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Description of data assessment, standardization, and analysis 

Data assessment 

Data received from corresponding members or from publicly available surveys were checked to confirm survey-

level characteristics; dietary intake variables were categorized into GDD dietary factors; necessary unit and format 

conversions were noted. Data-owners or survey directors were contacted extensively to resolve questions about data 

quality, categorization, or assessment methods to ensure accuracy and completeness of data prior to analysis. 

Preliminary data checks 

Biostatisticians generated survey description files for each survey including survey characteristics, variable lists, and 

summary statistics for categorical and continuous variables. Research assistants used these description files to assess 

inclusion of survey level information and demographic variables. Discrepancies between author-reported 

characteristics and those ultimately included in the dataset were noted for further discussion with the data-owner.  

Categorization of variables into GDD dietary factors 

Research assistants matched reported dietary data to GDD dietary factors. This involved categorizing foods, 

nutrients, mixed dishes, and regional items into the matched GDD dietary factor, noting cases where variables 

represented less than the optimal GDD definition. Unit conversions were included as necessary to transform 

variables into the optimal GDD units.  

Categorization of variables into GDD dietary factors – Food Frequency Questionnaires 

To transform food and beverage data reported from Food Frequency Questionnaires into optimal GDD units, most 

often grams per day, all categorical variables were standardized into single daily serving units. When ranges of 

frequencies were provided, the mean of each range was utilized to represent each frequency category. Variables 

reported in times per week were divided by 7 to calculate the average daily servings. Variables reported in times per 

month were divided by 3042 (the average number of days in a month) to calculate the average daily servings. In 

cases where the upper range was open-ended (e.g., ―5 or more times per week‖), the ranges of the other frequency 

categories were used to calculate an upper limit. Servings per day were then converted into grams per day by 

multiplying the number of servings by the author-reported serving sizes or by the GDD standard serving sizes.  

Communication with data owners and creation of data key  

Any questions regarding the data, including those about region-specific diets (e.g., disaggregation of mixed dishes, 

classification of regional items), survey-level characteristics, and serving sizes for foods and beverages, were 

communicated to the data owner. After all questions regarding the data were answered, research assistants generated 

a data key outlining all available variables of interest, including demographic and dietary variables. Categorizations 

of dietary variables were turned into STATA code for clear identification and research assistants flagged the quality 

assurance checks.  

Converting household data to individual data  

Household-level data were transformed into individual-level data using the Adult Male Equivalent (AME) method. 

The AME method estimates individual-level intakes by assigning each household member a reference AME based 

on their age and sex. Household members’ reference AMEs are summed to find total household AME. Each 

individual’s reference AME is then divided by the total household AME to find individual-level AME. This 

individual-level AME represents the proportion each individual contributes to the overall household AME. This 

individual level proportion is multiplied by the household consumption of each food item to estimate individual-

level intake.  

Data aggregation 

Using preliminary checking documents provided by research assistants, biostatisticians converted individual-level 

data into aggregated outputs for each dietary factor stratified by the available demographic variables. Stata version 

12 was used to convert all demographic and dietary variables from raw data files to a single data file containing only 

relevant variables. Missing observations were excluded from the dataset and all variables were recoded to match the 

GDD demographic and dietary variable coding scheme. Data were then aggregated into demographic strata by age, 

sex, residence, education, and pregnancy/lactating status. In addition to the single, final data file, supporting files 

were generated including a summary report, minimum/maximum values for each dietary factor, and group level 

means, standard deviations, and percentiles of intake. All output files were stored in each survey’s specific folder on 

the Tufts GDD Box, accessible to all members of the research team.  

Energy adjustment 

We extracted both raw and energy-adjusted data when available. If energy adjustment of individual-level data had 

not been completed by the data owner, biostatisticians completed energy adjustment at the aggregation stage to age-

specific levels using the residual method. This approach was considered the ―gold standard.‖ We adjusted for total 

energy intake to mitigate the effects of measurement error in data collection, account for differences in energy 
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requirements related to body size, metabolic efficiency, and physical activity, and facilitate comparisons between 

surveys, age groups, and sexes. 

Total daily energy values by age 

Age (years) Daily energy intake (kcal) 

<1 700 

1-2 1,000 

2-5 1,300 

6-10 1,700 

11-74 2,000 

75+ 1,700 

Child and older adult-specific daily energy values were selected using dietary recommendations and mean 

population ranges from the USA, United Kingdom, and India. 

 

Energy adjustment corrections 

 

We initially asked that all data be shared both unadjusted and energy-adjusted to 2,000 kcal, regardless of age 

category, but retrospectively changed this decision to reflect the age-specific levels. When possible, energy 

adjustment using the residual method was repeated to reflect these changes. In some cases, this approach was not 

possible, and thus alternative approaches for energy adjustment correction were taken. 

 

Energy adjustment correction of aggregate (“stratum-level”) data  

In some cases, data were provided or accessed at the stratum level (i.e., age group, sex, education level, etc.). In 

these cases, energy adjustment correction depended on whether 2,000 kcal/day-adjusted values had previously been 

provided by the data owner. If energy-adjusted data had been provided, a simple ratio of the age-specific level to 

2,000 kcal was applied post-hoc to convert the value to the correct energy level. If stratum-level data were only 

provided in an unadjusted format but with corresponding total energy intake, intake was adjusted to the age-specific 

energy level using the energy density method, in which a simple ratio of reported calorie intake to age-specific level 

was applied to the unadjusted value. If stratum-level data were provided in age groups which traversed more than 

one level of age-specific energy intake, a weighted mean daily energy intake was calculated. This weighted mean 

daily energy level was then used to adjust intake using the ratio readjustment method. If only unadjusted intake was 

available, the energy density method was used. 

 

Energy adjustment of data without adjusted values or total energy intake 

In limited cases, individual-level data were not initially energy-adjusted or provided with mean caloric intake data, 

precluding the use of the gold standard and ratio readjustment methods. In these instances, daily per capita energy 

availability data from FAO Food Balance Sheets (FBS) were used to inform stratum-level caloric intake. In short, 

country-year-specific FBS energy data were adjusted using coefficients derived from a multivariate linear regression 

of GDD input data, FBS data, and both regional and survey-level covariates. Adjusted FBS energy was then 

corrected to the prescribed energy level by applying a factor of the energy level’s proportion of 2,000 kcal. 

Unadjusted food and nutrient intake values were then adjusted with this corrected energy intake via the energy 

density method. 

Quality control 

Data integrity and quality were assessed at each step during survey collection, processing, harmonization, and 

analyses. Duplicate reviews were performed of recorded survey characteristics, demographic variables, dietary 

definition classifications, and unit conversions. To assess for outliers and validity (errors) in reported intakes, 

plausibility thresholds were defined for each dietary factor, both at the individual level and stratum (e.g., group 

mean) level, based on dietary reference intakes, tolerable upper limits, toxicity ranges, and existing regional data on 

mean intakes in populations. Any value identified as potentially implausible was reviewed for extraction errors, 

followed by direct correspondence with the corresponding member or public survey data owners, to detect and 

correct potential errors. Data remaining implausible after such steps were excluded from final datasets. Results for 

each dietary factor were further graphed and visually inspected by country, age, sex, dietary assessment method, 

representativeness, and time, reviewing survey result plausibility and consistency within and across countries.  

Data finalization 
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After data has been finalized for inclusion, it is stored within the Access database, which houses information on all 

surveys, corresponding authors, and survey checking statuses. Aggregated data is collated by dietary factor and 

prepared for input into the GDD prediction model.  

Protocol for converting FFQ frequency data into GDD servings 

 

1. Step 1- Standardize the categorical frequency variables to a single daily serving unit 

a. If a range of frequencies is given, take the mean (―Avg‖) of the range  

b. If the frequency is presented in times/week, divide by 7 (for days in a week) 

c. If the frequency is presented in times/month, divide by 30.42 (average days in a month) 

i. Note: If the category is presented as days/week instead of times/week, assume one 

serving per day and treat as times/week 

ii. Example A) 5-7 days/week = (6 days/week) / (7days/week) = 0.857 servings/day 

iii. Example B) 1-3 times/month = (2 times/month) / (30.42 days/month) = 0.066 

servings/day 

d. If the upper range is open ended, use the range of the other frequency categories in the survey to 

create an upper limit and then take the average of that range. 

i. Example: ―5 or more times per week‖ where next lowest level is 2-4 times per week. 

