Supporting Information for

Dehaloperoxidase Catalyzed Stereoselective Synthesis of Cyclopropanol Esters

Mary G. Siriboe,^a David A. Vargas,^{a,b} and Rudi Fasan^{*,a}

^a Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
^b Current affiliation: Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA.

Correspondence should be addressed to R.F. (rfasan@ur.rochester.edu)

Table of Contents

Supplementary Tables	S2-S4
Supplementary Figures	S5-S24
Supplementary Scheme	S25
Compound Characterization	S26-S39
NMR Spectra	S40-S79
Reference	S80

	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ 4a \end{array} $	 ✓ cata KPi buffe 	lyst r (pH 7.0)	5a	D ₂ Et
Entry	Catalyst	OD ₆₀₀	AY (%)	dr _{trans}	er _{trans}
1	DHP (H55A,V59A)	10	12	99.5:0.5	99.5:0.5
2	DHP (H55A,V59A)	20	14	99.5:0.5	99.5:0.5
3	DHP (H55A,V59A)	40	17	99.5:0.5	99.5:0.5
4	DHP (H55A,V59A)	60	21	99.5:0.5	99.5:0.5
5	DHP (H55A,V59A)	80	16	99.5:0.5	99.5:0.5
6	DHP (H55A,V59A)	100	18	99.5:0.5	99.5:0.5
7	DHP (H55G,V59A)	20	1%	99.5:0.5	n.d
8	DHP (H55G,V59A)	40	3%	99.5:0.5	n.d
9	DHP (H55G,V59A)	60	4%	99.5:0.5	n.d
10	DHP (H55V,V59A)	20	0%	-	-

Table S1. Tables with Whole Cells Reaction with DHP mutants H55X, V59A

[a] Reaction Conditions: 20 mM Catalyst, 10 mM vinyl benzoate, 20 mM EDA, 10 mM dithionite, 5% EtOH, anaerobic 4 h

Table S2. Optimization of the reaction conditions for DHP(H55A,V59A) catalyzed cyclopropanation of vinyl benzoate with EDA. Reaction Conditions: 5% organic co-solvent in KPi buffer (pH 7), 10 mM sodium dithionite, anaerobic conditions, 4 hours.

N2KPi buffer (pH 7)-4a2RT, anaerobic5a4a4 hrs5a

No.	Cat. Loading	Sub. Con. (mM)	EDA Con.(mM)	Organic Co-solvent	AY (%)	рН	dr _{trans}	er _{trans}
1	20	10	20	EtOH	35	7	99.5:0.5	99.5:0.5
2	20	5	10	EtOH	36	7	99.5:0.5	99.5:0.5
3	20	2.5	5	EtOH	53	7	99.5:0.5	99.5:0.5
4	20	10	20	EtOH	26	6	99.5:0.5	99.5:0.5
5	20	10	20	EtOH	25	8	99.5:0.5	99.5:0.5
6 ^a	20	10	20	EtOH	30	9	99.5:0.5	99.5:0.5
7	40	10	20	EtOH	29	7	99.5:0.5	99.5:0.5
8	60	10	20	EtOH	26	7	99.5:0.5	99.5:0.5
9	20	10	20	EtOH	23	7	99.5:0.5	99.5:0.5
10	20	5	10	EtOH	24	7	99.5:0.5	99.5:0.5
11	20	1.25	2.5	EtOH	51	7	99.5:0.5	99.5:0.5
12	20	5	2.5	EtOH	55	7	99.5:0.5	99.5:0.5
13	20	2.5	5	EtOH	17	7	99.5:0.5	99.5:0.5
14	20	2.5	5	MeCN	40	7	99.5:0.5	99.5:0.5
15	20	2.5	5	DMSO	44	7	99.5:0.5	99.5:0.5
16	20	2.5	5	MeOH	67	7	99.5:0.5	99.5:0.5
17°	20	2.5	5	MeOH	45	7	99.5:0.5	99.5:0.5
18 ^c	20	1.25	2.5	MeOH	53	7	99.5:0.5	99.5:0.5
19	20	5	2.5	MeOH	66	9	99.5:0.5	99.5:0.5
20	20	2.5	5	MeOH	19	9	99.5:0.5	99.5:0.5
21	20	2.5	5	MeOH	27	7	99.5:0.5	99.5:0.5
22 ^d	20	2.5	5	MeOH	80	7	99.5:0.5	99.5:0.5
23	20	2.5	5	Isopropanol	30	7	99.5:0.5	99.5:0.5
24	20	2.5	5	THF	72	7	99.5:0.5	99.5:0.5
25	20	2.5	5	DMF	17	7	99.5:0.5	99.5:0.5
26 ^d	20	2.5	5	MeOH	80	7	99.5:0.5	99.5:0.5
27 ^d	20	2.5	10	MeOH	>99	7	99.5:0.5	99.5:0.5

^[a]Sodium borate buffer at pH 9. ^[b] at 0°C ^[c] slow addition of EDA ^[d] 10% organic co-solvent

Table S3. Sequence of the oligonucleotides used for the preparation of the dehaloperoxidase variants.

Primer	Sequence
DHP Wt Fwd	AAAAACATATGGGTTTCAAGCAAGACATCGCGA
DHP Wt Rev	AAAAACTCGAGTTTCATACCCGCGCTGCT
XhoI	GGCTTTGTTAGCAGCCGGAT
DHP F24A Fwd	CATTTTCCTGGCGGCGCTGAATAAATAC
DHP F35A Fwd	CGTCGTTACGCGAAGAACTATG
DHP Y38A Fwd	CTTCAAGAACGCGGTGGGTAAAAG
DHP H55A Fwd	GAAATTCGGCGATGCCACCGAGAAG
DHP M63A Fwd	GTTTAACCTGGCGATGGAAGTTG
DHP V59A Fwd	CACCGAGAAGGCGTTTAACCTG
DHP L100A Fwd	CTTCGAGAAAGCGTTTGTGGCG

Figure S1. Spectrophotometric redox potential determination for wild-type DHP and the DHP variants. Representative UV-vis spectra during the determination of the $Fe^{3+/2+}$ reduction and Nerst plot.

A) Wild-type DHP (Dye: Bindschedler's green). UV-vis spectra (top) and Nernst plot generated from UV-vis spectra (bottom). The calculated redox potential is 216 ± 5 mV (n =3).

B) DHP(H55A) variant (Dye: Bindschedler's green). No reduction of the protein was observed while the dye was reduced, indicating that the E^o Fe^{3+/}Fe²⁺ of the metalloprotein must be >300 mV.

C) DHP(H55A,V59A) variant (Dye: Bindschedler's green). No reduction of the protein was observed while the dye was reduced, indicating that the E^o Fe^{3+/}Fe²⁺ of the metalloprotein must be >300 mV.

