D and (x, y) /∈ V (S1)

The parameters are the droplet and vacuole radii, Rd and Rv; the droplet and vacuole center
position, (xd, yd) and (xv, yv); and the variables describing the fluorescent intensity of the droplet,
b, and the background, a. The conditions for using each equation describe whether or not the pixel
at (x, y) falls within the area D associated with the droplet, or the area V associated with the
vacuole. That is, the conditions are related to the the following relations:

(x, y) ∈D =⇒ R2
d − (x− xd)2 − (y − yd)2 > 0

(x, y) ∈ V =⇒ R2
v − (x− xv)2 − (y − yv)2 > 0 (S2)
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Modeling diffusive capture of fragments

Here, we set up and solve the diffusion equation that models the flux into the vacuole of fragments
that are generated by enzymes within the DNA liquid phase, i.e. the model underlying Eq. 1 of the
main text. We assume DNA fragments are generated homogeneously throughout the DNA liquid
phase, consisting of a spherical droplet with an outer radius Rd that contains a concentric internal
vacuole of radius Rv. The fragments are created at a rate g0 (with units fragments per volume per
time), and diffuse within the droplet with diffusivity D. Fragments that reach the droplet radius
Rd are assumed lost to the bulk supernatant. Fragments that reach the vacuole radius Rv are
assumed to be absorbed into the vacuole. The DNA fragments thus obey the diffusion equation
with a source,

∂c

∂t
= D∇2c+ g0, (S3)

with absorbing boundary conditions

c(Rd) = 0, (S4)

c(Rv) = 0, (S5)

where c(r, t) is the fragment concentration at radius r and time t. Assuming concentrations evolve
slowly enough for the diffusive profiles to be quasi-steady gives

0 = D∇2c+ g0, (S6)

with solution

c(r) = − g0
6D

(r −Rv)(r −Rd)(r +Rv +Rd)

r
. (S7)

The diffusive flux to the vacuole is given by

Jvac = −4πR2
vD

dc

dr

∣∣∣∣
r=RV

=
4πR3

v

3
g0

(
1− Rd

Rv

(Rv +Rd)

2Rv

)
, (S8)

the flux out of the drop is given by

Jdrop =
4πR3

d

3
g0

(
1− Rv

Rd

(Rv +Rd)

2Rd

)
, (S9)

from which it follows that the total flux out of the liquid phase matches the generation rate of
fragments within the liquid volume,

Jdrop + Jvac =
4πg0

3
(R3

d −R3
v). (S10)

Of the fragments generated within the DNA liquid phase, the fraction that is absorbed by the
vacuole, q, is given by

q =
Jvac
Jtotal

=
λ(1 + 2λ)

2(1 + λ+ λ2)
(S11)

where

λ =
Rv

Rd
(S12)
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is the radius of the vacuole relative to that of the drop. For small vacuoles, the fraction of fragments
absorbed by the vacuole,

q ≈ λ

2
+
λ2

2
+O(λ3) (S13)

is approximately one half of the ratio of the radii, which gives Eq. 1 of the main text.
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Nanostar Oligomer Sequence

Weak tetramer OS1 CGATCG t GCGGTGACCCGGGTTGACCG tt GCGCCCTGGAAAGGCCACCC

OS4 CGATCG t GGGTGGCCTTTCCAGGGCGC tt AGGGATTCCCGGGAATTCTC

OS5 CGATCG t GAGAATTCCCGGGAATCCCT tt GGTAGGACCCGGGCTGACCC

OS6 CGATCG t GGGTCAGCCCGGGTCCTACC tt CGGTCAACCCGGGTCACCGC

Trimer OSTri-1B CGCCAGTCCCGGGAGCCTCG tt CGCGCTGGGTGCCGCATGCG t TGGCCA

OSTri-2B CGCATGCGGCACCCAGCGCG tt CGGTGGTCCCGGGACGTCCG t TGGCCA

OSTri-3B CGGACGTCCCGGGACCACCG tt CGAGGCTCCCGGGACTGGCG t TGGCCA

Strong tetramer OS1-B ACCGGT t GCGGTGACCCGGGTTGACCG tt GCGCCCTGGAAAGGCCACCC

OS4-B ACCGGT t GGGTGGCCTTTCCAGGGCGC tt AGGGATTCCCGGGAATTCTC

OS5-B ACCGGT t GAGAATTCCCGGGAATCCCT tt GGTAGGACCCGGGCTGACCC

OS6-B ACCGGT t GGGTCAGCCCGGGTCCTACC tt CGGTCAACCCGGGTCACCGC

Supplementary Table 1. DNA sequences used in this work. As in our prior work, three different
types of DNA nanostars were used, with names as given in the table. As noted in the main text,
no significant difference was observed in vacuole dynamics between different types of nanostars. Each
nanostar consists of 3 or 4 double-stranded DNA arms joined at a junction containing unpaired bases; at
the end distal to the junction, each arm is terminated with an unpaired base and a sticky-end sequence
that mediates nanostar condensation. In the table, sticky-end sequences are italicized and bases left
unpaired within the nanostar are given in lowercase, while the remaining (capital, non-italicized) bases
form the double-stranded DNA arms. Within the arms, Sma I recognition sequences are underlined. The
spaces within each sequence only serve to clarify transitions between different portions of the nanostar,
and have no structural or chemical meaning.
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Supplementary Figure 1. Analysis of thermal (Brownian) diffusion of nanostar droplets, in the
absence of enzymes. A One frame from a movie of nanostar droplets sedimented on a glass surface, as
imaged on a fluorescent microscope. Drops are imaged for 800 frames, with 10 seconds between frames.
Scale bar: 200 µm. B From the movie, we quantify the trajectories of droplets with with radius near
a = 8 µm, and calculate the mean squared displacement, MSD = 〈[x(t)−x(t− τ)]2 + [y(t)− y(t− τ)]2〉.
The MSD versus lag time, τ , is shown for 31 such droplets. The linearity of the plot indicates diffusive
behavior. Given the two-dimensional nature of the diffusion, we expect MSD2D = 4Dτ , and linear
fitting gives a diffusion constant D = 0.01 µm2/s. The Stokes-Einstein relation for a sphere in a viscous
liquid in free space estimates the diffusion constant as D = kBT

6πηa = 0.027 µm2/s, given a = 8 µm.
Thus our analysis indicates there is a roughly 3-fold increase of drag for thermal motion, relative to the
free-space expectation, which we attribute to the hydrodynamic effects of the nearby glass surface.

5