Assume a range of 5-7 times per week, take the average (6 times per week)/(7 days/week) 

= 0.857 servings/day 

2. Step 2- Convert servings to grams 

a. If available, survey-specific serving sizes were used for conversions. 

b. If survey-specific serving sizes are not available, ask the data owner for usual, country-specific 

serving sizes.  

c. If data owner does not provide country-specific serving sizes, utilize country-specific serving sizes 

identified from national agencies (e.g., USDA). 

d. If no country-specific serving sizes are identified, use the GDD standard serving size conversions. 
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Common categories of intake and their servings per day conversions 

 

 

 

Common weight conversions 

Provided weight Grams 

1 Kilogram 1000 

1 Ounce *Cannot use for fluid ounces  28 

1 Pound 454 

 

Categorical Variable Calculation Daily Serving 

Never 0 0 

Occasional-Few times/year*  Should capture the range of values between 

never and the next highest choice based on 

the data set 

*Depends on next level 

categorization 

Less than once a month (1-11 times 

per year) 

1+11=12/2=6 Avg servings/year 

6/12 months=0.5 servings/month 

0.5/30.42 days 

0.0164  

1-3 times/month 1+3=4/2=2 Avg servings/month 

2/30.42 days 

0.066 

1/week 1 servings/7 days 0.143 

2-4 days/week 2+4=6/2=3 Avg servings/week 

3servings/7 days 

0.429 

5-6 days/week 5+6=11/2= 5.5 Avg servings/week 

5.5/7 days 

0.786 

5-7 days/week 5+7=12/2=6 Avg servings/week 

6/7 days 

0.857 

1/day  1 

2-3/day 2+3=5/2= Avg 2.5 servings 2.5 

4-5/day 4+5=9/2= Avg 4.5 servings 4.5 
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Standard serving sizes for foods and beverages 

Dietary factor Reference serving sizes “Usual” average serving sizes (g/serving) 

Variable 

Code 

Variable name 2003-06 US NHANES 

(median) 

Adults and 

children older than 

2 years 

12-24 

months 

6 to 11 

months 

v01 Fruits° 110 g per serving 100 75 49 

v02 Non-starchy 

vegetables° 

40 g per serving 100 50 44 

v05 Beans/legumes° 86.5 g per serving 100 32 24 

v06 Nuts/seeds 29.75 g per serving 28.35 32 24 

v08 Whole grains  48.975 g per serving 50 39 12 

v09 Processed meats 53.705 g per serving 50 41 31 

v10 Red meats 85 g per serving 100 32 24 

v11 Seafood* 85.78 g per serving 100 30 23 

v13 Cheese* - 42 22 20 

v14 Yogurt* - 245 104 88 

v15 Sugar-sweetened 

beverages* 

368 g per serving 248 130 84 

v16 Fruit juices* 209.25 g per serving 248 130 84 

v57 Milk 198.25 g per serving 245 161 155 

*Calculated using average of item-specific serving sizes from the USDA Nutrient Database. 

°Calculated using average if both item-specific serving sizes from the USDA Nutrient Database and intake from 

NHANES 2003-2006. 
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Table S1. Definitions and units of dietary variables included in the GDD. 

Dietary factor Unit Preferred definition Alternative definition 

Fruits g/day Total fruit intake, including fresh, frozen, cooked, canned, or 

dried fruit, excluding fruit juices and salted or pickled fruits. 

Total fruit intake including fruit juices, nuts/seeds, 

vegetables, salted/pickled, preserved, and processed 

fruits (jams). 

Non-starchy 

vegetables 

g/day Total vegetable intake, including fresh, frozen, cooked, canned, 

or dried vegetables. This definition excludes salted or pickled 

vegetables, vegetable juices, starchy vegetables (e.g., potatoes, 

taro, cassava, manioc, yucca, corn, peas), and legumes (beans 

and lentils). 

Total vegetable intake including vegetable juices, 

starchy vegetables, nuts/legumes, nuts/beans, 

beans/legumes, salted/pickled vegetables, and 

salted/pickled beans/legumes. 

Beans and legumes g/day Total intake of beans and legumes (beans, lentils), including 

fresh, frozen, cooked, canned, or dried beans/legumes. This 

definition excludes peanuts and peanut butter.  This definition 

includes soybeans but excludes soy milk and soy protein. 

Includes nuts/seeds, soy protein, soy products, peanuts, 

and peas. 

Nuts and seeds g/day Total intake of tree nuts (e.g., walnuts, almonds, hazelnuts, 

pecans, cashews, pistachios), seeds (e.g., sesame seeds, 

sunflower seeds, pumpkin seeds), and peanuts (including peanut 

butter).  

Includes pulses, beans, legumes, and foods primarily 

(>51%) from nuts or seeds. 

Whole grains g/day Total intake of whole grains, defined as a food with ≥1.0 grams 

of fiber per 10 grams of carbohydrate, in which all components 

of the kernel (i.e., bran, germ, and endosperm) are present in the 

same relative proportions as the intact grain. Examples include 

whole grain bread, brown rice, whole grain pasta, whole grain 

breakfast cereals, oats, rye, barley, millet, sorghum, and bulgur. 

This definition excludes corn products including corn flour, corn 

meal, and popcorn. 

Includes wholegrain breads, cereals, rice/pasta, bread, 

and other products such as biscuits. 

Total processed meats g/day Total intake of processed meat, defined as any meat (including 

poultry) that has been cured, smoked, dried, or chemically 

preserved.  Examples include bacon, salami, sausages, hot dogs, 

and processed deli or luncheon meats. This definition excludes 

fish and eggs. 

Includes sausages and unprocessed meats. 

Unprocessed red meats g/day Total intake of unprocessed red meat, defined as beef, pork, 

lamb, mutton, or game that has not been cured, smoked, dried, or 

chemically preserved. This definition excludes poultry, fish, and 

eggs. 

Includes processed red meats, poultry, fish and organ 

meats. 

Total seafoods g/day Total intake of fish and shellfish.  Examples include salmon, 

tuna, trout, tilapia, shrimp, crab, oysters, and cephalopods. 

Includes salted fish, processed fish, and other animal 

products. 

Cheese g/day Total intake of cheese derived from the milk of livestock (e.g., 

cows, buffalo, yak), including hard cheese (e.g., cheddar, 

Includes yogurt, milk products and cheese. 
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mozzarella, Swiss), soft cheese (e.g., ricotta, cottage cheese, 

paneer), and processed cheese. 

Yogurt g/day Total intake of yogurt and fermented milk, including reduced-fat 

and full-fat yogurt. 

Includes dairy curd, buttermilk, paneer, cheese, and 

milk. 

Sugar-sweetened 

beverages (SSBs) 

g/day Total sugar-sweetened beverage intake, defined as any beverage 

with added sugar having ≥50 kcal per 8 ounces (236.5 grams) 

serving, including commercial or homemade beverages, soft 

drinks, energy drinks, fruit drinks, punch, lemonade, and frescas. 

This definition excludes 100% fruit and vegetable juices and 

non-caloric artificially sweetened drinks. 

Includes fruit and vegetable juices. May also include 

coffee, tea, and milk.  

Fruit juices g/day Total intake of 100% fruit juice, excluding sugar-sweetened fruit 

juice and vegetable juice. 

Includes fruit juices, vegetable juices and sweetened 

juices.  

Total milk g/day Total intake of dairy milk including non-fat, low-fat, skim, and 

whole-fat milk. This definition excludes yogurt, fermented milk, 

and soy or other plant derived milk (e.g., coconut milk, almond 

milk).  

Includes yogurt, dairy drinks, cheese, and dairy products. 

Saturated fat Percent energy/day Total saturated fat intake from all sources (primarily meat and 

dairy products, and tropical oils). 

 

Monounsaturated fat Percent energy/day Total monounsaturated fat intake from all sources.  

Total omega-6 fatty 

acids 

Percent energy/day Total omega-6 fatty acid intake from all sources (primarily 

liquid vegetable oils, including soybean oil, corn oil and 

safflower oil), excluding dietary supplements. 

Includes total polyunsaturated fat or linoleic acid. 

Seafood omega-3 (n-3) 

fat 

mg/day Total dietary EPA+DHA (eicosapentaenoic acid + 

docosahexaenoic acid) intake, excluding dietary supplements. 

Includes total dietary EPA+DPA+DHA 

(eicosapentaenoic acid + docosahexaenoic acid + 

docosapentaenoic acid), long chain omega-3 only, 

excluding ALA (alpha-linolenic acid) and total seafood 

intake (fish & shellfish). 

Plant omega-3 (n-3) fat mg/day Total dietary ALA (alpha-linolenic acid) intake, excluding 

dietary supplements. 

Includes ALA (alpha-linolenic acid) + long chain 

omega-3 (EPA, DPA, DHA) (eicosapentaenoic acid, 

docosahexaenoic acid, docosapentaenoic acid) 

Dietary sodium mg/day Total intake of sodium from all sources. Includes urinary sodium. 
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Table S2. Countries, regions, and super-regions included in GDD 2018 (N=185). 