Figure S2. Kinetic analysis of DHP(H55A,V59A)-catalyzed cyclopropanation of vinyl benzoate with EDA. Reaction Conditions: 20 μ M enzyme, 2.5 mM substrate, 10 mM EDA, 10 mM dithionite, 10% MeOH, KPi buffer (50 mM, pH 7), Anaerobic. Assay yield, were determined by chiral GC-FID analysis using calibration curves with authentic (racemic) standards

Figure S3. Inhibition Experiments with DMPO in the cyclopropanation reaction catalyzed by DHP(H55A,V59A). Reaction Conditions: 20 μ M enzyme, 2.5 mM vinyl benzoate 10 mM EDA, 10 mM Na₂S₂O4, 5 mins, anaerobic, and room temperature. [a] with 100mM DMPO. All reactions were performed in triplicates.

Figure S4. NOE experiment with ethyl 2-acetoxy-2-(4-fluorophenyl)cyclopropane-1-carboxylate (**5n**). a) ¹H NMR spectrum of ethyl (1R,2S)-2-acetoxy-2-(4-fluorophenyl) cyclopropane-1-carboxylate; b) NOE spectrum of **5n** (major diastereomer) measured after irradiation of H₂ proton. c) NOE spectrum of **5n** (major diastereomer) measured after irradiation of the H₁ proton. NOE difference spectra yielded a NOE of 7-23% for the major diastereomer of **5n** and an NOE of 1-3% for the minor diastereomer of **5n**, consistent with *trans* relationship between the aryl group and the ethyl ester group across the cyclopropane ring.

Figure S5. ²H-NMR spectra indicating d-3a-a product produced from DHP(H55AV59A)

Figure S6. GC and SFC chromatograms for determination of diastereomeric and enantiomeric excess in the cyclopropanation reactions of vinyl benzoate and acetate substrates catalyzed by DHP(H55A,V59A). Reference racemic samples were prepared using Rh₂(OAc)₄ as catalyst described in the experimental procedures. GC method used for separation is described for each substrate, see **Product Analysis** section for details.

a) ethyl (1S,2S)-2-phenylcyclopropane-1-carboxylate (3a) GC analysis for diastereomeric and enantiomeric determination of compound 3a using GC Separation Method 3. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below

b) (1S,2S)-2-(ethoxycarbonyl)cyclopropyl benzoate (5a) SFC analysis of trans and cis isomers 5a (left) and enzymatically produced 5a product. Compound 5a was analyzed using Daicel Chiralpak IF column and 2% of iPrOH

c) (1S,2R)-1-butyl-2-(ethoxycarbonyl)cyclopropyl benzoate (5d). GC analysis for

diastereomeric and enantiomeric determination of compound 5d using GC Separation

Method 1. Racemic (top) and enzymatically (bottom) generated products are shown below.

d) (1*R*,2*R*)-2-(ethoxycarbonyl)-1-isopropylcyclopropyl benzoate (5e). GC analysis for diastereomeric and enantiomeric determination of compound 5e using GC Separation Method 1. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below.

e) (1*R*,2*R*)-2-(ethoxycarbonyl)-[1,1'-bi(cyclopropan)]-1-yl benzoate (5f). GC analysis for diastereomeric and enantiomeric determination of compound 5h using GC Separation Method
 1. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below.

f) (1R,2R)-1-cyclopentyl-2-(ethoxycarbonyl)cyclopropyl benzoate (5g) GC analysis for diastereomeric and enantiomeric determination of compound 5g using GC Separation Method
 1. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below.

 g) (1S,2R)-2-(ethoxycarbonyl)-1-phenylcyclopropyl benzoate (5i). SFC analysis for diastereomeric and enantiomeric determination of compound 5i. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below. Compound 5i was analyzed using Daicel Chiralpak IF column and 10% of iPrOH

 h) Ethyl (1R,2S)-2-acetoxy-2-phenylcyclopropane-1-carboxylate (5j) GC analysis for diastereomeric and enantiomeric determination of compound 5j using GC Separation Method

2. Racemic (top) and enzymatically (bottom) generated products are shown below.

 i) Ethyl (1R,2S)-2-acetoxy-2-(o-tolyl)cyclopropane-1-carboxylate (5k). SFC analysis for diastereomeric and enantiomeric determination of compound 5k. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below. Compound 5k was analyzed using Daicel Chiralpak IF column and 2% of iPrOH

j) Ethyl (1*R*,2*S*)-2-acetoxy-2-(*p*-tolyl)cyclopropane-1-carboxylate (5m) GC analysis for diastereomeric and enantiomeric determination of compound 5m using GC Separation Method
 2. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below.

k) Ethyl (1R,2S)-2-acetoxy-2-(4-fluorophenyl)cyclopropane-1-carboxylate (5n). GC analysis for diastereomeric and enantiomeric determination of compound 5n using GC Separation Method 1. Racemic (top) and enzymatically (bottom) generated products are shown below.

Ethyl (1R,2S)-2-acetoxy-2-(4-bromophenyl) cyclopropane-1-carboxylate (50). SFC analysis for diastereomeric and enantiomeric determination of compound 50. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below. Compound 50 was analyzed using Daicel Chiralpak IA column and 5% of iPrOH

m) Ethyl (1*R*,2*S*)-2-acetoxy-2-(4-(trifluoromethyl)phenyl)cyclopropane-1-carboxylate (5p). GC analysis for diastereomeric and enantiomeric determination of compound 5p using GC Separation Method 2. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below.

n) Ethyl (1R,2S)-2-acetoxy-2-(4-methoxyphenyl) cyclopropane-1-carboxylate (5q). SFC analysis for diastereomeric and enantiomeric determination of compound 5q. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below. Compound 5q was analyzed using Daicel Chiralpak IA column and 5% of iPrOH

o) (1*S*,2*R*)-2-cyanocyclopropyl benzoate (7a). GC analysis for diastereomeric and enantiomeric determination of compound 5p using GC Separation Method 1. WT DHP (*top*) and (DHP H55A, V59A) (*bottom*) generated products are shown below.

p) Ethyl phenylalaninate (8b). GC analysis for diastereomeric and enantiomeric determination of compound 8b. GC Separation Method 3. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below.

q) Ethyl (S)-2-(phenylthio)pent-4-enoate (10a). GC analysis for diastereomeric and enantiomeric determination of compound 5p GC Separation Method 3. Racemic (*top*) and enzymatically (*bottom*) generated products are shown below.

Scheme 1. Mechanistic proposal for the radical stepwise vs concerted carbene transfer pathway in DHP-catalyzed cyclopropanation of β -cis-deutero-styrene with EDA.

Compound Characterization

Vinyl 4-methylbenzoate (4b)

Following the general procedure A, **4b** was isolated as a colorless oil. (211 mg, 62% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 2H), 7.51 (dd, J = 13.9, 6.2 Hz, 1H), 7.26 (d, J = 7.6 Hz, 2H), 5.05 (dd, J = 13.9, 1.6 Hz, 1H), 4.68 (dd, J = 6.3, 1.6 Hz, 1H), 2.42 (s, 3H) ppm.