Region Countries 

Southeast and East Asia super-region (N=24) 

East Asia (N=2) China, Taiwan 

Southeast Asia 

(N=9) 

Cambodia, Indonesia, Lao People’s Democratic Republic, Malaysia, Myanmar, The Philippines, Thailand, 

Timor-Leste, Viet Nam 

Asia-Pacific high 

income (N=4) 

Brunei Darussalam, Japan, Republic of Korea, Singapore 

Oceania (N=9) Fiji, Kiribati, Marshall Islands, Micronesia, Papua New Guinea, Samoa, Solomon Islands, Tonga, Vanuatu 

Central/Eastern Europe and Central Asia super-region (N=29) 

Central Asia (N=9) Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Mongolia, Tajikistan, Turkmenistan, Uzbekistan  

Central Europe 

(N=13) 

Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Hungary, Montenegro, Poland, 

Romania, Serbia, Slovakia, Slovenia, The former Yugoslav Republic of Macedonia 

Eastern Europe 

(N=7) 

Belarus, Estonia, Latvia, Lithuania, Republic of Moldova, Russian Federation, Ukraine 

Latin America and Caribbean super-region (N=32) 

Caribbean (N=15) Antigua and Barbuda, Bahamas, Barbados, Belize, Cuba, Dominica, Dominican Republic, Grenada, Guyana, 

Haiti, Jamaica, Saint Lucia, Saint Vincent and the Grenadines, Suriname, Trinidad and Tobago 

Andean Latin 

America (N=3) 

Bolivia, Ecuador, Peru 

Central Latin 

America (N=9) 

Colombia, Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Venezuela 

Southern Latin Argentina, Chile, Uruguay 
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America (N=3) 

Tropical Latin 

America (N=2) 

Brazil, Paraguay 

Middle East and Northern Africa super-region (N=20) 

Western Europe 

(N=1) 

Israel 

North Africa and 

Middle East (N=18) 

Algeria, Bahrain, Egypt, Iran (Islamic Republic of), Iraq, Jordan, Kuwait, Lebanon, Morocco, Occupied 

Palestinian Territory, Oman, Qatar, Saudi Arabia, Syrian Arab Republic, Tunisia, Turkey, United Arab 

Emirates, Yemen 

South Asia super-region (N=8) 

South Asia (N=6) Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan 

Southeast Asia 

(N=2) 

The Maldives, Sri Lanka 

Sub-Saharan Africa super-region (N=48) 

Central Sub-Saharan 

Africa (N=6) 

Angola, Central African Republic, Congo, Democratic Republic of Congo, Equatorial Guinea, Gabon 

Eastern Sub-Saharan 

Africa (N=17) 

Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Malawi, Mauritius, Mozambique, 

Rwanda, Seychelles, South Sudan, Sudan, Uganda, United Republic of Tanzania, Zambia 

Southern Sub-

Saharan Africa 

(N=6) 

Botswana, Lesotho, Namibia, South Africa, Swaziland, Zimbabwe 

Western Sub-

Saharan Africa 

(N=19) 

Benin, Burkina Faso, Cameroon, Cape Verde, Chad, Cȏte d’Ivoire, The Gambia, Ghana, Guinea, Guinea-

Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Săo Tomé and Príncipe, Senegal, Sierra Leone, Togo  

High-Income Countries super-region (N=24) 

Australasia (N=2) Australia, New Zealand 
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Western Europe 

(N=20) 

Austria, Belgium, Cyprus, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, 

Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom 

North America high-

income (N=2) 

Canada, United States of America 

We included countries:  1) classified as United Nations (UN) Member States, 2) included in the United Nations Food and Agriculture Food Balance Sheets 

database, or 3) included in the World Bank Gross Domestic Product database. 
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Covariates 

 

Covariate identification 

We identified country- and time-specific covariate data from various sources to further inform our model 

predictions. These data supplement our individual-level dietary intake data, particularly in countries for 

which these inputs are limited. We consulted experts and conducted comprehensive searches of publicly 

available databases to identify >800 covariates. We prioritized approximately 400 covariates for testing:  

 

Data source Year(s) 

UN FAO food balance sheets  1980 - 2018 

Harvard Global Expanded Nutrient Supply (GENuS) 1980 - 2011 

Principal component analysis of FAO and GENuS data 2013 

Euromonitor fat and oils sales data 1998 - 2018 

World Bank Gross Domestic Product (GDP) 1980 - 2018 

World Bank unemployment rate 1980 - 2015 

World Bank gini coefficient 1980 - 2015 

World Bank poverty rate 1980 - 2015 

Barro Lee years of schooling 1980 - 2010 

World Bank precipitation 1982 - 2014 

CIA Factbook latitude N/A 

CIA Factbook land area N/A 

CIA Factbook coastline ratio N/A 

 

We conducted principal component analysis (PCA) using the 'princomp' function in R separately for: 1) 23 

grouped FAO food balance sheet (FBS) foods, beverages, and energy, 2) 142 GENuS foods, and beverages, 

and 3) 19 GENuS nutrients and energy. The first four components from each PCA were considered for 

covariate testing. 

 

Covariate imputation and truncation 

If covariate data were missing for some (but not all) years of a given country, we used linear interpolation to 

fill in those years. Covariate data sources that ended before 2018 were imputed using a moving average of the 

three most recent values to obtain values for all covariates through the year 2018. Region -level means were 

assigned to countries for which entire covariates were missing. To assess validity of t he imputations, we 

imputed non-missing values with the same model and visually compared observed versus imputed values via 

scatter plots. 

The GDD prediction model operates on the natural log scale (except for dietary factors measured as 

proportions), including the covariate data. To reduce the risk of having very small values for covariates with 

a broad range of values on the log scale having an outsized influence on modeled estimates, we truncated 

covariate data on the non-transformed scale using the following rules:  

For covariates with a 95th percentile value 

1. >3.5: Truncate values <0.5 to 0.5 

2. ≥1 and ≤3.5: Truncate values <0.1 to 0.1 

3. <1: No truncation 
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Covariate testing 

For each dietary factor, we calculated the correlations between covariates and origina l survey-level stratified 

mean dietary intakes, and we selected up to 10 covariates for model inclusion, favoring those with the highest 

correlations, a mix of food/nutrients and other covariates, and sensible links to the dietary  factor. 

Each of the covariates identified in the correlation stage (maximum 10 covariates) and  the four PCA 

components were then included in a stepwise regression (entry point of p<.299 and exit point of p<.30) to test 

for inclusion in GDD models. These stepwise regressions resulted in three nested versions of the GDD model 

per diet factor: 

1. Base model: Closest diet factor proxy from FAO or GENuS (1-2 covariates per model) 

2. Restricted model: All covariates with p<0.1 from the results of the stepwise regression plus base 

model covariate(s). 

3. Inclusive model: All covariates from the results of the stepwise regression plus base model 

covariate(s). 

For each dietary factor, five-fold cross-validation was used to compare model fit for the three versions of the 

GDD model. Data were split into five partitions at the survey level: four partitions making up the training 

dataset, and the remaining segment as the testing data. The models were fit to the training set, and resulting 

outputs were compared to training set to assess model fit via calculating the expected log predictive density 

(ELPD)1. This was repeated five times so that each partition was used once as the training set.  

 

 

Final model selection and included covariates by dietary factor.  

Dietary factor Selected model Covariates 

Fruit Base model FAO fruit 

Non-starchy 

vegetables 

Base model FAO vegetables 

Whole grains Base model FAO whole grains 

Nuts Base model FAO nuts 

Legumes Base model FAO pulses 

Unprocessed red meat Base model FAO red meat 

Processed meat Restricted model FAO processed meat; FAO potatoes; GENuS iron; FAO PCA 1; 

FAO PCA 2; GENuS carbohydrates; FAO alcoholic beverages 

Seafood Base model FAO fish and seafood 

Milk Base model FAO milk 

Cheese Base model FAO cheese 

Yogurt Base model FAO cheese 

Sugar-sweetened 

beverages 

Base model FAO sugar and sweeteners 

Fruit juice Base model FAO fruit 

Saturated fat Base model GENuS saturated fat 

Monounsaturated fat Base model GENuS monounsaturated fat 

Omega-6 fat Base model GENuS polyunsaturated fat 

Seafood omega-3 fat Base model GENuS polyunsaturated fat 

Plant omega-3 fat Base model GENuS polyunsaturated fat 

Sodium Base model GENuS sodium 

 

References 

1. Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation 

and WAIC. Stat Comput 27, 1413–1432 (2017). https://doi.org/10.1007/s11222-016-9696-4. 
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GDD Prediction Model 

 

1. Overview 

The GDD prediction model aims to estimate mean intake of 53 dietary factors in 185 countries, by 

country/year/age/sex/urbanicity/education, by synthesizing survey mean intake data from sources  of 

varying quality. The Bayesian multilevel framework has some advantageous properties that are  appealing 

for our purposes. Namely, 

• ―Shrinkage‖ of parameter estimates towards an overall mean. For example, mean estimates  for data 

sparse countries are pulled towards the region mean, allowing for more reasonable estimates for 

countries with potentially unreliable data. 

• Intuitive framework for predicting means (with uncertainty bounds) for countries with no available 

data. 

• Ability to include prior knowledge about intake through priors 

 

• Allows for model flexibility and complexity often not granted in similar frequentist approaches due to 

difficulty in optimization. 

 

2. Hierarchical nature of the data 

Survey data collected across the globe have an inherently nested hierarchical structure which makes a 

multilevel approach to modeling the data appealing. The hierarchical structure of the data we assumed was as 

follows: countries were nested in super-regions, which are nested in the globe. Our model assumed that the 

super-region means were distributed log-normally around the global mean, and that country means were 

distributed log-normally around their respective super-region means. Using this structure allowed us to 

borrow strength across units, a concept commonly known as ―partial pooling‖ in the Bayesian literature. In 

partial pooling, each country’s mean estimate borrows from the other countries’ data within the region, 

resulting in shrinkage of the country mean estimate towards the region mean. The less informative the data 

was for a particular country, the more pooling there is. 

 

Our model used the following seven super-regions: 

a. Asia (Southeast and East Asia) 

 

b. FSU (Central/Eastern Europe and Central Asia) 

c. HIC (High Income Countries) 

d. LAC (Latin America and Caribbean) 

e. MENA (Middle East and North Africa) 

f.  SAARC (South Asia) 

 

g. SSA (Sub-Saharan Africa) 

 

3. Description of model 

Fundamentally, our model was a Bayesian model on the log-means of intake with a nested hierarchical 

structure (clusters countries within super-regions and super-regions within the globe), assuming 

exchangeability between countries and super-regions after accounting for covariates. To this structure, we 

added sex, urban/rural, education, and non-linear age effects (also within a nested hierarchical structure), 

survey and country-level covariates, and overdispersion on study-level variance to account for non-sampling 
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variation. It borrowed heavily from models presented by Finucane et al.1 and Flaxman et al.2 . For dietary 

factors that were measured as proportions of energy intake, we used −log(−log(y)) as the link function 

instead of log(y). 

Below we provide a full mathematical description of the model, with detailed descriptions for each component, 

but first, we present some notation: 

a. Subscript notation: 

i. h: age/sex/educ/urbanicity group 

ii. i: study 

iii. j: country 

iv. k: super-region 

b. Superscript notation: 

i. c: country 

ii. s: super-region 

iii. g: globe 

The model 

 

f (yh,i) ∼ N 
 
aj + b1jsexh,i + b2juh,i + b3jeduch,i + γj(zh,i) + X iβ, SE2+ τ 2

 
 

where 

f (y) ⇐ −log(−log(y)) for dietary factors measured as proportions, log(y) otherwise 

yh,i ⇐ mean intake level for stratum h in study i aj ⇐ 

country-specific intercept 

b1j ⇐ country-specific difference between females and males 

sexh,i ⇐ variable indicating whether the yh,i corresponds to an all male group (0), all female group (1), or mixed 

(0.5) 

b2j ⇐ region-specific difference between urban and rural 

uh,i ⇐ variable indicating whether the yh,i corresponds to an all rural group (0), all urban group (1), or mixed 

(% urban) 

b3j ⇐ region-specific education effect 

ui ⇐ two variables indicating whether yh,i corresponds to low education (defined to be 6 years or less of schooling if 

mixed, proportion of low education and high education 

γj ⇐ non-linear age-trend for region j 

zh,i ⇐ midpoint age of stratum h in study i 

Xiβ ⇐ study + country level covariate effects 

2 
h,
i 

⇐ standard error of f (yh,i) (estimated via delta method) 

τ 2 ⇐ overdispersion parameter for study i 
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Intercept, sex differences, education differences, and urban/rural differences 

We fit a multi-level model with 3 levels (countries nested in super-regions nested in the globe) for 

intercepts and sex differences, and 2 levels (super-regions nested in the globe) for age pattern, education 

differences, and urban/rural differences.  aj refers to the intercept for country j, b1j refers to the  country  

specific  sex  effect,  b2j  refers  to  the  country  specific  urban  effect,  and  b3j  refers  to the country specific 

education effect. ag and bg correspond to global intercept and effects while as, bs denote super-region 

specific random effects and ac, bc denote country specific random effects. κc and κs are the between-country 

and between-super-region variance, respectively, for their respective model components. Note that the model 

assumes between country variance is the same across all super-regions, and that education, urban/rural 

differences and age patterns are assumed to be the same for countries within a super-region. 

Mathematically, this can be described as follows: 

 

aj = ac + as + ag 
j 

b1j = bc 

b2j = bs 

k[j] 
s 
1k[j
] 

+ bg 

+ bg 

2k[j
] 
s 
3k[j
] 

2 

+ bg 

 

 

ac ∼ N (0, κc ), bc ∼ N (0, κc ), 

as ∼ N (0, κs), bs  ∼ N (0, κs ), bs ∼ N (0, κs ), bs 

 

∼ N (0, κs )
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Weakly informative priors were used for the hyper-parameters: half-Normal(0, 0.5) for the 

κ pa rameters, For ag, bg, bg, and bg, a prior of N(0, 0.35) was used. Input data were 

standardized to the standard normal scale to ensure priors were sensible for all dietary factors 

and to increase computational stability.  
1 2 3  

Covariate effects 

There were two survey-level covariate effects included in the model to explain potential bias from a 

survey: survey type and food definition. There were four main types of diet surveys included as covariates in 

the model: short-term recalls (single or multiple); food frequency questionnaires (FFQs); household 

budget/intake surveys; and DHS (Demographic Health Survey) questionnaires. Only the recall was considered 

the ―gold standard‖ with regards to estimating the mean unbiasedly. Likewise, not all surveys used the optimal 

definition for a dietary factor. For example, in the case of fruits, most surveys defined fruits  as all fruits. 

However, some surveys only measured a suboptimal metric, such as fruits including fruit juices. Currently, we 

combine all sub-optimal metrics into one category for our models. We also included country-year specific 

predictors in the model (e.g., food availability (FAO food balance sheets or Global Expanded Nutrient Supply 

(GENuS) model). We assumed their relationship to f (y) was linear, and that the relationships were 

independent of location (not super-region dependent, or country dependent). See the covariate testing section 

for a list of the country-year specific predictors used for each dietary factor. 

Mathematically, this portion of the model can be described as follows: 

Xiβ =β1I{Xdiet = FFQ}+ 

β2I{X = household survey}+ 

β3I{X = DHS}+ 

β4I{X = alternative}+ 

country-year predictors 

i[j] 

For survey level-covariates, we used a prior of Normal(0, 0.35). The prior for βc parameters depended on the 

dietary factor. For many dietary factors, we only used 1 or 2 country-level covariates, all from FAO or 

GENuS. For these variables, we had a very strong prior belief that the they should be strongly correlated with 

the outcome of interest (e.g., log(fruit availability from FAO) should be strongly positively correlated with 

log(fruit intake)). In these cases, we used a highly informative prior of N(1, 0.1). For other dietary factors, 

either no such variable exisited, or other country-year level predictors were also included and do not warrant 

such a high degree of certainty in a strong relationship. In these cases, we used a much weaker prior of N(0, 

0.5). 

 

Age trend 

For many surveys, intake was not linearly associated with age. We modelled age using restricted cubic 

splines with 4 knots at k1, k2, k3, k4, corresponding to ages 5, 20, 50 and 65, respectively, after 

standardization: 

 

 

where 

γj[i](zh) = γ1j[i]zh  + γ2j[i]S1  + γ3j[i]S2 

S1 = (zh 

 

S2 = (zh 

— k1)+ 

— k2)+ 

k4 − k1 
(z 

k4 

− k3 

k4 − k2 
(z 

k4 

− k3 

— k3)+ 

— k3)+ 

+ 
k3 − k1 

(z 
k4 

− k3 

+ 
k3 − k2 

(z 
k4 

− k3 

— k4)+ 

— k4)+ 
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As with the urban and education effect parameters, we used 2 levels of hierarchy for the age-trend: 

 

γ1j[i] = 

γs γ2j[i] 

= γs 

γ3j[i] = 

γs
 

+ γg 

+ γg 

+ γg

 

 

s  ∼ N (0, κs ), γs ∼ N (0, κs ), γs ∼ N (0, κs ) 

 

Weakly informative distributions were used for hyper-prior parameters: Half-Normal(0, 0.5) for the 

κ parameters and Normal(0, 0.35) for the γg parameters. 

 

Overdispersion 

An additional variance component was added to each study to allow the model to account for non- 

sampling variation due to survey-level error (from imperfect study design and quality). This additional 

variance component was modeled in such a way to reflect our expectation that surveys that are less likely to 

represent the true mean (but not necessarily biased) were more variable. Sources of this non-sampling 

variation accounted for included surveys not being nationally representative, surveys not being stratified by 

sex, urban/rural or education, and surveys that used large age groupings (>10 years). We also added an 

additional constraint to ensure local surveys were considered more variable than regional surveys. 