Vinyl 4-methoxybenzoate (4c)

Following the general procedure A, 4c was isolated as a white solid. (271 mg, 73% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 9.1 Hz, 2H), 7.50 (ddd, J = 14.0, 6.3, 1.2 Hz, 1H), 6.95 (d, J = 9.0 Hz, 2H), 5.03 (dd, J = 14.0, 1.6 Hz, 1H), 4.67 (dd, J = 6.3, 1.6 Hz, 1H), 3.88 (s, 3H) ppm.

Hex-1-en-2-yl benzoate (4d)

Following the general procedure B, 4d was isolated as a colorless oil. (582 mg, 67% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 8.12 – 8.06 (m, 2H), 7.62 – 7.56 (m, 1H), 7.47 (t, *J* = 7.9 Hz, 2H), 4.87 – 4.81 (m, 2H), 2.34 (t, *J* = 7.6 Hz, 2H), 1.58 – 1.46 (m, 2H), 1.44 – 1.34 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

3-Methylbut-1-en-2-yl Benzoate (4e)

Following the general procedure B, 4e was isolated as a colorless oil. (406 mg, 43% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 8.10 (dd, J = 8.2, 1.5 Hz, 2H), 7.62 – 7.56 (m, 1H), 7.47 (t, J = 7.8 Hz, 2H), 4.88 (dd, J = 1.9, 1.0 Hz, 1H), 4.84 (d, J = 1.8 Hz, 1H), 2.64 – 2.51 (m, 1H), 1.16 (d, J = 6.9 Hz, 6H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 165.6, 162.2, 133.9, 130.7, 130.7, 129.2, 100.2, 33.2, 20.9 ppm. HRMS (ESI) m/z calculated for C₁₂H₁₅O₂⁺ [M+H]⁺ 191.1072, found 191.1064.

1-Cyclopropylvinyl Benzoate (4f)

Following the general procedure B, 4f was isolated as a colorless oil. (518 mg, 55% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 8.11 – 8.04 (m, 2H), 7.63 – 7.56 (m, 1H), 7.51 – 7.42 (m, 2H), 4.90 (dd, J = 1.8, 0.7 Hz, 1H), 4.82 (d, J = 1.7 Hz, 1H), 1.71 – 1.61 (m, 1H), 0.78 – 0.69 (m, 2H), 0.72 – 0.65 (m, 2H). ¹³C{1H} **NMR** (126 MHz, CDCl₃) δ 165.5, 157.5, 134.1, 130.7, 130.5, 129.2, 100.7, 14.7, 6.4 ppm.

1-Cyclopentylvinyl Benzoate (4g)

Following the general procedure B, 4g was isolated as a colorless oil. (16 mg, 3% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 8.13 – 8.04 (m, 2H), 7.62 – 7.55 (m, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 4.90 (d, *J* = 1.4 Hz, 1H), 4.84 (d, *J* = 1.7 Hz, 1H), 2.82 – 2.72 (m, 1H), 1.95 – 1.83 (m, 2H), 1.70 (dttd, *J* = 11.8, 8.7, 6.0, 3.5 Hz, 2H), 1.63 – 1.52 (m, 4H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 165.6, 159.9, 133.9, 130.8, 130.7, 129.2, 100.7, 44.6, 31.3, 25.7 ppm. HRMS (ESI) *m/z* calculated for C₁₄H₁₇O₂⁺ [M+H]⁺ 217.1228, found 217.1220.

1-Cyclohexylvinyl Benzoate (4h)

Following the general procedure B, **4h** was isolated as a colorless oil. (254 mg, 25% yield). ¹**H** NMR (500 MHz, CDCl₃) δ 8.13 – 8.06 (m, 2H), 7.63 – 7.55 (m, 1H), 7.47 (dd, J = 8.7, 6.9 Hz, 2H), 4.84 (d, J = 1.4 Hz, 1H), 4.82 (d, J = 1.8 Hz, 1H), 2.24 (tt, J = 10.6, 3.4 Hz, 1H), 2.03 – 1.92 (m, 2H), 1.82 – 1.71 (m, 2H), 1.71 – 1.63 (m, 1H), 1.26 (ddt, J = 9.7, 7.8, 4.9 Hz, 4H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 165.6, 161.5, 133.9, 130.7, 130.7, 129.2, 100.4, 42.6, 31.4, 26.8, 26.7 ppm.

1-Phenylvinyl Benzoate (4i)

Following the general procedure B, **4i** was isolated as a colorless oil. ¹**H** NMR (500 MHz, CDCl₃) δ 8.24 – 8.17 (m, 2H), 7.64 (ddt, J = 8.8, 7.0, 1.3 Hz, 1H), 7.57 – 7.48 (m, 4H), 7.39 – 7.30 (m, 3H), 5.60 (d, J = 2.2 Hz, 1H), 5.17 (d, J = 2.3 Hz, 1H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 165.6, 153.9, 135.0, 134.3, 130.9, 130.2, 129.7, 129.4, 129.3, 125.7, 103.1, 77.7, 30.5 ppm.

1-phenylvinyl acetate (4j)

Following the general procedure C, **4j** was isolated as a light yellow oil. (79 mg, 6% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.38 – 7.30 (m, 3H), 5.48 (d, *J* = 2.2 Hz, 1H), 5.03 (d, *J* = 2.2 Hz, 1H), 2.28 (s, 3H).

1-(*o*-tolyl)vinyl acetate (4k)

Following the general procedure C, 4k was isolated as a light yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 (d, J = 7.2 Hz, 1H), 7.28 – 7.19 (m, 2H), 7.18 (d, J = 6.9 Hz, 2H), 5.18 (d, J = 1.6 Hz, 1H), 5.02 (d, J = 1.5 Hz, 1H), 2.41 (s, 3H), 2.14 (s, 3H).

1-(*m*-tolyl)vinyl acetate (41)

Following the general procedure C, **4I** was isolated as a light yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.31 – 7.18 (m, 3H), 7.14 (d, *J* = 7.1 Hz, 1H), 5.45 (s, 1H), 5.00 (s, 1H), 2.35 (s, 3H), 2.28 (s, 3H).

1-(p-tolyl)vinyl acetate (4m)

Following the general procedure C, **4m** was isolated as a light yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.35 (d, J = 6.3 Hz, 1H), 7.15 (d, J = 7.3 Hz, 2H), 5.42 (d, J = 1.9 Hz, 1H), 4.96 (d, J = 2.0 Hz, 1H), 2.34 (s, 2=3H), 2.27 (s, 3H).

1-(4-fluorophenyl)vinyl acetate (4n)

Following the general procedure C, **4n** was isolated as a light yellow oil. (216 mg, 33% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.03 (t, *J* = 8.7 Hz, 2H), 5.40 (d, *J* = 2.3 Hz, 1H), 5.01 (d, *J* = 2.3 Hz, 1H), 2.27 (s, 3H).