 

Thus,  

τ 2 = exp(ϕintercept + ϕregionalI(X
rep = regional) + ϕlocalI(X

rep = local) 

+ ϕagerangeI(X
AgeRange 

> 10) 

+ ϕsexI(X
sex = both) + ϕurban/ruralI((X

urban/rural = both) or (Xeduc = all)) 
i i i 

with the constraints ϕ2 
 

2 
loc
al 

, and all ϕ > 0 except ϕintercept. We used a prior of Normal(-2.5, 

1) for ϕintercept to reflect our a priori belief than an ―ideal‖ survey that is both fully stratified and 

nationally representative should have minimal overdispersion. For all other ϕ parameters, we used a  prior 

of Normal(0, 0.5). 

 

Computation 

We fit each model using STAN3,4 through rstan5, using the No-U-turn sampler (NUTS)6,  a variant of 

Hamiltonian Monte Carlo7 . We used 4 chains of 2000 iterations each, treating the first 1000 iterations of 

each chain as warm up, for a total of 4000 Monte Carlo iterations to define   our posterior distributions. 

 

Predictions 

The model described above was ultimately used to provide predictive distributions of mean intake for 

each dietary factor by country-year and subgroup. Note that the model specified g(yh,i[j]) of 
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subgroup h in survey i from country j as a linear combination of model parameters and 

survey- year-subgroup specific information: 

 

aj + b1jsexh,i + b2suh,i + b3seduch,i + γs(zh,i) + X iβ 

where we had posterior distributions for model parameters aj , bj , b2s, b3s, γs and β. To 

obtain a predictive distribution for subgroup h in country j, we calculated: 

µh,j = g−1(aj + b1jsexh,j + b2suh,j + b3seduch,j + γs(zh,j ) + X
country-year 

predictors
βc) 

 

for each draw of our posterior distributions. Because we are interested in country-specific 

means, we did not use survey specific parameters in our predictions. For countries with no 

survey data, we did not have a posterior distribution of aj. To get the predictive distributions 

for these countries in such a way that properly accounts for the variation of mean intake 

between countries within a region, we replaced aj and b1j with a*
j and b*1j where a*

j ∼ N 

(ak[j], κc
a) and b*

1j ∼ N (b1k[j], κc
1b). Here, ak[j] and b1k[j] are super-region-level 

intercepts and sex effects corresponding to country j, and κc and κ b1k[j] are super-

region-level intercepts and sex effects corresponding to country j, and κc
a
 and κc

1b
 are 

the between-country variances for intercept and sex effects, respectively. In other words, 

each posterior draw for the super-region-level parameter and it’s corresponding between-

country variance parameter generated a unique normal distribution for that draw, and we 

took a one sample draw from each of these distributions to generate the predictive 

distribution of that parameter for an unknown country in that region. Note that the 

uncertainty around the super-region level parameter   and between country variance 

propagate into the predictive distribution for the mean. 

For some dietary factors, there were entire super-regions with no data. For those super-

regions, predictive distributions for b2s, b3s, and γs were obtained in a similar way, 

generating a normal distribution for each draw from the global level parameter and 

between region variance parameter and sampling from that.  For aj and b1j , we needed to 

account for between-super-region variance and the between country variance. Therefore, 

taking the intercept as an example, for each posterior draw, we sampled from N (ag, κc
a + 

κs
a).  Note that this is equivalent to drawing a sample region mean from N(ag, ks

a) then using 

that sample as mean and kc
a as variance to form a normal distribution to sample country 

mean from. 

 

 References 

1. Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in 

body-mass index since 1980: systematic analysis of health examination surveys and 

epidemiological studies with 960 country-years and 9•1 million participants. Lancet 

2011; 377(9765):557–567. 

2. Flaxman AD, Vos T, Murray C. An integrative metaregression framework for 

descriptive epidemiology. University of Washington Press, 2015. 

3. Carpenter B, Gelman A, Hoffman MD, et al. Stan: A probabilistic programming 

language. Journal of statistical software 2017; 76(1). 

 

4. Stan Development Team. Stan modeling language users guide and reference manual, 

version 2.27, 2021. 



 
20 

5. Stan Development Team. RStan: the R interface to Stan, 2019. R package version 2.19.2. 

6. Hoffman M, Gelman A, et al. The no-u-turn sampler: adaptively setting path lengths 

in hamiltonian monte carlo. Journal of Machine Learning Research 2014; 15(1):1593–

1623. 

7. Neal, R. Mcmc using hamiltonian dynamics. In Brooks S, Gelman A, Jones GL, et al., 

Handbook of Markov Chain Monte Carlo, pages 116–162. Cambridge University Press, 

Cambridge, 2011. 

 

 

  



 
21 

Varying slopes modeling structure 

 Our extensive work to identify surveys and model intakes led to recognition and the finding that, for certain 

dietary factors, the available global data and model were insufficient to accurately model differences in intakes 

by jointly stratified by country, age, sex, education level, and urban/rural status while also modeling differences 

in intakes over time.   

 For countries without multiple comparable dietary surveys over time (the great majority of global nations), 

trends over time are largely determined by the strength of the relationship between the best available covariates 

(often variables from FAO food balance sheets or associated GENuS variables) and the raw survey data.  For 

certain dietary factors, this relationship was sufficiently robust to allow modeling of all joint demographic strata 

and time trends. By reviewing extensive time trends plots for individual dietary factors and nations, dietary 

factors with a model beta coefficient 0.4 with their corresponding FAO/GENuS covariate were identified as 

having a reasonable statistical relationship to capture both all demographic strata differences and time trends. 

For others (FAO/GENuS beta coefficient<0.4), time trends were modeled using a second, separate Bayesian 

model. 

 This second Bayesian model assessed the country-specific associations over time of the survey data for each 

dietary factor with its corresponding FAO/GENuS covariate.  The model incorporated country-level intercepts 

and slopes, along with their correlation that is estimated across countries. Input data were the same stratified 

survey data as for the GDD Core model and including dietary assessment method as a covariate. This time 

component model did not separately estimate differences by age, sex, education, or urban/rural status, but 

focused on the relationships with FAO/GENuS over time. In sensitivity analyses, age and sex were included as 

main effects (not varying by country or region) but were found to not qualitatively alter the parameter estimates 

for the relationship of a country’s dietary intake data with its FAO/GENuS data. Thus, including these 

demographics did not largely affect the time-varying predictions. This model is commonly referred as a varying 

slopes model structure and leverages two-dimensional partial pooling between intercepts and slopes to 

regularize all parameters and minimize overfitting risk1-3. Predictions with the varying slopes model take into 

account a country-specific intercept and slope when the country has dietary factor data and use the global 

intercept and slope for countries where data are not available. Time effects were predicted separately for each 

year including 1990, 1995, 2000, 2005, 2010, 2015, and 2018. 

 For each country and dietary factor, the country-specific time-trend central predictions from the varying slopes 

models were used to generate a country-year specific adjustment scaling factor, one for each year of 1990, 

1995, 2000, 2005, 2010, 2015, and 2018, compared to the reference of one of these years as determined by the 

median year of that country’s survey data (or 2005 if no country data). This scaling factor, determined by taking 

the ratio of the predicted dietary intake for that year as compared to the reference year, was multiplied by the 

country-year posterior predictions from the fully stratified, Core GDD model to determine a time-adjusted final 

estimate for each stratum.  

 To be conservative, this varying slopes adjustment (scaling factor) was only used for dietary factors and 

countries meeting all of the following criteria: at the model level, (a) FAO/GENuS beta coefficient<0.4 in the 

Core GDD model; and (b) availability of a closely corresponding FAO/GENuS covariate (e.g., dietary survey 

vitamin A intake vs. GENuS vitamin A); and at the country-level, (c) identification of a positive relationship 

(coefficient or slope) between the national survey data and FAO/GENuS covariate in the varying slopes model; 

and (d) to minimize implausible results at the country level, no more than a 3-fold difference between the ratio 

of the country’s range of predicted intake between 1990-2018 divided by the ratio of the country’s range of 

FAO/GENuS values over that same time period.  