1-(4-bromophenyl)vinyl acetate (40)

Br

Following the general procedure C, 40 was isolated as a light yellow oil. (177 mg, 25% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 7.47 (dd, J = 8.8, 1.9 Hz, 2H), 7.36 – 7.29 (m, 2H), 5.46 (d, J = 2.4 Hz, 1H), 5.05 (d, J = 2.2 Hz, 1H), 2.27 (s, 3H). **1-(4-(trifluoromethyl)phenyl)vinyl acetate (4p)**

Following the general procedure C, **4p** was isolated as a light yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.63 – 7.59 (m, 2H), 7.59 – 7.55 (m, 2H), 5.57 (d, J = 2.4 Hz, 1H), 5.16 (d, J = 2.5 Hz, 1H), 2.29 (s, 3H).

1-(4-methoxyphenyl)vinyl acetate (4q)

Following the general procedure C, **4q** was isolated as a white solid. (197 mg, 31% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 6.85 – 6.80 (m, 2H), 5.33 (d, *J* = 2.2 Hz, 1H), 4.89 (d, *J* = 2.2 Hz, 1H), 3.73 (s, 3H), 2.22 (s, 3H).

(1S,2S)-2-(ethoxycarbonyl)cyclopropyl benzoate (5a)

Following the general procedure D, *trans* isomer of **5a** was isolated as colorless oil. (11 mg, 47%

yield)

¹**H NMR (500 MHz, CDCl₃)** δ 7.99 (dd, J = 9.6, 1.3 Hz, 2H), 7.60 – 7.55 (m, 1H), 7.44 (dd, J = 15.7, 1.6 Hz, 2H), 4.66 (ddd, J = 6.8, 4.2, 2.3 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.02 (ddd, J = 9.9, 6.3, 2.3 Hz, 1H), 1.54 (q, J = 6.4 Hz, 1H), 1.43 (dq, J = 6.1, 4.3 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H).

(1S,2S)-2-(ethoxycarbonyl)cyclopropyl 4-methylbenzoate (5b)

Following the general procedure D, *trans* isomer of **5b** was isolated as colorless oil. (10 mg, 13% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, J = 8.3, 1.8 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 4.50 (td, J = 6.9, 4.7 Hz, 1H), 4.15 – 4.08 (m, 2H), 2.40 (s, 3H), 2.05 (dt, J = 8.9, 7.1 Hz, 1H), 1.73 (td, J = 6.8, 4.6 Hz, 1H), 1.35 (dt, J = 8.9, 6.6 Hz, 1H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 144.7, 130.5, 129.8, 61.5, 53.5, 30.4, 22.4, 20.8, 14.9, 12.9 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₇O₄⁺ [M+H]⁺ 249.1127, found 249.1117.

(1*S*,2*S*)-2-(ethoxycarbonyl)cyclopropyl 4-methoxybenzoate (5c)

Following the general procedure D, *trans* isomer of **5c** was isolated as colorless oil (5 mg, 7% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 6.92 – 6.90 (m, 2H), 4.63 – 4.60 (ddd, J = 6.7, 4.2, 2.3 Hz, 1H), 4.18 – 4.15 (q, J = 7.2 Hz, 2H), 3.86 (d, J = 1.6 Hz, 3H), 1.99 (ddd, J = 9.8, 6.3, 2.3 Hz, 1H), 1.54 – 1.49 (m, 1H), 1.41 (ddd, J = 10.1, 6.2, 4.3 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 172.4, 164.4, 132.4, 122.4, 114.4, 61.6, 56.2, 55.3, 30.4, 21.5, 15.1, 14.9 ppm. HRMS (ESI) *m/z* calculated for C₁₄H₁₇O₅⁺ [M+H]⁺ 265.1076, found 265.1066.

(1*S*,2*R*)-1-butyl-2-(ethoxycarbonyl)cyclopropyl benzoate (5d)

Following the general procedure D, trans isomer of 5d was isolated as colorless oil. (18 mg, 13%

yield). The isolated compound contains a minor amount (<5%) of a second diastereomer.

¹H NMR (500 MHz, CDCl₃) δ 8.02 – 7.93 (m, 2H), 7.58 – 7.50 (m, 1H), 7.46 – 7.37 (m, 2H), 4.19 (q, J = 7.1 Hz, 2H), 2.16 – 2.05 (m, 2H), 1.99 (ddd, J = 15.2, 10.5, 4.8 Hz, 1H), 1.51 – 1.42 (m, 3H), 1.39 – 1.25 (m, 5H), 0.84 (t, J = 7.2 Hz, 3H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 171.8, 166.3, 133.9, 130.8, 130.3, 129.1, 66.6, 61.6, 29.5, 28.9, 26.9, 23.1, 20.5, 15.0, 14.8 ppm. HRMS (ESI) m/z calculated for C₁₇H₂₃O₄⁺ [M+H]⁺ 291.1596, found 291.1584.

(1R,2R)-2-(ethoxycarbonyl)-1-isopropylcyclopropyl benzoate (5e)

Following the general procedure D, *trans* isomer of **5e** was isolated as colorless oil. (5 mg, 14% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 8.00 – 7.95 (m, 2H), 7.56 – 7.51 (m, 1H), 7.44 – 7.38 (m, 2H), 4.08 (qq, J = 10.8, 7.1 Hz, 2H), 2.21 (hept, J = 6.6 Hz, 1H), 2.03 (dd, J = 9.1, 7.1 Hz, 1H), 1.79 (t, J = 6.9 Hz, 1H), 1.39 (dd, J = 9.1, 6.7 Hz, 1H), 1.16 (t, J = 7.1 Hz, 3H), 1.01 (dd, J = 15.2, 6.8 Hz, 6H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 170.7, 166.8, 133.7, 131.0, 130.4, 129.0, 77.9, 69.2, 61.5, 33.3, 24.7, 19.5, 19.3, 17.6, 14.9. HRMS (ESI) *m/z* calculated for C₁₆H₂₁O₄⁺ [M+H]⁺ 277.1435, found 277.1429.

(1R,2R)-2-(ethoxycarbonyl)-[1,1'-bi(cyclopropan)]-1-yl benzoate (5f)

Following the general procedure D, *trans* isomer of **5f** was isolated as colorless oil. (8 mg, 20% yield). The isolated compound contains a minor amount (<5%) of a second diastereomer. **¹H NMR (400 MHz, CDCl₃)** δ 8.00 (dt, *J* = 7.0, 1.4 Hz, 2H), 7.60 – 7.53 (m, 1H), 7.44 (t, *J* =

¹**H** NMR (400 MHz, CDCI₃) 8 8.00 (dt, J = 7.0, 1.4 Hz, 2H), 7.60 – 7.53 (m, 1H), 7.44 (t, J = 7.8 Hz, 2H), 4.23 (qd, J = 7.1, 1.5 Hz, 2H), 2.20 (dd, J = 9.8, 7.2 Hz, 1H), 1.65 (tt, J = 8.4, 6.0 Hz, 1H), 1.45 (t, J = 6.9 Hz, 1H), 1.38 (dd, J = 9.8, 6.5 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 0.67 (dddd, J = 10.0, 8.2, 5.5, 3.1 Hz, 1H), 0.62 – 0.49 (m, 3H). ¹³C{1H} NMR (126 MHz, CDCI₃) δ 170.4, 167.0, 133.7, 130.9, 130.4, 129.0, 66.6, 61.5, 26.5, 17.9, 16.8, 14.9, 4.4, 4.3 ppm. HRMS (ESI) m/z calculated for C₁₆H₁₉O₄⁺ [M+H]⁺ 275.1283, found 275.1274.

(1R,2R)-1-cyclopentyl-2-(ethoxycarbonyl)cyclopropyl benzoate (5g)

Following the general procedure using styrene, *trans* isomer of 5g was isolated as colorless oil.

¹**H NMR (500 MHz, CDCl3)** δ 7.98 – 7.94 (m, 2H), 7.56 – 7.50 (m, 1H), 7.41 (t, J = 7.6 Hz, 2H), 4.08 (qq, J = 10.8, 7.1 Hz, 2H), 2.74 – 2.63 (m, 1H), 2.05 (dd, J = 9.1, 7.1 Hz, 1H), 1.78 (dt, J = 13.6, 7.7 Hz, 3H), 1.63 (dh, J = 13.3, 3.4 Hz, 2H), 1.55 (qt, J = 7.6, 2.8 Hz, 2H), 1.38 (dd, J = 9.1, 6.6 Hz, 1H), 1.17 (t, J = 7.1 Hz, 4H). ¹³C{*1H*} **NMR** (126 MHz, CDCl₃) ¹³C NMR (126

MHz, CDCl₃) δ 170.7, 166.8, 133.6, 131.1, 130.3, 129.0, 67.6, 61.5, 43.9, 30.0, 29.6, 25.7, 25.1, 17.3, 14.9. **HRMS** (ESI) m/z calculated for $C_{18}H_{23}O_4^+$ [M+H]⁺ 303.1596, found 303.1586.

(1R,2R)-1-cyclohexyl-2-(ethoxycarbonyl)cyclopropyl benzoate (5h)

Following the general procedure D, *trans* isomer of **5h** was isolated as colorless oil. (5 mg, 4%

yield).

¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 7.7 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.46 – 7.35 (m, 2H), 4.07 (tddd, J = 16.2, 12.1, 7.6, 4.2 Hz, 2H), 2.08 – 1.99 (m, 1H), 1.94 – 1.80 (m, 3H), 1.76 (dq, J = 10.6, 3.2 Hz, 3H), 1.65 (d, J = 13.1 Hz, 1H), 1.39 (ddd, J = 9.1, 6.6, 2.4 Hz, 1H), 1.28 -1.19 (m, 2H), 1.16 (td, J = 7.2, 2.3 Hz, 3H), 1.12 – 0.95 (m, 2H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 170.7, 166.8, 133.6, 131.0, 130.4, 129.0, 68.8, 61.5, 54.2, 42.9, 29.9, 29.7, 26.8, 26.8, 26.7, 24.5, 17.6, 14.9 ppm. **HRMS** (ESI) m/z calculated for $C_{19}H_{25}O_4^+$ [M+H]⁺ 317.1753, found 317.1743.

2-(ethoxycarbonyl)-1-phenylcyclopropyl benzoate (5i)

Following the general procedure D, 5i was isolated as a mixture of cis and trans isomers, yellow

oil (54 mg, 40% yield).

We were unable to separate the diastereomers, resulting in a mixture of cis and trans with ratios of 1.4:1(*trans:cis*). ¹H NMR (500 MHz, CDCl₃) δ 8.00 (ddd, J = 13.0, 8.4, 1.4 Hz, 3.59H), 7.63 -7.58 (m, 1.53H), 7.55 (dddd, J = 10.9, 5.3, 2.7, 1.4 Hz, 1.65H), 7.46 -7.37 (m, 5.57H), 7.36 -7.31 (m, 2.83H), 7.31 - 7.27 (m, 1.38H), 4.17 (dddd, J = 18.0, 10.8, 7.2, 3.7 Hz, 2H), 3.96 - 3.90(m, 1.48H), 2.57 (dd, J = 9.6, 7.4 Hz, 0.76H), 2.48 (dd, J = 9.2, 7.5 Hz, 1.01H), 2.32 (t, J = 7.2Hz, 0.84H), 2.18 (dd, J = 7.6, 6.5 Hz, 1.03H), 1.83 (dd, J = 9.2, 6.6 Hz, 1.08H), 1.76 (dd, J = 9.6, 6.9 Hz, 0.81H), 1.23 (t, *J* = 7.1 Hz, 3.12H), 1.00 (t, *J* = 7.1 Hz, 2.41H). HRMS (ESI) *m/z* calculated for $C_{19}H_{19}O_4^+$ [M+H]⁺ 311.1283, found 311.1271.

Ethyl (1R,2S)-2-acetoxy-2-phenylcyclopropane-1-carboxylate (5j)

Following the general procedure D, *trans* isomer of **5j** was isolated as colorless oil. (36 mg, 24% yield). The isolated compound contains a minor amount (<5%) of a second diastereomer.

¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.33 (ddd, J = 7.7, 6.7, 1.3 Hz, 2H), 7.30 – 7.25 (m, 1H), 4.19 (qd, J = 7.2, 0.9 Hz, 2H), 2.40 (dd, J = 9.2, 7.4 Hz, 1H), 2.04 (s, 3H), 2.01 (dd, J = 7.5, 6.4 Hz, 1H), 1.66 (dd, J = 9.3, 6.5 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 171.0, 170.1, 139.1, 129.2, 128.8, 127.6, 64.6, 61.7, 28.6, 21.7, 21.2, 14.9 ppm. HRMS (ESI) m/z calculated for C₁₄H₁₇O₄⁺ [M+H]⁺ 249.1127, found 249.1117.

Ethyl 2-acetoxy-2-(o-tolyl)cyclopropane-1-carboxylate (5k)

Following the general procedure D, a mixture of cis and trans isomers as colorless oil. (57 mg,

27% yield).

We were unable to separate the diastereomers, resulting in a mixture of cis and trans with ratios of 1.81:1(*trans:cis*) ¹**H NMR (400 MHz, CDCl₃)** δ 7.61 (d, J = 6.5 Hz, 0.51H), 7.54 (dd, J = 7.5, 1.7 Hz, 0.51H), 7.26 – 7.06 (m, 3.34H), 4.30 – 4.16 (m, 2H), 3.96 – 3.83 (m, 1.13H), 2.51 (s, 1.59H), 2.44 (s, 2.12H), 2.33 (dd, J = 9.3, 7.3 Hz, 0.57H), 2.19 – 2.12 (m, 0.66H), 1.99 (t, J = 6.8 Hz, 0.70H), 1.94 (s, 0.39H), 1.64 (dd, J = 9.6, 6.8 Hz, 0.51H), 1.61 – 1.55 (m, 0.57H), 1.32 (t, J = 8.1 Hz, 3.77H), 0.97 (t, J = 7.2 Hz, 1.69H). **HRMS** (ESI) *m/z* calculated for C₁₅H₁₈NaO₄⁺ [M+Na]⁺ 285.1105.1127, found 285.1091.