 Among 53 evaluated dietary factors in the GDD, 29 were modeled and incorporated time adjustment using this 

Bayesian varying slopes model. The other dietary factors were not because (in order of criteria applied) 11 did 

not have any closely corresponding FAO/GENuS variable (e.g., dietary iodine), 8 had an FAO/GENuS beta 

coefficient in Core GDD Core Model of at least 0.4, and 4 were unable to complete sampling for the varying-

slopes model (i.e., the MCMC chains did not finalize, independent of parameterization). One additional dietary 

factor, vitamin B9, with a borderline FAO/GENuS beta (0.34) was also not further scaled based on adequate 

qualitative characteristics of the observed time trends in the GDD Core Model.  
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A measurement error, varying slopes model that accounts for dietary assessment method, using standardized log-

intakes for all dietary factors except those reported in percent energy: 

                                                                     [distribution for observed intake, Yobs, 

 including measurement error associated  

with the stratum estimate, DESE,i] 

                                                                                [distribution for true strata intake Y] 

                                                      [linear equation for the average intake; 

 Each country receives its own intercept and slope  

while also accounting for dietary assessment method] 

[
        

        
]           (*

 
 +     )                           [population of varying effects] 

   (
   
   

) (
   
   

)            [construct covariance matrix] 

 

With hyperpriors that define the adaptive varying effects and effects for dietary assessment: 

                                                                                                [prior for average intercept] 

                                                                                                  [prior for average slope] 

                                                                                           [prior for method effect] 

                                                                                  [prior for stddev within countries] 

                                                                               [prior for stddev among intercepts] 

                                                                                     [prior for stddev among slopes] 

                                                                                                 [prior for correlation matrix] 
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Flowchart of the number of countries with identified and standardized dietary surveys and included in the 

Bayesian hierarchical model.  

Any GDD diet factor: fruit; non-starchy vegetables; potatoes; other starchy vegetables; beans/legumes; nuts/seeds; 

refined grains; whole grains; processed meats; unprocessed red meats; seafood; eggs; cheese; yogurt; sugar-

sweetened beverages; fruit juices; coffee; tea; reduced fat milk; whole fat milk; total milk; energy; carbohydrate, 

total protein; animal protein; plant protein; saturated fat; monounsaturated fat; omega-6 fat; seafood omega-3 fat; 

plant omega-3 fat; dietary cholesterol; dietary fiber; added sugar; calcium; sodium; iodine; iron; magnesium; 

potassium; selenium; vitamin A with supplement; vitamin A without supplement; vitamin B1; vitamin B2; vitamin 

B3; vitamin B6; vitamin B9; vitamin C; vitamin D; vitamin E or zinc. 

Any diet factor included in the dietary patterns: fruit; non-starchy vegetables; whole grains; nuts; legumes; 

unprocessed red meat; processed meat; seafood; cheese; yogurt; milk; sugar-sweetened beverages; fruit juice; 

saturated fat; monounsaturated fat; omega-6 fat; seafood omega-3 fat; plant omega-3 fat; or sodium. 

 

No. countries included in 

dietary survey search = 207 

No. countries with an 

identified survey for any GDD 

diet factor =188 

No. countries with a survey on 

any diet factor included in the 

dietary patterns =175 

No. countries included in 

Bayesian hierarchical model = 

185 
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Table S3. Characteristics of global data sources of dietary pattern components in children and adults. 

Region 

(Total no. of surveys) 

Number of surveys 

(% nationally or 

sub-nationally 

representative) 

Total sample size 

of surveyed 

subjects 

No. of surveys, by dietary assessment method 

24hr recall FFQ DHS Household budget 

survey 

Fruit (N=824) 

Southeast and East Asia 96 (93.2) 876,659 34 58 11 0 

Central/Eastern Europe and Central Asia 143 (99.3) 582,581 21 84 9 30 

High Income Countries 208 (97.2) 808,110 59 118 0 37 

Latin America/Caribbean 87 (91.6) 664,925 13 57 25 0 

Middle East/North Africa 65 (90.3) 375,649 8 53 11 0 

South Asia 33 (78.6) 713,146 10 20 12 0 

Sub-Saharan Africa 148 (96.1) 1,148,611 13 59 82 0 

Overall 780 (94.7) 5,169,681 158 449 150 67 

Non-starchy vegetables (N=798) 

Southeast and East Asia 93 (93.0) 870,168 34 56 10 0 

Central/Eastern Europe and Central Asia 138 (99.3) 566,339 19 84 6 30 

High Income Countries 205 (97.2) 779,398 58 116 0 37 

Latin America/Caribbean 83 (92.2) 654,787 12 55 23 0 

Middle East/North Africa 63 (90.0) 369,112 7 53 10 0 

South Asia 33 (80.5) 693,550 10 19 12 0 

Sub-Saharan Africa 142 (96.6) 1,129,112 12 56 79 0 

Overall 757 (94.9) 5,082,466 152 439 140 67 

Whole grains (N=256) 

Southeast and East Asia 21 (91.3) 140,021 6 17 0 0 

Central/Eastern Europe and Central Asia 47 (100.0) 111,346 11 19 0 17 

High Income Countries 118 (96.7) 410,674 34 51 0 37 

Latin America/Caribbean 13 (81.3) 122,474 10 6 0 0 

Middle East/North Africa 10 (66.7) 46,519 7 8 0 0 

South Asia 7 (50.0) 70,770 9 5 0 0 

Sub-Saharan Africa 16 (84.2) 82,455 11 2 6 0 

Overall 162 (89.0) 986,259 88 108 6 54 
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Region 

(Total no. of surveys) 

Number of surveys 

(% nationally or 

sub-nationally 

representative) 

Total sample size 

of surveyed 

subjects 

No. of surveys, by dietary assessment method 

24hr recall FFQ DHS Household budget 

survey 

Nuts (N=273) 

Southeast and East Asia 39 (88.6) 537,352 32 11 1 0 

Central/Eastern Europe and Central Asia 51 (100.0) 246,692 12 9 1 29 

High Income Countries 115 (97.4) 327,010 51 31 0 36 

Latin America/Caribbean 13 (76.5) 161,970 10 5 2 0 

Middle East/North Africa 15 (75.0) 116,837 7 9 4 0 

South Asia 4 (44.4) 303,036 8 0 1 0 

Sub-Saharan Africa 10 (71.4) 39,203 10 1 3 0 

Overall 247 (90.1) 1,732,100 130 66 12 65 

Legumes (N=385) 

Southeast and East Asia 39 (86.7) 470,491 13 22 10 0 

Central/Eastern Europe and Central Asia 46 (97.9) 249,981 11 1 5 30 

High Income Countries 94 (94.0) 245,232 55 12 0 36 

Latin America/Caribbean 42 (89.4) 513,736 12 13 22 0 

Middle East/North Africa 19 (76.0) 180,240 7 11 7 0 

South Asia 21 (75.0) 641,215 10 6 12 0 

Sub-Saharan Africa 88 (94.6) 996,271 13 4 76 0 

Overall 348 (90.4) 3,297,166 118 69 132 66 

Unprocessed red meat (N=411) 

Southeast and East Asia 57 (89.1) 709,036 34 23 7 0 

Central/Eastern Europe and Central Asia 64 (98.5) 279,723 17 10 8 30 

High Income Countries 98 (94.2) 248,332 54 13 0 37 

Latin America/Caribbean 40 (87.0) 491,937 12 11 23 0 

Middle East/North Africa 22 (75.9) 205,057 7 13 9 0 

South Asia 18 (66.7) 390,182 10 8 9 0 

Sub-Saharan Africa 70 (92.1) 769,897 13 3 60 0 

Overall 369 (89.8) 3,094,164 147 81 116 67 

Processed meat (N=224) 
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Region 

(Total no. of surveys) 

Number of surveys 

(% nationally or 

sub-nationally 

representative) 

Total sample size 

of surveyed 

subjects 

No. of surveys, by dietary assessment method 

24hr recall FFQ DHS Household budget 

survey 

Southeast and East Asia 26 (86.7) 335,908 10 20 0 0 

Central/Eastern Europe and Central Asia 47 (100.0) 206,263 16 1 0 30 

High Income Countries 94 (94.9) 244,319 53 9 0 37 

Latin America/Caribbean 16 (72.7) 137,178 12 9 1 0 

Middle East/North Africa 11 (68.8) 44,395 8 8 0 0 

South Asia 2 (50.0) 25,629 2 2 0 0 

Sub-Saharan Africa 5 (83.3) 5,916 4 2 0 0 

Overall 201 (89.7) 999,608 103 53 1 67 

Seafood (N=341) 

Southeast and East Asia 53 (88.3) 684,216 32 22 6 0 

Central/Eastern Europe and Central Asia 52 (98.1) 258,984 16 1 6 30 

High Income Countries 84 (94.4) 233,332 41 11 0 37 

Latin America/Caribbean 28 (84.8) 305,259 9 14 10 0 

Middle East/North Africa 18 (75.0) 156,174 6 12 6 0 

South Asia 13 (68.4) 377,102 6 6 7 0 

Sub-Saharan Africa 59 (93.7) 708,490 10 4 49 0 

Overall 307 (90.0) 2,723,557 120 70 84 67 

Cheese (N=144) 

Southeast and East Asia 8 (80.0) 240,567 3 5 2 0 

Central/Eastern Europe and Central Asia 11 (91.7) 60,497 7 1 4 0 

High Income Countries 24 (85.7) 175,493 21 7 0 0 

Latin America/ Caribbean 20 (80.0) 297,612 8 3 14 0 

Middle East/ North Africa 11 (64.7) 118,768 4 9 4 0 

South Asia 6 (85.7) 71,524 2 1 4 0 

Sub-Saharan Africa 44 (97.8) 594,219 4 1 40 0 

Overall 124 (86.1) 1,558,680 49 27 68 0 

Yogurt (N=191) 

Southeast and East Asia 25 (92.6) 388,355 5 14 8 0 
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Region 

(Total no. of surveys) 

Number of surveys 

(% nationally or 

sub-nationally 

representative) 

Total sample size 

of surveyed 

subjects 

No. of surveys, by dietary assessment method 

24hr recall FFQ DHS Household budget 

survey 

Central/Eastern Europe and Central Asia 13 (100.0) 61,317 7 0 6 0 

High Income Countries 24 (8.9) 175,369 21 6 0 0 

Latin America/Caribbean 20 (83.3) 364,577 8 5 11 0 

Middle East/North Africa 12 (70.6) 155,358 5 6 6 0 

South Asia 10 (83.3) 357,578 3 1 8 0 

Sub-Saharan Africa 70 (98.6) 870,272 3 0 68 0 

Overall 174 (91.1) 2,372,826 52 32 107 0 

Milk (N=446) 

Southeast and East Asia 60 (92.3) 648,419 32 19 14 0 

Central/Eastern Europe and Central Asia 67 (98.5) 281,878 20 10 10 28 

High Income Countries 92 (95.8) 193,691 52 7 0 37 

Latin America/Caribbean 52 (96.3) 543,624 7 8 39 0 

Middle East/North Africa 20 (90.9) 190,580 4 7 11 0 

South Asia 23 (79.3) 647,491 9 6 14 0 

Sub-Saharan Africa 108 (96.4) 1,046,581 12 2 98 0 

Overall 422 (94.6) 3,554,611 136 59 186 65 

Sugar-sweetened beverages (N=459) 

Southeast and East Asia 38 (86.4) 394,432 13 30 1 0 

Central/Eastern Europe and Central Asia 90 (100.0) 313,350 15 58 0 17 

High Income Countries 205 (97.6) 802,300 57 116 0 37 

Latin America/Caribbean 39 (90.7) 272,328 10 28 5 0 

Middle East/North Africa 33 (84.6) 186,987 7 27 5 0 

South Asia 7 (70.0) 82,809 3 5 2 0 

Sub-Saharan Africa 19 (82.6) 78,950 8 12 3 0 

Overall 431 (94.0) 2,131,156 113 276 16 54 

Fruit juice (N=355) 

Southeast and East Asia 25 (83.3) 395,588 7 12 11 0 

Central/Eastern Europe and Central Asia 53 (100.0) 246,691 17 0 7 29 
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Region 

(Total no. of surveys) 

Number of surveys 

(% nationally or 

sub-nationally 

representative) 

Total sample size 

of surveyed 

subjects 

No. of surveys, by dietary assessment method 

24hr recall FFQ DHS Household budget 

survey 

High Income Countries 93 (94.9) 220,839 53 11 0 34 

Latin America/Caribbean 49 (94.2) 532,700 9 6 37 0 

Middle East/North Africa 17 (81.0) 156,711 6 6 9 0 

South Asia 8 (72.7) 299,960 3 1 7 0 

Sub-Saharan Africa 88 (97.8) 884,811 4 3 83 0 

Overall 333 (93.8) 2,736,800 99 39 154 63 

Monounsaturated fat (N=91) 

Southeast and East Asia 9 (64.3) 224,884 7 7 0 0 

Central/Eastern Europe and Central Asia 6 (85.7) 18,415 6 1 0 0 

High Income Countries 23 (85.2) 173,510 20 7 0 0 

Latin America/Caribbean 8 (50.0) 124,863 11 5 0 0 

Middle East/North Africa 8 (53.3) 30,222 7 8 0 0 

South Asia 1 (14.3) 45,208 4 3 0 0 

Sub-Saharan Africa 3 (60.0) 3,357 3 2 0 0 

Overall 58 (63.7) 620,459 58 33 0 0 

Saturated fat (N=198) 

Southeast and East Asia 18 (72.0) 262,377 12 13 0 0 

Central/Eastern Europe and Central Asia 25 (96.2) 35,275 23 3 0 0 

High Income Countries 82 (91.1) 231,760 73 17 0 0 

Latin America/Caribbean 15 (65.2) 130,018 13 10 0 0 

Middle East/North Africa 9 (50.0) 32,462 9 9 0 0 

South Asia 1 (10.0) 48,473 7 3 0 0 

Sub-Saharan Africa 4 (66.7) 4,357 3 3 0 0 

Overall 154 (77.8) 744,722 140 58 0 0 

Seafood omega-3 fat (N=178) 

Southeast and East Asia 12 (75.0) 235,347 6 10 0 0 

Central/Eastern Europe and Central Asia 43 (100.0) 191,442 13 0 0 30 

High Income Countries 83 (97.6) 189,608 39 9 0 37 
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Region 

(Total no. of surveys) 

Number of surveys 

(% nationally or 

sub-nationally 

representative) 

Total sample size 

of surveyed 

subjects 

No. of surveys, by dietary assessment method 

24hr recall FFQ DHS Household budget 

survey 

Latin America/Caribbean 8 (88.9) 11,109 5 4 0 0 

Middle East/North Africa 10 (58.8) 30,484 7 10 0 0 

South Asia 2 (50.0) 2,390 4 0 0 0 

Sub-Saharan Africa 4 (100.0) 1,450 3 1 0 0 

Overall 162 (91.0) 663,564 77 34 0 54 

Plant omega-3 fat (N=74) 

Southeast and East Asia 12 (80.0) 236,290 7 8 0 0 

Central/Eastern Europe and Central Asia 6 (100.0) 9,265 6 0 0 0 

High Income Countries 32 (97.0) 139,758 25 8 0 0 

Latin America/Caribbean 6 (100.0) 9,599 3 3 0 0 

Middle East/North Africa 5 (50.0) 25,335 6 4 0 0 

South Asia 0 (0.0) 2,040 2 0 0 0 

Sub-Saharan Africa 1 (50.0) 1,944 1 1 0 0 

Overall 62 (83.8) 424,231 50 24 0 0 

Omega-6 fat (N=126) 

Southeast and East Asia 14 (70.0) 254,326 11 9 0 0 

Central/Eastern Europe and Central Asia 11 (91.7) 13,355 11 1 0 0 

High Income Countries 49 (94.2) 158,754 41 11 0 0 

Latin America/Caribbean 10 (58.8) 27,601 10 7 0 0 

Middle East/North Africa 9 (52.9) 30,982 8 9 0 0 

South Asia 0 (0.0) 22,765 2 3 0 0 

Sub-Saharan Africa 2 (66.7) 2,494 2 1 0 0 

Overall 95 (75.4) 510,777 85 41 0 0 

Sodium (N=394)* 

Southeast and East Asia 56 (71.8) 351,306 34 19 0 0 

Central/Eastern Europe and Central Asia 33 (94.3) 185,042 14 2 0 13 

High Income Countries 149 (84.7) 226,622 83 11 0 0 

Latin America/Caribbean 21 (67.7) 179,667 14 6 0 1 
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Region 

(Total no. of surveys) 

Number of surveys 

(% nationally or 

sub-nationally 

representative) 

Total sample size 

of surveyed 

subjects 

No. of surveys, by dietary assessment method 

24hr recall FFQ DHS Household budget 

survey 

Middle East/North Africa 18 (64.3) 47,053 12 14 0 0 

South Asia 6 (33.3) 91,572 11 5 0 0 

Sub-Saharan Africa 11 (39.3) 12,438 8 3 0 0 

Overall 294 (74.6) 1,093,700 177 60 0 14 

1,139 surveys on fruit, non-starchy vegetables, whole grains, nuts, legumes, unprocessed red meat, processed meat, seafood, cheese, yogurt, milk, sugar-

sweetened beverages, fruit juice, monounsaturated fat, saturated fat, seafood omega-3 fat, plant omega-3 fat, omega-6 fat, or sodium. 30.6% of surveys from 

High-Income Countries; 17.4% from Sub-Saharan Africa; 14.1% from Central/Eastern Europe and Central Asia; 13.8% from Southeast and East Asia; 11.3% 

from Latin America/Caribbean; 7.8% from Middle East/North Africa; 5.0% from South Asia. 

*143 Biomarker surveys available: Southeast and East Asia=25; Central/Eastern Europe and Central Asia=6; High Income Countries=82; Latin 

America/Caribbean=9; Middle East/North Africa=2; South Asia=2; Sub-Saharan Africa=17. 
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Table S4. Characteristics of total dietary surveys (N=1,139) used to model the dietary pattern components. 