Ethyl (1R,2S)-2-acetoxy-2-(m-tolyl)cyclopropane-1-carboxylate (5l)

Following the general procedure D, *trans* isomer of **51** was isolated as colorless oil. (5 mg, 2% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 1H), 7.20 – 7.16 (m, 2H), 7.09 (d, J = 7.2 Hz, 1H), 4.19 (qt, J = 7.1, 1.4 Hz, 2H), 2.44 – 2.34 (m, 2H), 2.34 (s, 3H), 2.04 (s, 3H), 1.99 (ddd, J = 7.5, 6.4, 1.1 Hz, 1H), 1.65 (ddd, J = 9.3, 6.4, 1.1 Hz, 1H), 1.30 (t, J = 6.6 Hz, 3H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 171.1, 170.2, 139.0, 138.9, 129.5, 129.1, 128.2, 124.7, 64.6, 61.7,

28.5, 22.2, 21.7, 21.2, 14.9 ppm. **HRMS** (ESI) m/z calculated for $C_{15}H_{18}NaO_4^+$ [M+Na]⁺ 285.1105.1127, found 285.1093.

Ethyl (1R,2S)-2-acetoxy-2-(p-tolyl)cyclopropane-1-carboxylate (5m)

Following the general procedure D, *trans* isomer of **5m** was isolated as colorless oil. (9 mg, 4% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 3.92 (q, J = 7.1 Hz, 2H), 2.38 (dd, J = 9.5, 7.3 Hz, 1H), 2.31 (s, 3H), 2.14 (t, J = 7.1 Hz, 1H), 1.95 (s, 2H), 1.60 (dd, J = 9.5, 6.7 Hz, 1H), 1.02 (t, J = 7.1 Hz, 3H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 171.1, 170.2, 138.7, 136.2, 130.5, 129.8, 127.9, 64.6, 61.9, 61.7, 28.3, 21.8, 21.7, 20.9, 14.9, 14.8 ppm. HRMS (ESI) m/z calculated for C₁₅H₁₈NaO₄⁺ [M+Na]⁺ 285.1105.1127, found 285.1090.

Ethyl (1R,2S)-2-acetoxy-2-(4-fluorophenyl)cyclopropane-1-carboxylate (5n)

Following the general procedure D, *trans* isomer of **5n** was isolated as colorless oil. (7 mg, 10% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 2H), 7.07 – 6.97 (m, 2H), 4.24 – 4.14 (m, 2H), 2.35 (ddd, J = 9.3, 7.2, 4.9 Hz, 1H), 2.01 (s, 3H), 2.00 – 1.95 (m, 1H), 1.66 – 1.55 (m, 1H), 1.30 (t, J = 6.1 Hz, 3H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 171.1, 170.0, 130.4 (d, J = 8.4 Hz), 116.1 (d, J = 21.7 Hz), 99.9, 64.2, 61.8, 28.1, 21.6, 20.8, 14.9 (quaternary C alpha to F and to cyclopropane not observed). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.61 (q, J = 3.0 Hz). HRMS (ESI) m/z calculated for C₁₄H₁₆FO₄⁺ [M+H]⁺ 267.1032, found 267.1021.

NOE Enhancements

Major diastereomer

¹**H** NMR (400 MHz, CDCl₃) δ 7.03 (t, J = 8.5 Hz, 3H), 4.20 (q, J = 7.1 Hz, 2H), 2.47 – 2.24 (m, 1H), 2.01 (d, J = 9.0 Hz, 4H), 1.62 (dd, J = 9.3, 6.5 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H).

Minor diastereomer

¹**H NMR (400 MHz, CDCl₃)** δ 7.01 (t, *J* = 8.5 Hz, 2H), 3.94 (q, *J* = 7.1 Hz, 2H), 2.41 (t, *J* = 8.4 Hz, 1H), 2.14 (t, *J* = 7.1 Hz, 1H), 1.97 (s, 3H), 1.64 (dd, *J* = 9.6, 6.8 Hz, 1H), 1.04 (t, *J* = 7.1 Hz, 3H).

Ethyl (1R,2S)-2-acetoxy-2-(4-bromophenyl)cyclopropane-1-carboxylate (50)

Following the general procedure D, trans isomer of 50 was isolated as a yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 4.18 (qd, J = 6.5, 3.4 Hz, 2H), 2.36 (dd, J = 9.3, 7.4 Hz, 1H), 2.07 – 1.95 (m, 4H), 1.61 (dd, J = 9.3, 6.5 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³**C**{**1H**} **NMR** (126 MHz, CDCl₃) δ 171.0, 169.8, 138.2, 132.3, 129.6, 122.9, 64.1, 61.9, 28.4, 21.6, 20.9, 14.9. **HRMS** (ESI) *m/z* calculated for C₁₄H₁₆BrO₄⁺ [M+H]⁺ 327.0232, found 327.0219.

Ethyl (1R,2S)-2-acetoxy-2-(4-(trifluoromethyl)phenyl)cyclopropane-1-carboxylate (5p)

Following the general procedure D, *trans* isomer of **5p** was isolated as colorless oil. (6 mg, 9% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.60 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.1 Hz, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.48 – 2.39 (m, 1H), 2.11 – 2.03 (m, 4H), 1.68 (ddd, *J* = 9.3, 6.6, 1.0 Hz, 1H), 1.30
(t, J = 7.1 Hz, 3H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 171.0, 169.6, 143.1, 130.9 (d, J = 32.7 Hz), 127.6, 126.2 (q, J = 3.7 Hz), 63.8, 61.9, 30.4, 28.9, 21.5, 21.4, 14.9 (quaternary C alpha to - CF3 not observed). ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -62.87 ppm. HRMS (ESI) m/z calculated for C₁₅H₁₆F₃O₄⁺ [M+H]⁺ 317.0996, found 317.0987.

Ethyl (1R,2S)-2-acetoxy-2-(4-methoxyphenyl)cyclopropane-1-carboxylate (5q)

Following the general procedure D, *trans* isomer of **5q** was isolated as colorless oil. (9 mg, 6% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.24 – 4.11 (m, 2H), 3.79 (s, 3H), 2.34 (ddd, J = 10.4, 8.0, 2.4 Hz, 1H), 2.03 – 1.92 (m, 4H), 1.64 – 1.54 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{1H} **NMR** (126 MHz, CDCl₃) δ 171.1, 170.3, 160.2, 131.3, 130.0, 114.5, 64.6, 61.7, 56.0, 28.0, 21.7, 20.7, 14.9 ppm. **HRMS** (ESI) *m/z* calculated for C₁₅H₁₉O₅⁺ [M+H]⁺ 279.1232, found 279.1220.

(1S,2R)-2-cyanocyclopropyl benzoate (7a)

Following the general procedure E, *trans* isomer of **7a** was isolated as a white solid. (133 mg, 53% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.97 (dt, J = 8.5, 1.1 Hz, 2H), 7.60 (td, J = 7.4, 1.3 Hz, 1H), 7.45 (ddd, J = 8.7, 7.5, 1.2 Hz, 2H), 4.74 (ddt, J = 6.8, 4.9, 2.7 Hz, 1H), 1.84 – 1.75 (m, 1H), 1.64 – 1.53 (m, 2H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 166.8, 134.5, 130.4, 129.3, 119.4, 53.4, 14.5, 5.3. HRMS (ESI) m/z calculated for C₁₁H₁₀NO₂⁺ [M+H]⁺188.0707, found 188.0705.

Ethyl phenylglycinate (8a)

Following the general procedure D, **8a** was isolated as a colorless oil. (41 mg, 43% yield). The analytical data are in accord with those reported in literature.⁴

¹H NMR (500 MHz, CDCl₃) δ 7.19 (td, J = 8.7, 2.5 Hz, 2H), 6.75 (t, J = 7.3 Hz, 1H), 6.61 (dd, J = 8.7, 2.2 Hz, 2H), 4.24 (q, J = 7.1 Hz, 2H), 3.89 (s, 2H), 1.29 (t, J = 7.1 Hz, 3H) Ethyl phenylalaninate (8b)

Following the general procedure D, 8b was isolated as a colorless oil. (39 mg, 38% yield).

The analytical data are in accord with those reported in literature.⁴

¹**H NMR (500 MHz, CDCl₃)** δ 7.17 (td, J = 7.3, 1.4 Hz, 2H), 6.74 (td, J = 7.3, 1.0 Hz, 1H), 6.61 (d, J = 8.6 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 4.13 (q, J = 6.9 Hz, 1H), 1.47 (d, J = 6.9 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H).

Ethyl 2-(phenylthio)acetate (9a)

Following the general procedure D, 9a was isolated as a colorless oil. (44 mg, 50% yield).

The analytical data are in accord with those reported in literature.⁵

¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.31 (m, 2H), 7.32 – 7.25 (m, 2H), 7.25 – 7.19 (m, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.62 (s, 2H), 1.20 (t, J = 7.1 Hz, 3H).

Ethyl 2-(phenylthio)propanoate (9b)

Following the general procedure D, **9b** was isolated as a colorless oil. The analytical data are in accord with those reported in literature.⁵

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 (d, J = 6.8 Hz, 2H) 7.31-7.28 (m, 3H), 4.13 (q, J = 7.2 Hz, 2H), 3.80 (q, J = 7.2 Hz, 1H), 1.48 (d, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H) ppm

Ethyl (S)-2-(phenylthio)pent-4-enoate (10a)

Following the general procedure D, 10a was isolated as a colorless oil. (26 mg, 21% yield).

The analytical data are in accord with those reported in literature.⁶

¹**H** NMR (500 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H), 7.35 – 7.22 (m, 3H), 5.79 (ddt, *J* = 17.1, 10.2, 6.9 Hz, 1H), 5.18 – 5.02 (m, 2H), 4.10 (pq, *J* = 6.4, 4.0 Hz, 2H), 3.68 (dd, *J* = 8.7, 6.3 Hz, 1H), 2.61 (dddt, *J* = 15.6, 8.3, 7.0, 1.3 Hz, 1H), 2.50 (dtt, *J* = 14.3, 6.3, 1.3 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H).

2-hydroxy-2-isopropylcyclopropane-1-carboxylic acid (11)

Following the general procedure F, 11 was isolated as a colorless oil. (2 mg, 29% yield).

¹H NMR (500 MHz, CDCl₃) δ 3.86 (s, 2H), 2.77 (s, 2H), 2.63 (d, *J* = 6.7 Hz, 2H), 1.12 (d, *J* = 6.9 Hz, 6H). ¹³C{1H} NMR (126 MHz, CDCl₃) δ 166.2, 40.8, 34.7, 32.9, 29.7, 1 HRMS (ESI) *m/z* calculated for C₇H₁₃O₃⁺ [M+H]⁺ 145.0865, found 145.0854.

NMR Spectra

S40

4g. 1-Cyclopentylvinyl Benzoate ¹H NMR (500 MHz, CDCl₃)

4g. 1-Cyclopentylvinyl Benzoate ¹³C{1H} NMR (126 MHz, CDCl₃)

S43

5b. (1S,2S)-2-(ethoxycarbonyl)cyclopropyl 4-methylbenzoate ¹H NMR (500 MHz, CDCl₃)

5e. (1R,2R)-2-(ethoxycarbonyl)-1-isopropylcyclopropyl benzoate ¹H NMR (500 MHz, CDCl₃)

5f. (1R,2R)-2-(ethoxycarbonyl)-[1,1'-bi(cyclopropan)]-1-yl benzoate ¹H NMR (500 MHz, CDCl₃)

-170.346 -167.000 -167.000 -167.000 -167.000 -173.876 -133.857 -133.857 -133.857 -133.856 -133.986 -133.977 -130.986 -133.977 -130.986 -132.996 -133.977 -130.976 -132.996 -133.977 -130.976 -132.996 -133.977 -130.976 -132.996 -133.977 -132.907 -1007 -10	
---	--

5f. (1R,2R)-2-(ethoxycarbonyl)-[1,1'-bi(cyclopropan)]-1-yl benzoate ${}^{13}C{1H}$ NMR (126 MHz, CDCl₃)

5g. (1R,2R)-1-cyclopentyl-2-(ethoxycarbonyl)cyclopropyl benzoate $^1\mathrm{H}$ NMR (500 MHz, CDCl_3)

5h. (1R,2R)-1-cyclohexyl-2-(ethoxycarbonyl)cyclopropyl benzoate ¹H NMR (500 MHz, CDCl₃)

-170.663 -166.794 -133.667 -131.019 -130.354 -129.029	77.760 CDCI3 77.760 CDCI3 68.752 61.453 61.453 61.453 54.151 54.151 54.151 28.823 26.773 26.773 24.541 17.568 17.568
--	--

5h. (1R,2R)-1-cyclohexyl-2-(ethoxycarbonyl)cyclopropyl benzoate ${}^{13}C{1H}$ NMR (126 MHz, CDCl₃)

5i. 2-(ethoxycarbonyl)-1-phenylcyclopropyl benzoate ¹H NMR (500 MHz, CDCl₃)

CO₂Et

CDC			TMS
7.7.386 7.33716 7.33716 7.3369 7.3369 7.3369 7.3369 7.3360 7.33760 7.3360 7.3360 7.3360 7.33760 7.737760 7.73760 7.737760 7.737760 7.737760 7.737760 7.737760 7.7377760 7.7377760 7.737777777777777777777777777777777777	-4.218 -4.215 -4.206 -4.194 -4.194 -4.178 -4.178 -4.178 -4.164 -4.164 -4.156	2.405 2.405	000.0