Survey characteristics Number of surveys 

Surveys assessed and included, n 1139 

Number of countries represented, n  175 

Global population represented, n (%) 7.46 of 7.63 billion (97.8) 

Demographic characteristics reported by surveys, %   

Children/adolescents (ages 0-19) 73.9 

 <1 year  26.1 

1 to 2 years 28.5 

3 to 4 years 23.3 

5 to 9 years 24.1 

10 to 14 years 49.6 

15 to 19 years 62.2 

Adults (ages 20+) 64.5 

20 to 24 years 50.7 

25 to 29 years 57.2 

30 to 34 years 57.3 

35 to 39 years 58.4 

40 to 44 years 61.5 

45 to 49 years 54.9 

50 to 54 years 53.4 

55 to 59 years 42.6 

60 to 64 years 35.6 

65 to 69 years 34.4 

70 to 74 years 30.6 

75 to 79 years 27.8 

80 to 84 years 25.5 

85 to 89 years 23.9 

90 to 94 years 22.4 

≥95 years 20.5 

Level of education 30.2 

Urban vs. rural residence  
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              Both urban and rural 54.5 

Urban only 4.4 

Rural only 1.8 

Information not available 39.2 

Representativeness, %  

National 70.9 

Subnational 18.3 

               Community 10.9 

Response rate, %  

60 to 100% 37.3 

20 to 59% 3.2 

< 20 % 6.0 

Information not available 53.5 

Sampling methodology, %  

               Probability sampling, including survey weights 38.6 

Probability sampling without survey weights 33.2 

Non-probability sampling  3.9 

Information not available 24.3 

Dietary assessment method, %  

Single or multiple diet recalls/records 22.7 

Food frequency questionnaire 42.1 

DHS questionnaire 16.7 

Biomarker 12.6 

Level of data collection, %       

                Individual-level 91.6 

Household-level 6.1  

Information not available 2.3 

Data type, %  

Individual-level dietary data 60.8 

Aggregated stratum-level distributions 39.2 

To calculate the population represented, we assumed that one or more surveys for any year of data collection were representative of the national population. We 

summed the national populations of the countries with survey data to estimate the absolute population represented. For the estimate of the percentage of the 

population represented, we used 7.63 billion as the denominator (global population in 2018). 
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Table S5. Number of dietary surveys for diet factor overall and by year. 

Dietary factor Total no. surveys No. surveys by year 

1980-1984 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 ≥2015 

Any diet factor 1139 29 95 94 174 268 268 198 15 

Fruit 824 4 28 55 95 221 228 178 15 

Non-starchy 

vegetables 

798 4 25 53 90 211 222 178 15 

Whole grains 256 2 23 43 61 46 41 32 8 

Nuts 273 3 22 48 44 59 54 34 9 

Legumes 385 3 13 30 45 92 92 96 14 

Milk 446 3 23 41 83 106 87 88 15 

Unprocessed red meat  411 3 13 35 71 80 93 101 15 

Seafood 341 2 12 27 49 56 83 97 15 

Processed meat 224 3 12 30 41 56 46 28 8 

Yogurt 191 0 1 5 7 27 59 79 13 

Cheese 144 0 0 5 4 13 40 70 12 

Sugar-sweetened 

beverages 

459 3 26 52 72 86 100 112 8 

Fruit juice 355 1 18 43 64 79 57 80 13 

Monounsaturated fat 91 0 0 7 5 7 28 37 7 

Saturated fat 198 1 5 25 29 47 45 39 7 

Seafood omega-3 fat 178 2 11 26 47 46 28 13 5 

Plant omega-3 fat 74 0 0 8 14 15 18 14 5 

Omega-6 fat 126 0 4 14 22 25 28 30 3 

Sodium 394 25 60 38 75 71 69 47 8 

Any diet factor: fruit; non-starchy vegetables; whole grains; nuts; legumes; unprocessed red meat; processed meat; seafood; cheese; yogurt; milk; sugar-sweetened beverages; fruit 

juice; monounsaturated fat; saturated fat; seafood omega-3 fat; plant omega-3 fat; omega-4 fat; or sodium. 
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Table S6. AHEI scoring thresholds. 

Score 0 10 

Fruit, servings/d 0.00 4.00 

Non-starchy vegetables, servings/d 0.00 5.00 

Whole grains, women, g/d 0.00 75.00 

Whole grains, men, g/d 0.00 90.00 

Sugar-sweetened beverages and fruit juice, 

servings/d 1.00 0.00 

Legumes and nuts, servings/d 0.00 1.00 

Unprocessed red meat and processed meat, 

servings/d 1.50 0.00 

Seafood omega-3 fat, mg/d 0.00 250.00 

PUFAs, % energy/d 2.00 10.00 

Sodium*, mg/d 10292.65 1657.16 

*Sodium deciles for 2018 were applied to 1990.  

The AHEI included 9 of the 11 AHEI components (alcohol and trans-fat were excluded): non-starchy vegetables, fruits, nuts and legumes, whole grains, red and processed meat, 

sugar-sweetened beverages and fruit juice, polyunsaturated fatty acids (PUFAs), long-chain n-3 PUFAs, and sodium. Each component was scored from 0 to 10, and the AHEI 

ranged from 0 (non-adherence) to 90 (perfect adherence) but was scaled to range from 0 to 100. 
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Table S7. DASH scoring thresholds. 

 

Women Men 

Percentile 20% 40% 60% 80% 20% 40% 60% 80% 

Fruit, servings/d 0.71 0.98 1.26 1.75 0.65 0.86 1.11 1.52 

Non-starchy vegetables, 

servings/d 0.94 1.35 1.74 2.29 0.86 1.24 1.59 2.13 

Legumes and nuts, servings/d 0.25 0.41 0.60 0.93 0.26 0.41 0.60 0.95 

Whole grains, servings/d 0.27 0.47 0.77 1.30 0.26 0.46 0.75 1.29 

Low fat dairy, servings/d 0.34 0.66 1.12 1.71 0.31 0.62 1.07 1.64 

Red and processed meat, 

servings/d 0.37 0.62 0.97 1.49 0.38 0.66 1.10 1.66 

Sugar-sweetened beverages, 

servings/d 0.17 0.37 0.64 1.08 0.19 0.40 0.68 1.14 

Sodium, mg/d 1857.58 2233.79 2615.16 3037.78 1974.49 2374.67 2814.69 3228.36 

The DASH included 8 components: non-starchy vegetables, fruits, nuts and legumes, whole grains, low fat dairy products, red and processed meat, sugar-sweetened beverages, and 

sodium. Each component was scored from 1 to 5 using sex-specific quintiles, and the DASH score ranged from 8 (non-adherence) to 40 (perfect adherence).  

 

 

Table S8. MED scoring thresholds. 

 

Median cutoff 

 
Women Men 

Fruit and nuts, servings/d 1.45 1.29 

Non-starchy vegetables, servings/d 1.54 1.41 

Legumes, servings/d 0.22 0.23 

Whole grains, servings/d 0.61 0.59 

Dairy, servings/d 0.89 0.84 

Red and processed meat, servings/d 0.80 0.86 

Seafood, servings/d 0.31 0.30 

MUFA:SFA 0.98 1.05 

The MED included 8 of the 9 MED components (alcohol was excluded): non-starchy vegetables, fruits and nuts, legumes, whole grains, dairy products, red and processed meat, 

seafood, and the ratio of monounsaturated fatty acids to saturated fatty acids. Each component was scored as 0 or 1 using sex-specific medians, and the MED score ranged from 0 

(non-adherence) to 8 (perfect adherence). 
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Global, regional, and national DASH and MED scores in 2018 

The global mean DASH score in 2018 was 22.9 (95% UI 22.6, 23.2). Regional means were highest in the Central/Eastern Europe and 

Central Asia (24.7; 23.9, 25.5) and South Asia (24.5; 24.0, 25.1), and lowest in Latin America and the Caribbean (20.3; 19.7, 20.8) 

and Southeast and East Asia (21.7; 21.2, 22.1). Among populous countries, the mean DASH score ranged between 18.2 (17.5, 18.8) to 

28.5 (27.9, 29.2). Highest DASH scores were observed in Iran, Vietnam, Russia, and India, while lowest scores were identified in 

Brazil, Pakistan, the Philippines, and Egypt.  

 

Globally, the mean MED score in 2018 was 4.1 (95% UI 3.9, 4.2). High-Income Countries and Latin American and the Caribbean had 

the lowest regional MED scores (2.8; 2.6, 2.9 and 3.0; 2.8, 3.2, respectively), and South Asia and Sub-Saharan Africa had the highest 

(5.0; 4.5, 5.3 and 4.7; 4.4, 5.0, respectively). Among the most populous countries, the national MED score was lowest the United 

States, the Philippines, Germany, and Brazil (range 2.4 to 2.5), and highest in Bangladesh, Tanzania, the Democratic Republic of 

Congo, and Vietnam (range 5.4 to 6.1). 

 