5j. Ethyl (1R,2S)-2-acetoxy-2-phenylcyclopropane-1-carboxylate ¹H NMR (500 MHz, CDCl₃)

250 L71 032	170.103		130.519 128.758 127.565			₹78.027 CDCI3 ₹77.773 CDCI3 77.518 CDCI3	64.587 61.951 61.729				~21.650	$<_{14.749}^{14.955}$	
iyl (1R,2S)-2-aco H} NMR (126 M	etoxy-2-phenylcyclo Hz, CDCl ₃)	propa	ne-1-carboxyla	ite									
	O ₂ Et												
							1			ļ	ł	1	
มาสารคินการที่หมายเสียงให้แห่งค	 	477744/1 1/1 /14/14	NAMONYA IN THE WAY MAN AND THE	\0 \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ะง(ไม่สุดสุดภาพร่างหันประสุทั่งหัวที่สามการเพื่อ 	าเมาไหน ใหญ่หมุดมูลเลยไหม่ 	wonan www.www.www.www.www.	n.:/wendring/brinden	Wannerd Marker (Vierdander) I			www.www.www.www.www.www.www.www.www.ww	humunduquni
180	170 160 150	140	130 120	110 100	90 ppm	80 70	60	50	40	30	20	10	0

5j. Eth ¹³C{1H

S60

5k. Ethyl 2-acetoxy-2-(*o*-tolyl)cyclopropane-1-carboxylate ¹H NMR (500 MHz, CDCl₃)

5m. Ethyl (1R,2S)-2-acetoxy-2-(p-tolyl)cyclopropane-1-carboxylate ¹H NMR (500 MHz, CDCl₃)

و المجافع hyl (1R,2S)-2-acetoxy-2-(hyl NMR (126 MHz, CDCl	p-tolyl)cyclopropane-))	l-carboxylate		₹77.994 CDCI5 ₹77.741 CDCI5 77.486 CDCI5	~ 64.621 ~ 61.965 ~ 61.689		28.342	<pre> <pre></pre></pre>	
O CO ₂ Et									
				ľ					
เรื่องจากเขาไปเป็นแห่งเป็นเป็นหาการเหตุลายในการเหตุลายการเป็นการเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็น	การแนนเลยนางและการเราสู่สุดไปสุดภูณฑาษณฑาษณฑาษณฑาษณฑาษณฑาษณฑาษณฑาษณฑาษณฑาษ	104/001914410001149101141110111101111011	WirthfledyMuchan, sylna yw arlengyDrys	eterlinetur uniterreturi	เกรนการณ์ เกรน (1996 - 1997) - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 19	nonjheevallasadest, 1,1441 (sekseda sekseda)	powendary ways	una de presentententen	4VIanyaharus)faya
	150 140 130	120 110	100 90 ppm	80 7	0 60	50 40	30	20	10

5m. Eth ¹³C{1H

51. Ethyl (1R,2S)-2-acetoxy-2-(m-tolyl)cyclopropane-1-carboxylate ¹H NMR (500 MHz, CDCl₃)

5q. Ethyl (1R,2S)-2-acetoxy-2-(4 methoxyphenyl)cyclopropane-1-carboxylate ¹H NMR (500 MHz, CDCl₃)

5n. Ethyl (1R,2S)-2-acetoxy-2-(4-fluorophenyl)cyclopropane-1-carboxylate ¹H NMR (500 MHz, CDCl₃)

-113.589 -113.594 -113.604 -113.610 -113.610

5n. Ethyl (1R,2S)-2-acetoxy-2-(4-fluorophenyl)cyclopropane-1-carboxylate ¹⁹F NMR 376 MHz

YMUUJWAUYYYUU/ALAAMAANAANIYYIDADADUVYYAADAANA

12294289111989199989892522223898926 12299238989252223898920 1229923898925222389892022223898920	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	40407707700400000-0000407
	04-0000	
		440000000000000000000000000000000000000

50. Ethyl (1R,2S)-2-acetoxy-2-(4-bromophenyl)cyclopropane-1-carboxylate ¹H NMR (500 MHz, CDCl₃)

0

CF₃

	77.967 CDCI3 77.461 CDCI3 77.461 CDCI3 61.914	→ 20.413 → 28.927 < 21.513 → 14.913 → 14.913
--	--	--

5p. Ethyl (1R,2S)-2-acetoxy-2-(4-(trifluoromethyl)phenyl)cyclopropane-1-carboxylate ${}^{13}C{1H}$ NMR (126 MHz, CDCl₃)

5p. Ethyl (1R,2S)-2-acetoxy-2-(4-(trifluoromethyl)phenyl)cyclopropane-1-carboxylate ¹⁹F NMR 376 MHz

--62.874

O CO₂Et CF₃

-10 -20 -30 -80 -100 ppm -40 -50 -60 -70 -90 -130 -150 -170 -2(-110 -120 -140 -160 -180 -190

S76

ငာငျိ				SMT
-7.26	-3.86	-2.65	-1.13	0.00
	1		\vee	1

11. (1R,2R)-2-hydroxy-2-isopropylcyclopropane-1-carboxylic acid ¹H NMR (500 MHz, CDCl₃)

CO₂H

HO

S79

References

- Martinez-Montero, S.; Fernandez, S.; Sanghvi, Y. S.; Gotor, V.; Ferrero, M. An Expedient Biocatalytic Procedure for Abasic Site Precursors Useful in Oligonucleotide Synthesis. *Org. Biomol. Chem.* 2011, 9, 5960-5966
- Goossen, L. J.; Paetzold, J.; Koley, D. Regiocontrolled Ru-Catalyzed Addition of Carboxylic Acids to Alkynes: Practical Protocols for the Synthesis of Vinyl Esters. *Chem. Commun.* 2003, 706-707.
- Li, W. P.; Zhu, Y. C.; Zhou, Y. J.; Yang, H. W.; Zhu, C. J. Visible Light Induced C-H Monofluoroalkylation to Synthesize 1,4-Unsaturated Compound. *Tetrahedron* 2019, 75, 1647-1651.
- Sreenilayam, G.; Fasan, R. Myoglobin-Catalyzed Intermolecular Carbene N-H Insertion with Arylamine Substrates. *Chem. Commun.* 2015, *51*, 1532-1534.
- Tyagi, V.; Bonn, R. B.; Fasan, R. Intermolecular Carbene S-H Insertion Catalysed by Engineered Myoglobin-Based Catalysts. *Chem. Sci.* 2015, *6*, 2488-2494.
- Tyagi, V.; Sreenilayam, G.; Bajaj, P.; Tinoco, A.; Fasan, R. Biocatalytic Synthesis of Allylic and Allenyl Sulfides through a Myoglobin-Catalyzed Doyle-Kirmse Reaction. *Angew. Chem. Int. Ed.* 2016, 55, 13562-13566.